Supporting Information for publication

An Efficient Synthesis of Dihydro- and Tetrahydropyran via Oxonium-Ene Cyclization Reaction

S. Bondalapati, U. C. Reddy, Pipas Saha and Anil K. Saikia*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India

asaikia@iitg.ernet.in

Suplementary information: General Experimental Section, ¹H NMR data **8a**, ¹H and ¹³C NMR spectra of all compounds, Crystal structure & Crystallographic data of **6e**, **10** and **17j**.

General Experimental Section

Melting points are uncorrected. ¹H NMR spectra were recorded in CDCl₃ on Varian AS 400 (400 MHz) spectrometer using TMS as internal standard. ¹³C and ¹⁹F NMR spectra were obtained on Varian AS 400 operating at 100 MHz and 376 MHz, respectively. IR spectra were recorded on Nicolet Impact 410 FT-IR spectrometer. Mass spectra were recorded using Waters LC-MS/MS system (Q-TOF–Premier). HRMS (ESCi-TOF) were calibrated with sodium formate solution and leucine enkephalin (SIGMA) was used as an external standard. Elemental analysis was performed on Perkin Elmer 2400 Series II CHNS analyser.

¹<u>H NMR of 8a</u>: ¹H NMR (400 MHz, CDCl₃): δ 2.20-2.25 (m, 1 H), 2.28-2.36 (m, 1 H), 2.40-2.48 (m, 2 H), 3.56 (dt, *J* = 12.4 and 1.8 Hz, 1 H), 4.24 (dd, *J* = 10.4 and 5.2 Hz, 1 H), 4.29 (dd, *J* = 11.2 and 2.4 Hz, 1 H), 4.78-4.82 (m, 2 H), 7.22-7.29 (m, 2 H, ArH), 7.34-7.40 (m, 3 H, ArH).

