Phenazinolins A-E: Novel Diphenazines from a Tin Mine Tailings-Derived Streptomyces Species

Zhang-Gui Ding,^a Ming-Gang Li,^a Jie Ren,^b Jiang-Yuan Zhao,^a Rong Huang,^b Qing-Zhong Wang,^a Xiao-Long Cui,^a Hua-Jie Zhu,^{*b} and Meng-Liang Wen^{*a}

 ^a Key Laboratory for Microbial Resources, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PRChina Fax: (+86) 871-503-2170
 E-mail: mlwen@ynu.edu.cn

^b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China

Table of Contents

Table S1	1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin A (1)	S4
Table S2	The Errors Between the Experimental 13 C NMR and the Computed Data for Phenazinolin A (1)	S6
Table S3	1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin B (2)	S7
Table S4	The Errors Between the Experimental 13 C NMR and the Computed Data for Phenazinolin B (2)	S9
Table S5	1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin C (3)	S10
Table S6	The Errors Between the Experimental 13 C NMR and the Computed Data for Phenazinolin C (3)	S12
Table S7	1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin D (4)	S13
Table S8	The Errors Between the Experimental 13 C NMR and the Computed Data for Phenazinolin D (4)	S15
Table S9	1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin E (5)	S16
Table S10	The Errors Between the Experimental 13 C NMR and the Computed Data for Phenazinolin E (5)	S18
Table S11	Experimental and Computed Optical Rotation of Phenazinolins $A - E(1 - 5)$	S19
Fig. S1	Phylogenetic Analysis of Strain YIM DT26	S20
Fig. S2	¹ H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S21
Fig. S3	13 C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S22
Fig. S4	HSQC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S23
Fig. S5	¹ H- ¹ H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S24
Fig. S6	HMQC-TOCSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S25
Fig. S7	¹ H- ¹³ C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S26
Fig. S8	¹ H- ¹⁵ N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S27
Fig. S9	ROESY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)	S28
Fig. S10	HR-ESIMS(+) Spectrum of Phenazinolin A (1)	S29
Fig. S11	HR-ESIMS(–) Spectrum of Phenazinolin A (1)	S30
Fig. S12	HR-ESIMS(+) Data for Phenazinolin A (1)	S31
Fig. S13	IR Spectrum of Phenazinolin A (1)	S32

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S14	¹ H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)	S33
Fig. S15	13 C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)	S34
Fig. S16	HMQC NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Phenazinolin B (2)	S35
Fig. S17	¹ H- ¹ H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)	S36
Fig. S18	¹ H- ¹³ C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)	S37
Fig. S19	ROESY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)	S38
Fig. S20	HR-ESIMS(+) Spectrum of Phenazinolin B (2)	S39
Fig. S21	HR-ESIMS(–) Spectrum of Phenazinolin B (2)	S40
Fig. S22	HR-ESIMS(+) Data for Phenazinolin B (2)	S41
Fig. S23	IR Spectrum of Phenazinolin B (2)	S42
Fig. S24	¹ H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S43
Fig. S25	13 C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S44
Fig. S26	HSQC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S45
Fig. S27	¹ H- ¹ H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S46
Fig. S28	HMQC-TOCSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S47
Fig. S29	¹ H- ¹³ C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S48
Fig. S30	¹ H- ¹⁵ N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S49
Fig. S31	ROESY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)	S50
Fig. S32	HR-ESIMS(+) Spectrum of Phenazinolin C (3)	S51
Fig. S33	HR-ESIMS(–) Spectrum of Phenazinolin C (3)	S52
Fig. S34	HR-ESIMS(+) Data for Phenazinolin C (3)	S53
Fig. S35	IR Spectrum of Phenazinolin C (3)	S54
Fig. S36	¹ H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S55
Fig. S37	13 C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S56
Fig. S38	HSQC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S57

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S39	¹ H- ¹ H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S58
Fig. S40	HMQC-TOCSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S59
Fig. S41	¹ H- ¹³ C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S60
Fig. S42	¹ H- ¹⁵ N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S61
Fig. S43	ROESY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)	S62
Fig. S44	HR-ESIMS(+) Spectrum of Phenazinolin D (4)	S63
Fig. S45	HR-ESIMS(–) Spectrum of Phenazinolin D (4)	S64
Fig. S46	HR-ESIMS(+) Data for Phenazinolin D (4)	S65
Fig. S47	IR Spectrum of Phenazinolin D (4)	S66
Fig. S48	¹ H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S67
Fig. S49	13 C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S68
Fig. S50	HMQC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S69
Fig. S51	¹ H- ¹ H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S70
Fig. S52	HMQC-TOCSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S71
Fig. S53	¹ H- ¹³ C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S72
Fig. S54	¹ H- ¹⁵ N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S73
Fig. S55	ROESY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)	S74
Fig. S56	HR-ESIMS(+) Spectrum of Phenazinolin E (5)	S75
Fig. S57	HR-ESIMS(–) Spectrum of Phenazinolin E (5)	S76
Fig. S58	HR-ESIMS(+) Data for Phenazinolin E (5)	S77
Fig. S59	IR Spectrum of Phenazinolin E (5)	S78

