Bridge-substituted Calix[4]arenes- Syntheses, Conformations and Application

Conrad Fischer, Tobias Gruber[‡], Wilhelm Seichter and Edwin Weber

Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, *D*-09596 Freiberg/Sachsen, Germany. [‡] Present address: University of Oxford, Department of Chemistry, Chemistry Research Laboratory,

Mansfield Road, Oxford OX1 3TA, United Kingdom.

Supplementary material (ESI)

NMR measurements (exemplarily for compound 2)	S1-S5
Crystallographic data for compounds 2 and 4	S6-S9
MM calculation results	S10-S14
Excitation and Emission spectra for compound 7	S15
Experimental details	S16-S17

NMR measurements (exemplarily for compound 2)

S1 Numbering of atoms in molecule 2 for NMR examination.

Electronic Supplementary Material (ESI) for Organdic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

S4 NOESY spectrum of 2 in CDCl₃ at 265 K with important correlations of spatially close protons (black cross-peaks) in the different conformers. Negative cross-peaks (red) indicate the exchange of the *cone* and *paco2* conformation. (Assignment: • *cone*, ○ *paco2*, ■ *1,2-alternate*)

Crystallographic data for compounds 2 and 4

S5 Crystallographic and structure refinement data of the compounds studied

Compound	2	4
Empirical formula		- -
Formula weight (g/mol)	763.03	791.08
Crystal sytstem	triclinic	monoclinic
Space group	P-1	P2₁/n
a (Å)	12.6769(2)	11.5457(2)
b (Å)	12.8446(2)	24.1928(5)
c (Å)	14.6153(3)	17.0958(3)
$\alpha(\circ)$	91.3430(10)	90.00
β (°)	94.0610(10)	96.0980(10)
γ (°)	106.2170(10)	90.00
V (Á ³)	2277.05(7)	4748.23(15)
z`´	2	4
F (000)	828	1720
Dc (mgm ⁻³)	1.113	1.107
μ (mm ⁻¹)	0.071	0.070
Data collection		
Temperature (K)	93(2)	133(2)
No. of collected reflections	55737	43813
Within the θ limit (°)	1.4-30.4	1.68-27.1
Index ranges ±h, ±k, ±l	-18/18, -18/18, -20/20	-11/14, -31/30, -21/21
No. of unique reflections	13742	10457
No. of refined parameters	522	540
No. of <i>F</i> values used	11351	6925
[l> 2σ (l)]		
Final <i>R</i> indices		
$R(=\Sigma \Delta_{\alpha}F /\Sigma F_{0})$	0.0395	0.0581
$wR \text{ on } F^2$	0.1304	0.1674
S (=Goodness of fit on F^2)	1.081	0.941
Final $\Delta \rho$ max/ $\Delta \rho$ min (eÅ ⁻³)	0.000	0.000

Selected conformational parameters of the acid 1 and the calixarene **S6** esters 2 and 4 and their calculated packing index (KPI)

Compound	1	2	4
Interplanar angles (°) ^a			
mpla ^b /A	28.8(1)	85.2(1)	39.1(1)
mpla/B	86.0(1)	35.1(1)	88.8(1)
mpla/C	51.6(1)	86.4(1)	36.7(1)
mpla/D	74.2(1)	88.6(1)	88.5(1)
A/C	80.1(1)	1.4(1)	75.7(1)
B/D	19.8(1)	54.1(1)	0.6(1)
mpla/mplb ^c		81.4(1)	70.4(1)
KPI	63.7	64.1	64.1

^a Aromatic rings: ring A: C(1)...C(6); ring B: C(8)...C(13); ring C: C(15)...C(20); ring D: C(22) ...C(27); ^b Best plane through atoms C(7), C(14), C(21) and C(28). ^c Best plane through atoms O(5), C(49), O(6) and C(50)

calixarene	Symmetry	Distances (Å)		Angle(°)	
		DH	D A	H A	D-H A
2					
C(43)-H(43C) O(5)	1-x,-y,-z	0.98	3.4996(1)	2.53	169
C(46)-H(46B) centroid(B)	1-x,1-y,-z		3.7574(4)	2.96	139
4					
C(51)-(H51) centroid(D) ^a	-0.5+x, 0.5-y, -0.5+z		3.7003(5)	2.75	161

S7 Distances (Å) and angles (°) of hydrogen bond type interations of calixarenes **2** and **4**.

