Electronic Supplementary Information (ESI)

## Seven-coordinate anion complex with a tren-based urea: Binding discrepancy of hydrogen sulfate in solid and solution states

## Avijit Pramanik<sup>a</sup>, Bethtrice Thompson<sup>a</sup>, Trina Hayes<sup>a</sup>, Kimberly Tucker<sup>a</sup>, Douglas R. Powell<sup>b</sup>, Peter V. Bonnesen<sup>c</sup>, Erick D. Ellis<sup>a</sup>, Ken S. Lee<sup>a</sup>, Hongtao Yu<sup>a</sup> and Md. Alamgir Hossain<sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39212, <sup>b</sup>Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, <sup>c</sup>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Email: alamgir@chem.jsums.edu

**Synthesis of L**: Tris(2-aminoethyl)amine (300 mg, 2.05 mmol) was added with *p*cyanophenyl isocyanate (886 mg, 6.15 mmol) in chloroform at room temperature under constant stirring. The mixture was refluxed for 3 h. The precipitate was collected by filtration, washed by chloroform, and dried under vacuum to give a white solid (1.067 gm, 90% yield). MP: 249° C, IR (KBr disk)  $v_{max}/cm^{-1}$  3329 (NH), 2220 (CN), 1665 (CO).  $\delta_{\rm H}$  (500 MHz; DMSO-*d*<sub>6</sub>; TSP) 9.14 (3H, s, Ar-N*H*), 7.67 (6H, d, *J* = 8.5 Hz, Ar*H*), 7.58 (6H, d, *J* = 8.5 Hz, Ar*H*), δ 6.39 (3H, t, *J*<sub>1</sub> = 5.50 Hz, *J*<sub>2</sub> = 5.05, CH<sub>2</sub>N*H*), 3.24 (6H, m, *J*<sub>1</sub> = 6.10 Hz, *J*<sub>2</sub> = 5.95, *J*<sub>3</sub> = 5.90, NHC*H*<sub>2</sub>), 2.64 (6H, t, *J*<sub>1</sub> = 6.55 Hz, *J*<sub>2</sub> = 6.45, NC*H*<sub>2</sub>).  $\delta_{\rm C}$  (125 MHz; DMSO-*d*<sub>6</sub>; TSP) δ 154.93 (CO), 145.37 (*C*<sub>Ar</sub>), 133.58 (*C*H<sub>Ar</sub>), 119.99 (*C*N<sub>Ar</sub>), 118.01 (*C*H<sub>Ar</sub>), 102.75 (*C*<sub>Ar</sub>) 54.05 (NHCH<sub>2</sub>), 37.86 (NCH<sub>2</sub>). ESI-MS(+ve): *m*/z 579.1 (MH<sup>+</sup>). Anal. Found: C, 62.20; H, 5.24; N, 24.28. Calcd. for C<sub>30</sub>H<sub>30</sub>N<sub>10</sub>O<sub>3</sub>: C, 62.27; H, 5.23; N, 24.21%.



Figure S1. <sup>1</sup>H NMR spectra of L in DMSO- $d_6$ .







Figure S3. ESI-MS (+ve) spectra of L

Synthesis of  $[HL]^+ \cdot [HSO_4]^-$ . To a stirred solution of L (100 mg) in EtOH (50 mL) was added 52% H<sub>2</sub>SO<sub>4</sub> (0.5 mL) dropwise. After the mixture was stirred for 30 min at room temperature, a white precipitate formed was filtered, washed with diethyl ether, and dried under vacuum (105.2 mg, 90% yield).  $\delta_{\rm H}$  (500 MHz; DMSO- $d_6$ ; TSP) 9.40 (3H, s, ArNH), 7.63 (6H, d, J = 9.0 Hz, ArH), 7.59 (6H, d, J = 9.00 Hz, ArH),  $\delta$  6.82 (3H, m,  $J_1 = 5.55$  Hz,  $J_2 = 5.60$ , CH<sub>2</sub>NH), 3.56 (6H, m,  $J_1 = 5.65$ , Hz,  $J_2 = 5.65$ ,  $J_3 = 5.65$ , NHCH<sub>2</sub>), 3.47 (1H, s, N<sup>+</sup>H), 3.43 (6H, t,  $J_1 = 5.80$  Hz,  $J_2 = 6.1$ , NCH<sub>2</sub>).  $\delta_{\rm C}$  (125 MHz; DMSO- $d_6$ ; TSP) 155.73 (CO), 144.98 ( $C_{\rm Ar}$ ), 133.63 (CH<sub>Ar</sub>), 119.79 (CN<sub>Ar</sub>), 118.10 (CH<sub>Ar</sub>), 103.23 ( $C_{\rm Ar}$ ), 53.45 (NCH<sub>2</sub>CH<sub>2</sub>) 34.86 (NCH<sub>2</sub>CH<sub>2</sub>). Single-crystals suitable for X-ray diffraction were obtained from slow evaporation of a CH<sub>3</sub>OH-water (1:1) mixture solution of the compound after one week.