Structure of Phenazinolin A (1)

						[e]
Table S1.	1D & 2D NN	IR (500 MHz	d_6 , DMSO- d_6)	Data for 1	Phenazinolin	A (1). ^[a]

Position	$\delta_{\rm C}$ [ppm]	δ_{N} [ppm]	$\delta_{ m H}$ [ppm]	¹ H- ¹³ C HMBC	¹ H- ¹⁵ N HMBC	ROESY
1	180.1 (s)					
2	109.4 (s)					
2a	131.7 (s) ^[b]					
3		137.9 (s)				
3a	130.3 (s)					
4	116.4 (d)		8.88 (d, <i>J</i> = 8.6 Hz, 1H)	C-3a, C-5, C-6, C-7, C-7a	N-3	H-18, H-19
5	132.7 (d)		7.87 (dd, $J = 7.5$, 8.6 Hz, 1H) ^[d]	C-3a, C-4, C-7, C-7a		H-19
6	124.1 (d)		7.47 (t, <i>J</i> = 7.5 Hz, 1H)	C-3a, C-4, C-5, C-7, C-7a		
7	130.5 (d)		7.88 (d, <i>J</i> = 7.5 Hz, 1H) ^[d]	C-3a, C-4, C-5, C-7a	N-8	
7a	135.1 (s)					
8		330.8 (s)				
8a	146.4 (s) ^[c]					
9	133.0 (d)		7.54 (d, <i>J</i> = 9.8 Hz, 1H)	C-1, C-2, C-2a, C-8a	N-3, N-8	
10	135.3 (d)		7.00 (d, <i>J</i> = 9.8 Hz, 1H)	C-2, C-2a, C-8a, C-9, C-17		
11	153.1 (s)					

12	111.5 (d)		7.04 (d, <i>J</i> = 7.6 Hz, 1H)	C-11, C-13, C-14, C-14a, C-20a		
13	131.3 (d)		7.58 (t, <i>J</i> = 10.1 Hz, 1H)	C-11, C-12, C-14a, C-20a		
14	117.9 (d)		7.35 (d, <i>J</i> = 8.3 Hz, 1H)	C-11, C-12, C-13, C-20a	N-15	
14a	142.0(s)					
15		325.8 (s)				
15a	152.7 (s)					
16 _{ax}	33.7 (t)		3.59 (dd, <i>J</i> = 17.7, 5.5 Hz, 1H)	C-2, C-2a, C-14a, C-15a, C-17, C-19a	N-15	H-18
16 _{eq}			3.15 (dd, <i>J</i> = 17.7, 0.6 Hz, 1H)	C-2, C-14a, C-15a, C-17, C-18, C-19a	N-15	H-17, H-18
17	30.2 (d)		3.70 (m, 1H)	C-1, C-2, C-2a, C-15a, C-16, C-18, C-19		H-16, H-18, H-19
18	62.8 (d)		4.62 (dd, <i>J</i> = 4.0, 3.1 Hz, 1H)	C-16, C-19, C-19a		H-4, H-16, H-17, H-19
19	56.9 (d)		6.23 (dd, <i>J</i> = 4.0, 2.8 Hz, 1H)	C-2a, C-3a, C-15a, C-17, C-18, C-19a, C-20a		H-4, H-5, H-17, H-18
19a	146.4 (s) ^[c]					
20		325.8 (s)				
20a	131.6(s) ^[b]					
11-OH			10.06 (s, 1H)	C-12, C-20a		
18-OH			6.15 (br s, 1H)	C-17		H-18

^[a] The ¹H NMR spectrum was recorded at 500 MHz, the ¹³C NMR spectrum at 125 MHz, ¹⁵N NMR spectrum at 50 MHz. ^{[b] [c]} The two sets of signal were interchangeable in terms of their assignments. ^[d] The signals of H-5 and H-7 overlapped.

Table S2. The Errors between the Experimental ¹³C NMR and the Computed Data for Phenazinolin A (1)

Position	δ (C _{exp})	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta~(\textbf{C}_{error})$	Position	δ (C _{exp})	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta ~(\textbf{C}_{error})$
1	180.1	-5.1	181.1	-1.0	11	153.1	21.5	154.6	-1.5
2	109.4	69.5	106.7	2.7	12	111.5	67.9	108.3	3.2
2a	131.7	46.2	129.9	1.8	13	131.3	44.1	132.0	-0.7
3a	130.3	44.1	132.0	-1.7	14	117.9	58.8	117.4	0.5
4	116.4	64.0	112.2	4.2	14a	142.0	32.8	143.3	-1.3
5	132.7	45.2	130.9	1.8	15a	152.7	21.4	154.7	-2.0
6	124.1	54.5	121.7	2.4	16	33.7	139.1	37.3	-3.6
7	130.5	43.1	133.0	-2.5	17	30.2	145.0	31.4	-1.2
7a	135.1	38.5	137.6	-2.5	18	62.8	113.6	62.7	0.1
8a	146.4	28.5	147.6	-1.2	19	56.9	119.3	57.1	-0.2
9	133.0	42.8	133.3	-0.3	19a	146.4	30.4	145.7	0.7
10	135.3	39.7	136.4	-1.1	20a	131.6	46.6	129.5	2.1