^a Centroid means the centre of gravity of the respective aromatic ring, such as ring A: C1...C6; ring B: C8...C13; ring C: C15...C20; ring D: C22...C27.

S8 Packing motif of **2** reflecting the cartoon of the (0,1,-1) plane. H-Atoms are omitted for clarity.

S9 Packing motif of **4** reflecting the cartoon of the (1,0,-1) plane. H-Atoms are omitted for clarity.

S10 Possible conformers of calixarenes **1-7**. The filled and unfilled circles represent an 'up' or 'down' orientation of the methoxy groups, respectively. Mirror images are separated by a broken line and indicated by inverted letters.

	1	2	3	4	5	7
cone A	5.79	6.07	6.07	6.44	5.31	4.97
cone B	0.02	0.02	0.01	0.00	0.03	0.00
paco A	5.40	5.80	5.78	6.15	5.47	6.22
paco B	1.87	1.86	1.82	2.13	1.64	1.60
paco C	1.63	1.63	1.61	1.92	1.71	1.46
paco D	0.00	0.00	0.00	0.19	0.00	0.11
alt2A	10.43	11.60	11.55	11.83	10.60	13.13
alt2B	5.66	3.91	6.42	6.48	6.52	8.26
alt2C	3.87	3.91	3.92	3.83	3.82	3.72
alt3	1.44	1.45	1.43	1.51	1.83	1.45

S11 Gas phase energies (in kcal mol) for the possible conformers of compounds **1-7** relative to their respective lowest energy conformer (highlighted yellow)

S12	Cartesian coordinates of the lowest energy conformer structures of
	compounds 2 and 4, as received from the MM calculations

Compound	atom-type	X _{CAL}	Y CAL	Z _{CAL}
2				
C1	C.ar	0.5581	1.2381	8.8755
C2	C.ar	-0.3222	2.2269	8.8755
C3	C.ar	-1.1592	1.9232	7.3205
C4	C.ar	-1.1000	0.6900	6.6464
C5	C.ar	-0.1661	-0.2501	7.1107
C6	C.ar	0.6829	0.0114	8.2047
C7	C.3	1.7357	-1.0161	8.5770
C8	C.ar	3.8002	-0.1659	7.3265
C9	C.ar	2.8274	-1.1585	7.5317
C10	C.ar	2.8150	-2.2800	6.6825
C11	C.ar	3.7116	-2.4123	5.6111
C12	C.ar	4.6242	-1.3604	5.3980
C13	C.ar	4.6834	-0.2281	6.2323
C14	C.3	5.5779	0.9677	5.8791
C15	C.ar	4.5787	3.3294	5.8105
C16	C.ar	4.7610	2.0747	5.2074
C17	C.ar	4.0899	1.8139	3.9975
C18	C.ar	3.1908	2.7282	3.4186
C19	C.ar	2.9854	3.9416	4.0941
C20	C.ar	3.6525	4.2514	5.2942
C21	C.3	3.3135	5.5452	6.0119
C22	C.ar	1.4027	4.7504	7.5203
C23	C.ar	2.6652	5.3448	7.3685
C24	C.ar	3.3775	5.7115	8.5236
C25	C.ar	2.8937	5.4563	9.8206
C26	C.ar	1.6594	4.7964	9.9268
C27	C.ar	0.9128	4.4179	8.7947
C28	C.3	-0.3647	3.6238	8.9959
C29	C.3	-2.0232	0.4216	5.4456
C30	C.3	-1.9245	1.5728	4.4182