¹H NMR of **6a**

S-2

¹³C NMR of **6a**

¹H NMR of **6b**

S-4

¹³C NMR of **6b**

¹H NMR of **6c**

¹³C NMR of **6c**

¹H NMR of **6d**

¹³C NMR of **6d**

¹H NMR of **6e**

¹³C NMR of **6e**

1 H NMR of **6f**

¹³C NMR of **6f**

¹H NMR of **6g**

¹³C NMR of **6g**

¹H NMR of **6h & 7h**

¹³C NMR of **6h & 7h**

¹H NMR of **6i & 7i**

¹³C NMR of **6i**

Hydrogenation product of 6i & 7i

¹H NMR of **6j**

S-22

¹³C NMR of **6j**

¹H NMR of **6k**

S-24

¹³C NMR of **6**k

1 H NMR of **6**l

¹³C NMR of **6**l

¹H NMR of **6m**

¹³C NMR of **6m**

¹H NMR of **6n & 7n**

¹³C NMR of **6n & 7n**

¹H NMR of **60**

S-32

¹³C NMR of **60**

S-33

¹H NMR of **8p**

¹³C NMR of **8p**

¹H NMR of **8q**

¹³C NMR of **8q**

¹H NMR of 8r

S-38

¹³C NMR of 8r

¹H NMR of 8s

¹³C NMR of 8s

¹H NMR of 8t

¹³C NMR of 8t

S-43

¹H NMR of 8u

¹³C NMR of 8u

¹H NMR of **6v**

¹³C NMR of **6v**

¹H NMR of 8v

¹³C NMR of **8v**

¹H NMR of 8a

S-50

¹H NMR of **10**

¹³C NMR of **10**

S-52

¹H NMR of **11**

¹³C NMR of **11**

¹H NMR of **17a/18a**

¹³C NMR of **17a/18a**

¹H NMR of 17b/18b

¹³C NMR of **17b/18b**

¹H NMR of **17c/18c**

¹³C NMR of **17c/18c**

¹H NMR of **17d/18d**

¹³C NMR of **17d/18d**

¹H NMR of **17e/18e**

¹³C NMR of **17e/18e**

¹H NMR of **17f/18f**

¹³C NMR of **17f/18f**

S-66

¹H NMR of **17g/18g**

S-67

¹³C NMR of **17g/18g**

¹H NMR of **17h/18h**

S-69

¹³C NMR of **17h/18h**

¹H NMR of **17i/18i**

¹³C NMR of **17i/18i**

¹H NMR of **17j**

¹³C NMR of **17j**

¹H NMR of **17k/18k**

¹³C NMR of **17k/18k**

¹H NMR of **17l/18l**

¹³C NMR of **17l/18l**

S-78

¹H NMR of **17m/18m**

S-79

¹³C NMR of **17m/18m**

¹H NMR of **17n/18n**

¹³C NMR of **17n/18n**

S-82

¹H NMR of **170/180**

S-83

¹³C NMR of **170/180**

S-84

¹H NMR of 17p/18p

S-85

¹³C NMR of 17p/18p

¹H NMR of 17q/18q

¹³C NMR of 17q/18q

¹H NMR of 17r/18r

¹³C NMR of 17r/18r

Crude ¹H NMR of **8r**

Crystallographic data

Figure 1: ORTEP Diagram of "Toluene 4-sulfonic acid 4-(4-Methyl-2,3-dihydro-2*H*-pyran-2-

yl) phenyl ester" 6e

	6e- CCDC 765896
Formula	C19 H20 O4 S
Formula weight	344.41
<i>T</i> /K	296(2)
Crystal system	Triclinic
Space group	P (1)
a/Å	9.8247(5)
b/Å	11.1954(6)
c/Å	16.1562(9)
α/°	101.883 (3)
β/°	95.733 (3)
γ/°	91.650 (3)
$V/Å^3$	1728.04(16)
Z	4
Abs. Coeff./mm ⁻¹	0.207
Abs. Correction	Multi-Scan
GOF on F^2	1.007
Final <i>R</i> indices $[I > 2\sigma(I)]$	<i>R1</i> = 0.0514
	wR2 = 0.1409
R indices [all data]	RI = 0.0798
	wR2 = 0.1578

The crystal parameters of compound 6e

Figure 2: ORTEP Diagram of "2-(4-Bromophenyl)-4,7-dimethyl-3,5,6,7,8,8a-hexahydro-2,4-chromene" **10**

	10- CCDC 765895
Formula	C17 H21 Br O
Formula weight	321.24
<i>T/</i> K	296(2)
Crystal system	Monoclinic
Space group	P2(1)
a/Å	4.7575 (2)
b/Å	9.8672(4)
c/Å	16.6178(6)
αl^{o}	90.00
β/°	92.210 (2)
γ/°	90.00
V/Å ³	779.51(5)
Ζ	2
Abs. Coeff./mm ⁻¹	2.628
Abs. Correction	Multi-Scan
GOF on F^2	1.077
Final <i>R</i> indices $[I > 2\sigma(I)]$	<i>R1</i> = 0.0525
	wR2 = 0.1308
R indices [all data]	R1 = 0.0605
	wR2 = 0.1449

The crystal parameters of compound 10

Figure 3: ORTEP Diagram of *N*-[4-Methyl-2-(3-nitrophenyl)tetrahydropyran-4-yl]-benzamide 17j

S-96

	17j- CCDC 800377
Formula	C19 H20N2O4
Formula weight	340.37
T/K	296(2)
Crystal system	Monoclinic
Space group	P2(1)/n
a/Å	11.6207(12)
b/Å	19.274(2)
c/Å	16.3163(15)
$\alpha /^{o}$	90.00
β/°	100.451(7)
$\gamma / ^{\circ}$	90.00
$V/Å^3$	3593.8(6)
Z	8
Abs. Coeff./mm ⁻¹	0.089
Abs. Correction	Multi-Scan
GOF on F^2	1.003
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0522
	wR2 = 0.1180
R indices [all data]	R1 = 0.0988
	wR2 = 0.1411

The crystal parameters of compound 17j