Structure of Phenazinolin B (2)

T 11 C2 1D 0 OD NIMD (500 MIL DMCO 1) D (C DI) 1 D (3)	r 1
<i>Table</i> 53. 1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin B (2).	[a]

Position	$\delta_{\rm C}$ [ppm]	$\delta_{ m H}$ [ppm]	¹ H- ¹³ C HMBC	ROESY
1	180.1 (s)			
2	109.4 (s)			
2a	131.6 (s)			
3a	130.3 (s)			
4	115.6 (d)	8.68 (d, <i>J</i> = 8.5 Hz, 1H)	C-6, C-7a	H-18, H-19
5	132.4 (d)	7.92 (m, 1H) ^[c]	C-3a, C-7	H-19
6	124.0 (d)	7.49 (t, <i>J</i> = 7.9 Hz, 1H)	C-4, C-7a	
7	130.5 (d) ^[b]	7.91 (d, <i>J</i> = 7.9 Hz, 1H) ^[c]	C-3a, C-5	
7a	135.1 (s)			
8a	146.4 (s)			
9	133.0 (d)	7.55 (d, <i>J</i> = 9.8 Hz, 1H)	C-1, C-2a	
10	135.3 (d)	7.00 (d, <i>J</i> = 9.8 Hz, 1H)	C-2, C-8a	
11	128.1 (d)	7.95 (d, <i>J</i> = 8.0 Hz, 1H) ^[c]	C-13, C-14a	
12	130.6 (d) ^[b]	7.78 (m, 1H)	C-14, C-20a	
13	129.5 (d)	7.72 (t, <i>J</i> = 8.6 Hz, 1H)	C-11, C-14a	

14	128.5 (d)	7.93 (d, <i>J</i> = 8.6 Hz, 1H) ^[c]	C-12, C-13, C-14a, C-20a	
14a	140.3 (s)			
15a	152.6 (s)			
16 _{ax}	33.4 (t)	3.65 (dd, <i>J</i> = 17.7, 5.0 Hz, 1H)	C-2, C-17, C-15a	
16 _{eq}		3.18 (dd, <i>J</i> = 17.7, 0.5 Hz, 1H)	C-2, C-15a, C-17, C-18, C-19a	
17	30.3 (d)	3.70 (t, <i>J</i> = 5.0 Hz, 1H)	C-2, C-18, C-15a	H-18, H-19
18	62.7 (d)	4.63 (m, 1H)		H-4, H-17, H-19
19	56.6 (d)	6.34 (m, 1H)	C-19a	H-4, H-5, H-17, H-18
19a	148.9 (s)			
20a	141.1(s)			
18-OH		6.11 (d, <i>J</i> = 2.4 Hz, 1H)	C-17, C-19	H-18

^[a] The ¹H NMR spectrum was recorded at 500 MHz, the ¹³C NMR spectrum at 125 MHz, ¹⁵N NMR spectrum at 50 MHz. ^[b] The two signals were interchangeable in terms of their assignments. ^[c] The signals of H-5, H-7, H-11, and H-14 overlapped.

Table S4. The Errors between the Experimental 13 C NMR and the Computed Data for Phenazinolin B (2)

Position	$\delta \left(\textbf{C}_{\text{exp}} \right)$	Shielding	$\delta \left(\boldsymbol{C}_{\text{calcd}} \right)$	$\Delta \delta ~(\textbf{C}_{error})$	Position	δ (C _{exp})	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta ~(\textbf{C}_{error})$
1	180.1	-5.2	181.2	-1.1	11	128.1	47.4	128.6	-0.5
2	109.4	69.9	106.1	3.3	12	130.6	48.0	128	2.6
2a	131.6	46.2	129.8	1.8	13	129.5	46.8	129.2	0.3
3a	130.3	43.9	132.1	-1.8	14	128.5	46.8	129.2	-0.7
4	115.6	62.0	114	1.6	14a	140.3	33.1	142.9	-2.6
5	132.4	45.1	130.9	1.5	15a	152.6	22.1	153.9	-1.3
6	124.0	54.5	121.5	2.5	16	33.4	138.9	37.1	-3.7
7	130.5	43.8	132.2	-1.7	17	30.3	145.5	30.5	-0.2
7a	135.1	38.6	137.4	-2.3	18	62.7	113.6	62.4	0.3
8a	146.4	28.7	147.3	-0.9	19	56.6	117.6	58.4	-1.8
9	133.0	42.8	133.2	-0.2	19a	148.9	26.7	149.3	-0.4
10	135.3	39.9	136.1	-0.8	20a	141.1	35.2	140.8	0.3

Structure of Phenazinolin C (3)

Table S5.	1D & 2D N	MR (500 MHz	d_6 DMSO- d_6 Data	for Phenazinoli	n C (3). ^[a]
1 0000 001			$(\mathbf{D}, \mathbf{D}, D$	101 I nonalmon	