C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 H3 H5 H7A H7B H10 H12 H14 H17 H19 H21A H24 H26 H28A H30B H30C H31A H31B H31C H32A H32B H32C H33A H35B H35C H35A H35B H35C H36A H36A H36A H36A H36A H36A H36A H36A	С.3 С.3 С.3 С.3 С.3 С.3 С.3 С.3 С.3 С.3	$\begin{array}{c} -3.4783\\ -1.6949\\ 0.7384\\ 3.3000\\ 3.6876\\ 5.0831\\ 2.6810\\ 4.6740\\ 2.4668\\ 3.4979\\ 1.7894\\ 1.3631\\ 6.5145\\ 3.7314\\ 3.9994\\ 5.0785\\ 3.0552\\ -0.1913\\ 6.8364\\ 8.8156\\ -1.8579\\ -0.0648\\ 1.2307\\ 2.1952\\ 2.0576\\ 5.2841\\ 5.9818\\ 4.2610\\ 2.2797\\ 2.6516\\ 4.2321\\ 4.3517\\ 1.2597\\ -0.6062\\ -1.1983\\ -2.3031\\ -2.5117\\ -0.8870\\ -3.5868\\ -4.1678\\ -3.8140\\ -0.6648\\ -2.3565\\ -1.8254\\ -0.2147\\ 1.4062\\ 0.5855\\ 2.3223\\ 3.2429\\ 4.0260\\ 5.8503\\ 5.0780\\ \end{array}$	0.3179 -0.8846 1.0824 -3.1321 -3.6145 -4.2749 -4.7167 0.7477 2.3696 2.3298 0.9842 3.3760 4.2175 5.8560 7.3766 5.1014 5.5355 5.4616 0.6088 -0.6800 2.6854 -1.2117 -1.9793 -0.7962 -3.0388 -1.4095 1.3581 0.8577 4.6715 6.1671 6.1671 6.1378 6.1809 4.5370 4.5420 4.1973 2.5209 1.3524 1.7376 -0.4883 0.1108 1.2449 -0.8826 -10.167 -1.7677 1.5957 1.3371 -0.0019 -2.6354 -3.9721 -2.4205 -3.5991 5.1603	5.9471 4.6870 11.1636 3.2366 4.6512 4.6003 5.0529 9.2551 2.1096 0.9628 2.2269 1.7128 6.6780 11.0468 11.0230 11.0195 12.3993 6.0175 5.0959 5.1989 6.9816 6.6148 8.7321 9.5451 6.8609 4.5345 6.8205 3.5082 3.7067 5.3972 6.1068 8.4006 10.9034 10.0628 8.5727 4.8147 3.5189 4.1081 6.6823 5.1205 6.4259 4.3113 3.8224 5.3231 11.3273 11.9919 11.1726 3.2431 2.5345 2.8281 4.2071 3.9537
H33C	H	0.5855	-0.0019	11.1726
H35A	H	2.3223	-2.6354	3.2431
H35B	H	3.2429	-3.9721	2.5345
H35C	H	4.0260	-2.4205	2.8281
H36A	H	5.8503	-3.5991	4.2071
H36B	H	5.0780	-5.1603	3.9537
H36C	H	5.4049	-4.5930	5.5991
H37A	H	2.8953	-5.1125	6.0525
нз7Б	н	2.7205	-5.5013	4.3044
Н37С	Н	1.6496	-4.3454	5.0456
нз8а	Н	5.7003	0.5200	8.0418
H38B	H	4.6860	1.6766	9.8325
H40A	H	4.0030	3.2966	9.9075
H40B	H	3.0172	2.0922	0.0068
H40C	H	4.2725	1.5736	1.1338

