Electronic Supplementary Information

Stereoselective Synthesis of Light-Activatable Perfluorophenylazide-Conjugated Carbohydrates for Glycoarray Fabrication and Evaluation of Structural Effects on Protein Binding by SPR Imaging

Lingquan Deng^a, Oscar Norberg^a, Suji Uppalapati^b, Mingdi Yan^{b,*} and Olof Ramström^{a,*}

^aKTH - Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044, Stockholm, Sweden. Fax: +46 8 7912333; E-mail: <u>ramstrom@kth.se</u>

^bDepartment of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751 USA. Fax: +1 503 725-9525; E-mail: <u>yanm@pdx.edu</u>

Table of contents

¹ H-NMR and ¹³ C-NMR spectra of compound 14	S 2
¹ H-NMR and ¹³ C-NMR spectra of compound 18	S 3
¹ H-NMR and ¹³ C-NMR spectra of compound 21	S4
¹ H-NMR and ¹³ C-NMR spectra of compound 22	S5
¹ H-NMR and ¹³ C-NMR spectra of compound 24	S 6
¹ H-NMR and ¹³ C-NMR spectra of compound 25	S7
¹ H-NMR and ¹³ C-NMR spectra of compound 26	S 8
¹ H-NMR and ¹³ C-NMR spectra of compound 2	S9
¹ H-NMR and ¹³ C-NMR spectra of compound 3	S 10
¹ H-NMR and ¹³ C-NMR spectra of compound 4	S 11
SPR imaging	S12

Figure S1. ¹H-NMR spectrum of compound 14 in CDCl₃ (500 MHz)

Figure S2. ¹³C-NMR spectrum of compound 14 in CDCl₃ (125 MHz)

¹H-NMR and ¹³C-NMR spectra of compound 18

Figure S3. ¹H-NMR spectrum of compound 18 in CDCl₃ (500 MHz)

Figure S4. ¹³C-NMR spectrum of compound 18 in CDCl₃ (125 MHz)

Figure S5. ¹H-NMR spectrum of compound 21 in CDCl₃ (500 MHz)

Figure S6. ¹³C-NMR spectrum of compound **21** in CDCl₃ (125 MHz)

¹H-NMR and ¹³C-NMR spectra of compound 22

Figure S7. ¹H-NMR spectrum of compound **22** in CDCl₃ (500 MHz)

Figure S8. ¹³C-NMR spectrum of compound 22 in CDCl₃ (125 MHz)

Figure S9. ¹H-NMR spectrum of compound **24** in D₂O (500 MHz)

Figure S10. ¹³C-NMR spectrum of compound **24** in D₂O (125 MHz)

Figure S11. ¹H-NMR spectrum of compound 25 in D₂O (500 MHz)

Figure S12. ¹³C-NMR spectrum of compound 25 in $D_2O(125 \text{ MHz})$

¹H-NMR and ¹³C-NMR spectra of compound 26

Figure S13. ¹H-NMR spectrum of compound **26** in D₂O (500 MHz)

Figure S14. ¹³C-NMR spectrum of compound 26 in D₂O (125 MHz)

Figure S15. ¹H-NMR spectrum of compound 2 in D₂O (500 MHz)

Figure S16. ¹³C-NMR spectrum of compound **2** in $D_2O(125 \text{ MHz})$

Figure S17. ¹H-NMR spectrum of compound 3 in D₂O (500 MHz)

Figure S18. ¹³C-NMR spectrum of compound **3** in D₂O (125 MHz)

Figure S19. ¹H-NMR spectrum of compound 4 in D₂O (500 MHz)

Figure S20. ¹³C-NMR spectrum of compound 4 in $D_2O(125 \text{ MHz})$

SPR imaging

Printing concentration: A 6×6 array pattern of the PFPA-carbohydrate conjugates was created with six different concentrations of each compound (Figure S21). Printing solutions of 2-20 mM were employed, and the resulting sensor was treated by an interrogating solution of 10 μ M of Con A. The sequence of steps followed during SPR measurements were as follows: 1) PBS with 0.1% tween 20, 2) 0.2% BSA in PBS with 0.1% tween 20, 3) PBS with 0.1% tween 20, 4) Con A in PBS with 0.1% tween 20, 5) PBS with 0.1% tween 20, 6) 8 M urea in water, 7) PBS with 0.1% tween 20. Regeneration of the surface was achieved by treating the surfaces with 8 M urea to remove bound Con A. Repetitive regeneration provided consistent results, demonstrating the robustness of the sensor surfaces.

c)

Figure S21. a) 6×6 array pattern of the PFPA-carbohydrate conjugates; b) SPRi responses of compound 1 toward Con A interrogation. Each data point was the average of two binding measurements; c) Corresponding SPRi binding curves.

Con A interrogation: A 6×6 array pattern of the PFPA-carbohydrate conjugates was created, with every horizontal column containing six different compounds while each vertical column 10 mM of a single compound (Figure S22). The resulting sensor was then treated by an interrogating solution of 10 μ M of Con A. The sequence of steps followed during SPR measurements were as follows: 1) PBS with 0.1% tween 20, 2) 0.2% BSA in PBS with 0.1% tween 20, 3) PBS with 0.1% tween 20, 4) Con A in PBS with 0.1% tween 20, 5) PBS with 0.1% tween 20, 6) 8 M urea in water, 7) PBS with 0.1% tween 20.

Figure S22. (a) 6×6 array pattern of the PFPA-carbohydrate conjugates, probe concentration fixed at 10 mM; (b) SPRi binding curves for 10 μ M of Con A interrogation.

Figure S23. SPRi image of printed array for 10 μ M of Con A interrogation. The array contained the six glycoconjugates **1-6**, printed in a 6 × 6 pattern.