Position	$\delta_{\rm C}$ [ppm]	$\delta_{{ m N}}$ [ppm]	δ_{H} [ppm]	¹ H- ¹³ C HMBC	¹ H- ¹⁵ N HMBC	ROESY
1	178.9 (s)					
2	106.4 (s)					
2a	132.3 (s)					
3		140.4 (s)				
3a	130.5 (s)					
4	114.2 (d)		8.02 (d, <i>J</i> = 8.8 Hz, 1H)	C-3a, C-6, C-7a	N-3	H-16, H-17, H-18
5	133.2 (d)		7.85 (m, 1H)	C-3a, C-4, C-7		H-17
6	124.3 (d)		7.52 (m, 1H) ^[b]	C-4, C-7, C-7a		
7	131.0 (d)		7.98 (d, <i>J</i> = 8.0 Hz, 1H)	C-3a, C-5, C-7a	N-8	
7a	135.6 (s)					
8		332.0 (s)				
8a	146.7 (s)					
9	132.7 (d)		7.54 (m, 1H) ^[b]	C-1, C-2a, C-10	N-8	
10	135.5 (d)		6.94 (d, <i>J</i> = 9.6 Hz, 1H)	C-2, C-8a		
11	153.2 (s)					

12	111.4 (d)		7.03 (d, <i>J</i> = 7.6 Hz, 1H)	C-11, C-14, C-20a		
13	129.9 (d)		7.49 (m, 1H) ^[b]	C-11, C-14a		
14	117.7 (d)		7.27 (d, <i>J</i> = 8.4 Hz, 1H)	C-12, C-20a	N-15	
14a	141.2(s)					
15		325.8 (s)				
15a	150.6 (s)					
16 _{ax}	34.6 (t)		3.93 (dd, <i>J</i> = 19.2, 5.9 Hz, 1H)	C-14a, C-15a, C-17, C-19a	N-3, N-15	H-4, H-17, H-18
16 _{eq}			3.46 (dd, obscured, 1H) $[c]$	C-15a, C-17, C-18, C-19a	N-3, N-15	H-4, H-17, 18-OH
17	52.5 (d)		5.40 (m, 1H)	C-2a, C-3a, C-15a, C-18, C-19		H-4, H-5, H-16, H-18, H-19
18	62.8 (d)		4.60 (dd, <i>J</i> = 4.4, 3.3 Hz, 1H)	C-16, C-19 a		H-4, H-16, H-17, 18-OH
19	39.7 (d)		4.96 (dd, <i>J</i> = 4.4, 2.3 Hz, 1H)	C-1, C-2, C-2a, C-15a, C-17, C-18, C-19a		H-17, 18-OH
19a	151.4 (s)					
20		325.8 (s)				
20a	131.8(s)					
11-OH			10.34 (s, 1H)	C-11, C-12, C-20a		
18-OH			6.18 (d, <i>J</i> = 3.3 Hz,1H)	C-17, C-18, C-19		H-16, H-18, H-19

^[a] The ¹H NMR spectrum was recorded at 500 MHz, the ¹³C NMR spectrum at 125 MHz, ¹⁵N NMR spectrum at 50 MHz. ^[b] The signals of H-6, H-9, and H-13 overlapped. ^[c] The signal was obscured by a signal due to water. After addition of D₂O in DMSO- d_6 , δ = 3.40 (d, J =19.2 Hz).

Table S6. The Errors between the Experimental 13 C NMR and the Computed Data for Phenazinolin C (3)

Position	δ (C _{exp})	Shielding	$\delta (\mathbf{C}_{calcd})$	$\Delta\delta~(C_{error})$	Position	δ (C _{exp})	Shielding	$\delta (\mathbf{C}_{calcd})$	$\Delta\delta$ (C _{error})
1	178.9	-2.7	178.5	0.4	11	153.2	20.8	155.3	-2.1
2	106.4	68.3	108.2	-1.8	12	111.4	68.2	108.3	3.1
2a	132.3	46.1	130.2	2.1	13	129.9	45.9	130.4	-0.5
3a	130.5	45.0	131.3	-0.8	14	117.7	60.0	116.4	1.3
4	114.2	66.7	109.8	4.4	14a	141.2	34.0	142.2	-1.0
5	133.2	44.6	131.7	1.5	15a	150.6	25.6	150.5	0.1
6	124.3	54.5	121.9	2.4	16	34.6	143.6	33.6	1.0
7	131.0	43.0	133.3	-2.3	17	52.5	124.3	52.7	-0.2
7a	135.6	38.4	137.8	-2.2	18	62.8	110.7	66.2	-3.4
8a	146.7	27.1	149.0	-2.3	19	39.7	136.4	40.7	-1.0
9	132.7	43.6	132.7	0.0	19a	151.4	26.6	149.5	1.9
10	135.5	39.4	136.8	-1.3	20a	131.8	45.5	130.8	1.0

Structure of Phenazinolin D (4)

Table S7. 1D & 2D NMR (500 MHz, DMSO- d_6) Data for Phenazinolin D (4)^[a]