H41A H41B H41C H42A H42B H42C H43A H43B H43C H45A H45B H45C H45A H45B H45C H46A H46B H46C H47A H47B H47C H48A H48B H48C H50A H50C O1 O2 O3 O4 O5 O6	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1.1951 1.1206 2.5154 1.7730 0.5980 0.8556 7.1757 6.9792 6.4093 4.5828 4.5636 3.0601 4.9223 5.6849 5.6780 2.0936 3.6835 2.8805 -0.9347 -0.7236 0.3623 8.5996 9.3233 9.4692 1.3643 3.8095 5.2458 0.6840 7.1380 7.6003	0.7571 0.9436 0.1712 4.3751 3.4611 3.0638 3.5031 4.5001 5.1222 7.6824 7.6925 7.9421 4.0163 5.3436 5.3540 6.0519 5.8532 4.4599 5.6702 5.1418 6.3749 -1.1974 -1.3758 0.1805 1.5111 0.9439 3.6310 4.4020 1.0483 -0.2621	$\begin{array}{c} 1.3340\\ 3.0934\\ 2.3343\\ 1.5252\\ 2.4936\\ 0.7922\\ 6.1770\\ 7.6273\\ 6.0699\\ 10.1477\\ 11.9084\\ 11.0067\\ 11.0104\\ 11.9000\\ 10.1380\\ 12.5014\\ 13.2402\\ 12.5192\\ 6.7932\\ 5.1167\\ 5.7769\\ 4.2592\\ 5.8721\\ 5.0266\\ 9.9534\\ 8.1356\\ 6.9731\\ 6.4033\\ 3.9934\\ 5.8260\end{array}$
4				
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28	C.ar C.ar C.ar C.ar C.ar C.ar C.ar C.ar	6.7134 8.0761 8.4554 7.5153 6.1645 5.7501 9.1427 3.756 4.0666 4.2635 4.1777 3.8999 3.6909 3.5171 5.9129 4.7607 4.8237 6.0020 7.1416 7.1182 8.4075 8.8854 8.9435 9.4567 9.9038 9.8103 9.2964 4.2880	-2.8490 -3.1557 -4.4841 -5.5194 -5.1859 -3.8671 -2.0993 -2.0046 -3.2870 -4.3227 -4.1113 -2.8115 -1.7510 -0.3463 0.4740 0.0691 -0.0790 0.1614 0.5332 0.6806 0.9591 -0.5228 -0.2990 -1.3032 -2.5286 -2.7290 -1.7517 -3.5849	6.7444 6.6260 6.4053 6.3179 6.4770 6.6979 6.8238 8.9128 8.9128 8.4417 9.3623 10.7427 11.1812 10.2912 10.8425 10.9174 11.6090 13.0001 13.7174 12.9923 11.6015 10.8585 8.8248 10.2083 11.0384 10.5306 9.1482 8.2891 6.9743

C29	C.3	7.9921	-6.9508	6.1010
C30	C 3	8 9163	-7 3746	7 2656
000	0.0	0.0100	7.0400	1.2000
C31	0.3	8.7715	-7.0490	4.7703
C32	C.3	6.8390	-7.9785	6.0346
C33	C 3	6 0582	-0 7005	5 8026
000	0.5	0.0002	-0.7995	J.0020
C34	C.3	4.4352	-5.2144	11.7630
C35	C.3	5.4492	-4.7456	12.8342
C36	C 3	5 0127	6 5030	11 132/
000	0.5	5.0127	-0.3030	11.1524
037	C.3	3.1050	-5.5817	12.4552
C38	C.3	2.2118	-0.7834	7.6372
C30	C 3	6 0074	0.0164	15 2283
0.09	0.5	0.0374	-0.0104	13.2203
C40	C.3	4.7675	-0.4608	15.8796
C41	C.3	7.1517	-1.0969	15.5622
C42	C 3	6 5091	1 3101	15 8872
042	0.0	0.0001	1.0101	0.0072
643	0.3	5.5500	1.8949	9.0818
C44	C.3	10.4329	-3.6479	11.4198
C45	C 3	10 3025	-3 3410	12 9297
C16	0.0	0 6525	4 0591	11 1564
C46	0.3	9.0000	-4.9561	11.1504
C47	C.3	11.9291	-3.8800	11.1156
C48	C.3	9.3608	1.3422	7.4840
C10	C 2	2 2160	0 1202	11 6190
049	0.2	2.2109	-0.1293	11.0109
C50	C.3	0.3916	-1.1090	12.8324
C51	C.3	0.2263	-2.3456	13.7162
C52	C 3	1 3101	-2 4640	14 7873
0.02	0.5	0.5000	-2.7070	0.0004
H3	н	9.5283	-4./1/8	6.3204
H5	Н	5.3969	-5.9737	6.4526
H7A	н	3 6611	-4 4578	6 6842
	 L	2 0200	2 7402	6 2222
П/Б	п	3.9390	-2.7493	0.3323
H10	Н	4.5152	-5.3201	8.9724
H12	Н	3.8621	-2.6078	12.2615
H14	н	3 4330	0 3/81	0 0765
		0.4000	0.0407	3.3703
H17	н	3.9229	-0.4173	13.5318
H19	Н	8.0940	0.6913	13.5224
H21A	н	9.1755	1.3617	11.5567
	 Ц	0 0470	1 7624	10 1100
		0.2472	1.7034	10.1109
H24	Н	9.4864	-1.1130	12.1215
H26	Н	10.1316	-3.6896	8.7165
H28A	н	8 999	-1 2011	6 2172
		10 1000	2.4504	6 4220
HZ0B		10.1209	-2.4594	0.4330
H30A	Н	9.8335	-6.7497	7.3313
H30B	Н	9.2564	-8.4284	7.1576
H30C	н	8 3968	-7 2974	8 2471
11000		0.0000	6 7240	2,0062
пзіА	п	8.144Z	-0.7349	3.9003
H31B	Н	9.1095	-8.0896	4.5679
H31C	н	9.6825	-6.4116	4.7627
H32A	ц	6 2510	8 0105	6 0780
HIJZA		0.2310	-0.0105	0.9709
H32B	Н	7.2216	-9.0099	5.8674
H32C	Н	6.1349	-7.7640	5.1999
НЗЗД	н	6 9572	-0 7285	5 1563
		6.3372 E 7E70	0.7200	6.0046
H33B	н	5./5/8	0.2277	6.0946
H33C	Н	5.2312	-1.2504	5.2163
H35A	н	6.3971	-4.3910	12.3719
L125D	L L	5 7161	5 5690	12 5244
1336		5.7101	-0.0000	13.5544
H35C	Н	5.0604	-3.9163	13.4636
H36A	Н	4.3075	-6.9731	10.4118
H36B	н	5 2276	-7 2743	11 9051
L100D		5.2210 E 070E	6 2147	10 5000
	п	0.9700	-0.3117	10.0902
H37A	Н	2.6587	-4.7146	12.9894
H37B	Н	3.2414	-6.3901	13.2074
H37C	н	2 3475	-5 9388	11 7223
L100-		1 7000	1 6004	7 4 4 0 0
нзва	Н	1.7999	-1.6904	1.1468
H38B	Н	2.1608	0.0586	6.9159