Position	$\delta_{\rm C}$ [ppm]	δ_{N} [ppm]	$\delta_{{ m H}}$ [ppm]	HMBC (¹ H- ¹³ C)	HMBC (¹ H- ¹⁵ N)	ROESY
1	127.5 (s)					
2	127.8 (d)		7.92 (s, 1H)	C-1, C-3, C-4, C-10a, C-21	N-10	H-17, H-18, H-19
3	151.1 (s)					
4	122.3 (s)					
4a	140.0 (s)					
5-N		308.2 (s)				
5a	135.2 (s)					
6	153.3 (s)					
7	111.6 (d) ^[b]		7.29 (d, <i>J</i> = 8.0 Hz, 1H) ^[d]	C-5a, C-6, C-8, C-9		6-OH
8	132.5 (d)		7.80 (t, <i>J</i> = 8.0 Hz, 1H)	C-5a, C-6, C-9a		
9	118.0 (d) ^[c]		7.67 (d, <i>J</i> = 8.8 Hz, 1H)	C-5a, C-6, C-7	N-10	
9a	139.3 (s)					
10-N		297.0 (s)				
10a	137.0 (s)					
11	153.7 (s)					
12	111.6 (d) ^[b]		7.08 (d, <i>J</i> = 7.3 Hz, 1H)	C-11, C-14, C-20a	N-20	11-OH

13	131.5 (d)		7.58 (t, <i>J</i> = 8.0 Hz, 1H)	C-11, C-14a		11-OH
14	117.9 (d) ^[c]		7.27 (d, <i>J</i> = 7.3 Hz, 1H) ^[d]	C-11, C-12, C-20a	N-15	
14a	142.8(s)					
15-N		324.5 (s)				
15a	152.9 (s)					
16 _{ax}	34.6 (t)		3.86 (dd, <i>J</i> = 17.5, 5.1 Hz, 1H)	C-4, C-17, C-19a	N-15	
16 _{eq}			3.43 (dd, obscured, 1H) $^{[e]}$	C-4, C-15a, C-17, C-18, C-19a	N-15	
17	30.9 (d)		4.83 (m, 1H)	C-3, C-4, C-18, C-15a		H-2, H-19, 18-OH
18	62.7 (d)		4.77 (m, 1H)			H-2
19	76.1 (d)		5.59 (dd, <i>J</i> = 3.3, 1.8 Hz, 1H)	C-3, C-17		H-2, H-17, 18-OH
19a	146.4 (s)					
20-N		325.8 (s)				
20a	132.7 (s)					
21	165.3 (s)					
6-OH			10.68 (s, 1H)			H-7
11-OH			10.54 (s, 1H)	C-11, C-12, C-20a		H-12, H-13
18-OH			6.19 (d, <i>J</i> = 2.9 Hz, 1H)	C-17		H-17, H-19
21-OH			14.75 (br s, 1H)			

^[a] The ¹H NMR spectrum was recorded at 500 MHz, the ¹³C NMR spectrum at 125 MHz, ¹⁵N NMR spectrum at 50 MHz. ^[b] ^[c] The two sets of signal were interchangeable in terms of their assignments. ^[d] The signals of H-7 and H-14 overlapped. ^[e] The signal was obscured by a signal due to water. After addition of D₂O in DMSO-*d*₆, δ = 3.14 (d, *J* = 17.5 Hz).

Table S8. The Errors between the Experimental 13 C NMR and the Computed Data for Phenazinolin D (4)

Position	$\delta \left(\textbf{C}_{\text{exp}} \right)$	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta ~(\textbf{C}_{error})$	Position	$\delta \left(\textbf{C}_{\text{exp}} \right)$	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta ~(\textbf{C}_{error})$
1	127.5	48.3	127.8	-0.3	12	111.6	68	108.3	3.3
2	127.8	44.1	132.0	-4.2	13	131.5	43.9	132.2	-0.7
3	151.1	21	154.9	-3.8	14	117.9	59.2	117.0	0.9
4	122.3	54	122.2	0.1	14a	142.8	32.2	143.8	-1.0
4a	140.0	37.3	138.8	1.2	15a	152.9	22	153.9	-1.0
5a	135.2	43.7	132.4	2.8	16	34.6	143.1	33.8	0.8
6	153.3	21.1	154.8	-1.5	17	30.9	144.8	32.1	-1.2
7	111.6	67.6	108.7	2.9	18	62.7	111.2	65.4	-2.7
8	132.5	43.4	132.7	-0.2	19	76.1	98.7	77.8	-1.7
9	118.0	60.6	115.6	2.4	19a	146.4	32.3	143.7	2.7
9a	139.3	37.8	138.3	1.0	20a	132.7	44.9	131.2	1.5
10a	137.0	36.8	139.3	-2.3	21	165.3	12.4	163.5	1.8
11	153.7	20.9	155.0	-1.3					

Structure of Phenazinolin E (5)

								г 1
Table S9	. 1D & 2D	NMR (500	MHz. D	$MSO-d_6$)	Data for	Phenazino	lin E	$(5)^{[a]}$
Lubic D/	$1D \oplus 2D$	11111 (500	\mathcal{D}	$mbo u_0$	Dutu 101	I Inchazinio	IIII L	

Position	$\delta_{\rm C}$ [ppm]	$\delta_{\rm N}$ [ppm]	δ_{H} [ppm]	HMBC (¹ H- ¹³ C)	HMBC (¹ H- ¹⁵ N)	ROESY
1	127.1 (s)					
2	127.9 (d)		7.90 (s, 1H)	C-1, C-3, C-4, C-10a, C-21		H-16, H-17, H-18
3	151.0 (s)					
4	122.4 (s)					
4a	140.0 (s)					
5-N		307.8 (s)				
5a	142.7 (s)					
6	117.8 (d) ^[b]		7.28 (d, <i>J</i> = 7.9 Hz, 1H) ^[d]	C-7, C-8, C-9, C-9a	N-5	
7	131.4 (d)		7.57 (t, <i>J</i> = 7.9 Hz, 1H)	C-5a, C-8, C-9, C-9a		
8	111.6 (d) ^[c]		7.08 (d, <i>J</i> = 7.3 Hz, 1H)	C-5a, C-6, C-9, C-9a	N-10	9-OH
9	153.6 (s)					
9a	132.7 (s)					
10-N		325.8 (s)				
10a	136.9 (s)					
11	153.2 (s)					

12	111.6 (d) ^[c]		7.27 (d, <i>J</i> = 7.3 Hz, 1H) ^[d]	C-11, C-13, C-14, C-20a	N-20	11-OH
13	132.5 (d)		7.77 (t, <i>J</i> = 8.6 Hz, 1H)	C-11, C-12, C-14, C-14a, C-20a		11-OH
14	117.8 (d) ^[b]		7.62 (d, <i>J</i> = 8.6 Hz, 1H)	C-11, C-12, C-13, C-20a	N-15	
14a	139.1 (s)					
15-N		296.9 (s)				
15a	152.8 (s)					
16	76.0 (d)		5.60 (dd, <i>J</i> = 3.4, 2.1 Hz, 1H)	C-3, C-15a, C-17, C-18, C-19a		H-2, H-18, 17-OH
17	62.6 (d)		4.78 (m, 1H)	C-15a, C-19		H-2, H-19 _{ax}
18	30.9 (d)		4.82 (m, 1H)	C-4, C-16, C-19, C-19a		H-2, H-19 _{ax} , H-16
19 _{ax}	34.5 (t)		3.86 (dd, <i>J</i> = 17.4, 5.2 Hz, 1H)	C-4, C-15a, C-18, C-19a	N-20	H-17, H-18
19 _{eq}			3.44 (dd, obscured, 1H) ^[e]	C-4, C-15a, C-17, C-18, C-19a	N-20	
19a	146.4 (s)					
20-N		324.5 (s)				
20a	135.1 (s)					
21	165.1 (s)					
9-OH			10.48 (s, 1H)	C-8, C-9, C-9a		C-8
11-OH			10.62 (s, 1H)	C-11, C-12, C-20a		H-12, H-13
17-OH			6.16 (d, <i>J</i> = 2.4 Hz, 1H)	C-16, C-18		H-16
21-OH			14.71 (br s, 1H)			

^[a] The ¹H NMR spectrum was recorded at 500 MHz, the ¹³C NMR spectrum at 125 MHz, ¹⁵N NMR spectrum at 50 MHz. ^{[b] [c]} The two sets of signal were interchangeable in terms of their assignments. ^[d] The signals of H-8 and H-14 overlapped. ^[e] The signal is obscured by a signal due to water. After addition of D₂O in DMSO- d_6 , δ = 3.22 (d, J = 17.4 Hz).

Table S10. The Errors between the Experimental 13 C NMR and the Computed Data for Phenazinolin E (5)

Position	$\delta \left(\textbf{C}_{\text{exp}} \right)$	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta~(\textbf{C}_{error})$	Position	δ (C _{exp})	Shielding	$\delta \left(\textbf{C}_{\text{calcd}} \right)$	$\Delta \delta~(\textbf{C}_{error})$
1	127.1	49.4	126.5	0.6	12	111.6	67.7	109.7	1.9
2	127.9	43.8	131.9	-4.0	13	132.5	43.5	131.8	0.7
3	151.0	20.8	155.1	-4.1	14	117.8	58.6	117.9	-0.1
4	122.4	51.5	123.8	-1.4	14a	139.1	32.5	143.1	-4.0
4a	140.0	33.4	142.1	-2.1	15a	152.8	21.3	148.8	4.0
5a	142.7	31.9	142.9	-0.2	16	76.0	98.4	77.8	-1.8
6	117.8	56.8	118.8	-1.0	17	62.6	110.7	65.4	-2.8
7	131.4	44.0	127.2	4.2	18	30.9	145.2	31.6	-0.7
8	111.6	65.6	110.1	1.5	19	34.5	142.9	32.9	1.6
9	153.6	20.9	153.8	-0.2	19a	146.4	32	149.6	-3.2
9a	132.7	44.9	131.4	1.3	20a	135.1	48.5	130.2	4.9
10a	136.9	40.8	134.8	2.1	21	165.1	12.3	163.1	2.0
11	153.2	22.7	152.9	0.3					