Electronic Supplementary Material (ESI) for Organdic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

H38C	нтттттттттттттттттттттттттттттттттттт	1.5832	-0.5299	8.5165
H40A		4.4238	-1.4473	15.4966
H40B		4.8702	-0.5704	16.9822
H40C		3.9507	0.2760	15.7108
H41A		7.2196	-1.2797	16.6576
H41B		8.1728	-0.8166	15.2233
H41C		6.9036	-2.0705	15.0830
H42A		5.7799	2.1282	15.6586
H42B		7.5069	1.6713	15.5459
H42C		6.5637	1.2312	16.9950
H43A		4.5526	2.2155	9.4472
H42B		5.5270	1.8831	7.9726
H42C		6.3046	2.6407	9.4060
H43A		10.8939	-2.4478	13.2303
H43B		10.6746	-4.1858	13.5511
H43C		9.2448	-3.1680	13.2304
H45A		8.5601	-4.8202	11.3090
H45B		9.9779	-5.7734	11.8404
H45C		9.7937	-5.3419	10.1228
H46A		12.1018	-4.1828	10.0594
H46B		12.3592	-4.6825	11.7552
H46C		12.5296	-2.9603	11.2950
H47A		9.8726	1.8864	8.3052
H47B		8.8599	2.0859	6.8300
H47C		10.1199	0.8009	6.8814
H48A		-0.4676	-1.0203	12.1322
H47C		0.4100	-0.1959	13.4658
H48A		0.2258	-3.2620	13.0813
H50B		-0.7693	-2.3070	14.2169
H51A		1.3295	-1.5779	15.4605
H52B		2.3317	-2.5504	14.3354
H52C		1.1661	-3.3630	15.4254
O1		6.3287	-1.5609	6.9716
O2		3.5631	-0.9887	8.0227
O3		5.8774	0.5966	9.5594
O4		8.295	0.4420	8.006
02	0.3	3.5631	-0.9887	8.0227
03	0.3	5.8774	0.5966	9.5594
04	0.3	8.3895	0.4439	8.0006
O5	0.2	1.7545	0.9776	11.7879
O6	0.3	1.5947	-1.2365	12.0814