Compounds	Structure	OR	Compounds	Structure	OR
Phenazinolin A (1)	7 8N 8N 19 HO 11 10 HO 11 13 0 H	- 378 ^a +331 (low) ^b +339 (hi) ^c	Phenazinolin D (4)	HOOC 1 H	⁻ 1559 ^a +1314 (low) ^b +1314 (hi) ^c
Phenazinolin B (2)	7 8N 19 HO 11 13 13 0 H	[–] 259 ^a +226 (low) ^b +216 (hi) ^c	Phenazinolin E (5)	HOOC +	- 1155 ^a +969 (low) ^b +971 (hi) ^c
Phenazinolin C (3)	$\begin{array}{c} 0 \\ 9 \\ 8 \\ N \\ 7 \\ 5 \end{array} \begin{array}{c} 0 \\ H \\ 19 \\ H \\ 17 \\ 15 \\ H \end{array} \begin{array}{c} 0 \\ H \\ 10 \\ 15 \\ 17 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	[–] 1288 ^a +1091 (low) ^b +1010 (hi) ^c			

Table S11. Experimental and Computed Optical Rotation (OR) of Phenazinolins A–E (1–5)

^a Experimental optical rotation (OR). ^b B3LYP/6-31G(d)-optimized geometries were used in OR computations. ^c B3LYP/6-31+G(d,p)-optimized geometries were used in OR computations.

Fig. S1. Phylogenetic Analysis of Strain YIM DT26^[a]

^[a] The neighbour-joining tree based on 16S rDNA sequences, showing the phylogenetic relationship of strain YIM DT26 with recognized members of the genus *Streptomyces* and the type strain *Streptomyces diastaticus*. Bar, 2 nucleotide substitution per 1000 nucleotides of 16S rDNA sequence. Phylogenetic tree was reconstructed using the neighbor-joining method of N. Saitou and M. Nei (1987) from K_{nuc} values (M. Kimura, 1980; 1983) by Mega 4.0. The topology of the neighbor-joining phylogenetic tree was evaluated by using the bootstrap resampling method of J. Felsenstein (1985) with 1000 replicates.

(J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39, 783 – 791.

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111 – 120.

M. Kimura, The neutral theory of molecular evolution, Cambridge University Press, Cambridge, 1983.

N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406 - 425.)

Fig. S2. ¹H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)

Fig. S4. HSQC NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin A (1)

Fig. S5. ¹H-¹H COSY NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin A (1)

Fig. S6. HMQC-TOCSY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin A (1)

Fig. S7. ¹H-¹³C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin A (1)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S8. ¹H-¹⁵N HMBC NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin A (1)

Fig. S9. ROESY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin A (1)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S10. HR-ESIMS(+) Spectrum of Phenazinolin A (1)

Fig. S11. HR-ESIMS(-) Spectrum of Phenazinolin A (1)

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C10 H22 N6 O10 Na	409.1289	0.2375	0.5806	2.5
2	C24 H17 N4 O3	409.1295	-0.3170	-0.7749	18.5
3	C9 H23 N5 O13	409.1286	0.5123	1.2521	1.0
4	C25 H16 N5 Na	409.1297	-0.5917	-1.4464	20.0
5	C24 H20 N O4 Na	409.1284	0.7455	1.8221	15.0
6	C11 H25 N2 O14	409.1300	-0.8303	-2.0296	0.5
7	C23 H21 07	409.1281	1.0202	2.4937	13.5
8	C12 H24 N3 O11 Na	409.1303	-1.1051	-2.7012	2.0
9	C26 H19 N 04	409.1308	-1.6597	-4.0567	18.0
10	C27 H18 N2 O Na	409.1311	-1.9344	-4.7283	19.5

Phenazinolin A (**1**) Chemical Formula: C₂₄H₁₆N₄O₃ Molecular Weight: 408.4088

Fig. S12. HR-ESIMS(+) Data for Phenazinolin A (1)

Fig. S13. IR Spectrum of Phenazinolin A (1)

Fig. S14. ¹H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin B (2)

H-17---↔ H-16_{ax} P 32 H-16_{eq} 40 8N 20 н ,HO,_ў́Н 48 9 ″″н 🥯 H-19 15 56 Н - H-18 Ó Phenazinolin B (2) Ĥ 64 F1 Chemical Shift (ppm) 72 80 88 96 104 112 - H-4 120 H-14 1-6 H-1 13 128 ⇐──H-9 🧠 H-10 H-12 8.5 7.0 4.5 4.0 3.5 8.0 7.5 5.5 5.0 6.0 6.5 F2 Chemical Shift (ppm)

Fig. S16. HMQC NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin B (2)

Fig. S17. ¹H-¹H COSY NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin B (2)

Fig. S18. 1 H- 13 C HMBC NMR (500 MHz, DMSO- d_{6}) Spectrum of Phenazinolin B (2)

Fig. S19. ROESY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin B (2)

Fig. S20. HR-ESIMS(+) Spectrum of Phenazinolin B (2)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S21. HR-ESIMS(-) Spectrum of Phenazinolin B (2)

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C24 H17 N4 O2	393.1346	-0.0024	-0.0061	18.5
2	C11 H25 N2 O13	393.1351	-0.5157	-1.3119	0.5
3	C10 H22 N6 O9 Na	393.1340	0.5521	1.4045	2.5
4	C12 H24 N3 O10 Na	393.1353	-0.7905	-2.0107	2.0
5	C9 H23 N5 O12	393.1337	0.8269	2.1034	1.0
6	C24 H20 N O3 Na	393.1335	1.0601	2.6966	15.0

Fig. S22. HR-ESIMS(+) Data for Phenazinolin B (2)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S23. IR Spectrum of Phenazinolin B (2)

Fig. S24. ¹H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)

8.0

40

48

56

64

72

80

88

96

112

120

E 128

136

3.5

4.0

F1 Chemical Shift (ppm)

Fig. S26. HSQC NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin C (3)

Fig. S27. 1 H- 1 H COSY NMR (500 MHz, DMSO- d_{6}) Spectrum of Phenazinolin C (3)

HMQC-TOCSY.esp

Fig. S28. HMQC-TOCSY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin C (3)

Fig. S29. ¹H-¹³C HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S30. ¹H-¹⁵N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin C (3)

Fig. S31. ROESY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin C (3)

Fig. S32. HR-ESIMS(+) Spectrum of Phenazinolin C (3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S33. HR-ESIMS(-) Spectrum of Phenazinolin C (3)

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C24 H17 N4 O3	409.1295	-0.1170	-0.2860	18.5
2	C25 H16 N5 Na	409.1297	-0.3918	-0.9576	20.0
3	C10 H22 N6 O10 Na	409.1289	0.4375	1.0694	2.5
4	C11 H25 N2 O14	409.1300	-0.6303	-1.5408	0.5
5	C9 H23 N5 013	409.1286	0.7123	1.7410	1.0
6	C12 H24 N3 O11 Na	409.1303	-0.9051	-2.2123	2.0
7	C24 H20 N O4 Na	409.1284	0.9455	2.3110	15.0
8	C23 H21 07	409.1281	1.2202	2.9825	13.5

Fig. S34. HR-ESIMS(+) Data for Phenazinolin C (3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S35. IR Spectrum of Phenazinolin C (3)

Fig. S36. ¹H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)

Fig. S37. ¹³C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin D (4)

Fig. S38. HSQC NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin D (4)

Fig. S39. ¹H-¹H COSY NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin D (4)

Fig. S40. HMQC-TOCSY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin D (4)

Fig. S41. ¹H-¹³C HMBC NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin D (4)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S42. ¹H-¹⁵N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Pheazinolin D (4)

Fig. S43. ROESY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin D (4)

Fig. S44. HR-ESIMS(+) Spectrum of Phenazinolin D (4)

Fig. S45. HR-ESIMS(-) Spectrum of Phenazinolin D (4)

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C10 H23 N5 016	469.1134	0.0683	0.1457	2.0
2	C11 H22 N6 O13 Na	469.1137	-0.2063	-0.4399	3.5
3	C25 H20 N 07 Na	469.1131	0.3015	0.6428	16.0
4	C24 H21 O10	469.1129	0.5763	1.2285	14.5
5	C25 H17 N4 O6	469.1142	-0.7609	-1.6221	19.5
6	C26 H16 N5 O3 Na	469.1145	-1.0357	-2.2078	21.0
7	C12 H25 N2 017	469.1147	-1.2743	-2.7164	1.5

Fig. S46. HR-ESIMS(+)Data for Phenazinolin D (4)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S47. IR Spectrum of Phenazinolin D (4)

Fig. S48. ¹H NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)

Fig. S49. ¹³C NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)

Fig. S50. HMQC NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin E (5)

Fig. S51. ¹H-¹H COSY NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

HMQC-TOCSY.esp

Fig. S52. HMQC-TOCSY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin E (5)

Fig. S53. ¹H-¹³C HMBC NMR (500 MHz, DMSO-*d*₆) Spectrum of Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S54. ¹H-¹⁵N HMBC NMR (500 MHz, DMSO- d_6) Spectrum of Phenazinolin E (5)

Fig. S55. ROESY NMR (500 MHz, DMSO-d₆) Spectrum of Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S56. HR-ESIMS(+) Spectrum of Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S57. HR-ESIMS(-) Spectrum of Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C25 H17 N4 O6	469.1142	-0.0609	-0.1299	19.5
2	C26 H16 N5 O3 Na	469.1145	-0.3357	-0.7156	21.0
3	C11 H22 N6 O13 Na	469.1137	0.4936	1.0522	3.5
4	C12 H25 N2 017	469.1147	-0.5743	-1.2242	1.5
5	C10 H23 N5 016	469.1134	0.7683	1.6379	2.0
6	C13 H24 N3 O14 Na	469.1150	-0.8490	-1.8099	3.0
7	C25 H20 N 07 Na	469.1131	1.0015	2.1350	16.0
8	C24 H21 O10	469.1129	1.2763	2.7207	14.5
9	C27 H19 N 07	469.1156	-1.4036	-2.9921	19.0

Fig. S58. HR-ESIMS(+) Data for Phenazinolin E (5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S59. IR Spectrum of Phenazinolin E (5)