Fit of the calculated energies (MMFF94) of the lowest energy conformer of compounds $\mathbf{2}$ and $\mathbf{4}$ compared to the current energy of the molecules in S13 the obtained crystal structures (kJ mol⁻¹)

	MMFF94	X-ray	Fit	
2	981.4565	981.4557	0.9999	
4	1030.5874	1015.3318	0.9852	

_

Electronic Supplementary Material (ESI) for Organdic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

(a)

C52

S14 Comparison of calculated (a) and X-ray structures (b) of calixarenes **2** and **4**.

Excitation and Emission spectra for compound 7

S15 Corrected excitation (left) and emission spectra (right) of calixarene **7** (35 μ mol L⁻¹) in acetonitrile solution.

Experimental details

S16

General

Melting points were determined on a microscope heating stage PHMK Rapido (VEB Dresden Analytik) and are uncorrected. IR spectra were measured on a Nicolet FT-IR 510 as KBr pellets (Table S17). Analytical TLC was carried out on precoated silica gel plates (Merck, 60 F₂₅₄), and for column chromatography silica gel (Merck, particle size 0.040-0.063 mm, 230-240 mesh) was used. Corrected excitation and emission spectra were obtained on a Perkin-Elmer LS 50 B fluorescence spectrometer. NMR spectra were recorded on a Bruker Avance DRX 500 spectrometer at 500.1 MHz (¹H NMR) and 125.7 MHz (¹³C NMR), respectively, in CDCl₃ solution. Chemical shifts δ are reported in ppm relative to the internal reference TMS. Mass spectra were measured on an Applied Biosystems (Applera) Mariner ESI-TOF or in case of APCI technique on a Varian 320 MS. Elemental analyses were perfomed on a Heraeus CHN-Rapid Analyzer. Reagents and chemicals for the synthesis were used as purchased from chemical suppliers. The solvents used were purified or dried according to common literature procedures.¹

The laterally monocarboxylated calix[4]arene **1** was prepared from commercially available 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrahydroxy-calix[4]aren² according to the published procedure.³

¹ B. A. Furniss, A. J. Hannaford, P.W. G. Smith and A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, Prentice Hall, Upper Saddle River, 5th ed., 1989.

² C. D. Gutsche, M. Iqbal and D. Steward, *J. Org. Chem.*, 1986, **51**, 742-745.

³ P. A. Scully, T. M. Hamilton and J. L. Bennett, Org. Lett., 2001, 3, 2741.

S17

compound	IR(KBr, cm ⁻¹)
2	2958, 2930, 2863, 2822, 1739, 1603, 1581, 1480, 1461, 1429, 1391, 1359, 1334, 1302, 1280, 1252, 1211, 1173, 1150, 1122, 1021, 976, 951, 872, 812, 799, 723, 669
3	2958, 2929, 2864, 2822, 1733, 1603, 1580, 1481, 1461, 1430, 1391, 1358, 1331, 1300, 1281, 1242, 1208, 1173, 1151, 1120, 1022, 975, 950, 872, 812, 799, 723, 656
4	2958, 2927, 2866, 2822, 1720, 1603, 1581, 1483, 1464, 1432, 1391, 1359, 1299, 1280, 1245, 1233, 1207, 1173, 1150, 1119, 1062, 1024, 973, 948, 872, 812, 799, 720, 641
5	3459, 2958, 2901, 2870, 2819, 1600, 1581, 1483, 1461, 1429, 1394, 1359, 1287, 1245, 1207, 1173, 1122, 1081, 1021, 948, 869, 812, 799, 644
6	2958, 2901, 2870, 2828, 1606, 1581, 1483, 1461, 1435, 1391, 1359, 1299, 1245, 1207, 1182, 1122, 1008, 941, 869, 808, 799, 644
7	2952, 2867, 2821, 1577, 1480, 1462, 1361, 1244, 1202, 1173, 1118, 1019, 952, 880, 789, 731, 628, 574
8	3045, 2961, 2901, 2870, 2822, 1805, 1625, 1483, 1464, 1362, 1306, 1204, 1121, 1083, 1019, 872