**Figure S4.** <sup>1</sup>H NMR spectra of  $[LH]^+ \cdot [HSO_4]^-$  in DMSO-*d*<sub>6</sub>.



Figure S5. <sup>13</sup>C NMR spectra of  $[LH]^+ \cdot [HSO_4]^-$  in DMSO- $d_6$ .

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011



**Figure S7**. The correlation of H···O distances and N-H···O angles for NH···O hydrogen bonds with  $d_{N \cdots O} < 3.2$  Å in the bisulfate complex of L.

**Binding Constant (K):** Binding constants were obtained by <sup>1</sup>H NMR titrations of L with different anions in DMSO- $d_6$ . All the measurements were carried out using 500 MHz Varian at room temperature. Initial concentrations were [ligand]<sub>0</sub> = 2 mM, and [anion]<sub>0</sub> = 20 mM. Sodium salt of 3-(trimethylsilyl) propionic-2,2,3,3,- $d_4$  acid (TSP) in DMSO was used as an external reference in a capillary tube. Each titration was performed by 14 measurements. Association constants (*K*) were calculated using Sigma Plot software, using the equations:  $\Delta\delta$ 

 $= ([A]_0 + [L]_0 + 1/K - ([A]_0 + [L]_0 + 1/K)_2 - 4[L]_0[A]_0)^{1/2})\Delta\delta \max/2[L]_0 \text{ (where } L = \text{ligand} \text{ and } A = \text{anions}). \text{ An error limit in } K \text{ was less that } 10\%.$ 



**Figure S8**. Partial <sup>1</sup>H NMR spectra of L (2mM) in absence and presence of an anion showing two NH peaks. An equivalent amount of n-Bu<sub>4</sub>NClO<sub>4</sub>, n-Bu<sub>4</sub>NNO<sub>3</sub>, n-Bu<sub>4</sub>NHSO<sub>4</sub>, ZnSO<sub>4</sub> or n-Bu<sub>4</sub>NH<sub>2</sub>PO<sub>4</sub> was added in DMSO- $d_6$ .

**Table S1.** Binding constants (log K) of tripodal *tris*-urea receptor (L) with various oxoanions.

| Anion                                       | log K      |
|---------------------------------------------|------------|
| $SO_4^{2-}$                                 | 4.70       |
| H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | 4.20       |
| HSO <sub>4</sub> <sup>-</sup>               | 3.0        |
| ClO <sub>4</sub>                            | No binding |
| NO <sub>3</sub>                             | No binding |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011



**Figure S9.** (a) <sup>1</sup>H NMR spectra of L (2mM) with an increasing amount of TBAHSO<sub>4</sub> (R =  $[TBAHSO_4]_0/[L]_0)$  in DMSO-*d*<sub>6</sub>. (b) Titration curves of L with TBAHSO<sub>4</sub> showing changes in the chemical shifts of NH are shown against the increasing amount of anions. H1 = CH<sub>2</sub>NHCO and H2 = CONHAr.



**Figure S10.** (a) <sup>1</sup>H NMR spectra of L (2mM) with an increasing amount of ZnSO<sub>4</sub> (R =  $[ZnSO_4]_0/[L]_0)$  in DMSO-*d*<sub>6</sub>. (b) Titration curves of L with ZnSO<sub>4</sub> showing changes in the chemical shifts of NH are shown against the increasing amount of anions. H1 = CH<sub>2</sub>N*H*CO and H2 = CON*H*Ar.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011



**Figure S11.** (a) <sup>1</sup>H NMR spectra of L (2mM) with an increasing amount of TBAH<sub>2</sub>PO<sub>4</sub> (R =  $[TBAH_2PO_4]_0/[L]_0$ ) in DMSO-*d*<sub>6</sub>. (b) Titration curves of L with TBAH<sub>2</sub>PO<sub>4</sub> showing changes in the chemical shifts of NH are shown against the increasing amount of anions. H1 = CH<sub>2</sub>NHCO and H2 = CONHAr.



**Figure S12.** <sup>1</sup>H NMR spectra of L (2mM) with an increasing amount of (a) TBAClO<sub>4</sub> (R =  $[TBAClO_4]_0/[L]_0)$  and (b) TBANO<sub>3</sub> (R =  $[TBANO_3]_0/[L]_0)$  in DMSO-*d*<sub>6</sub>. (No apparent binding was observed from these titrations)



**Figure S13**. Job's plot of **L** with TBAHSO<sub>4</sub> in DMSO- $d_6$  showing a maximum at 0.5 mole fraction of **L**. The shift change ( $\delta\Delta$ ) in the H2 (CONHAr) was followed for the Job's plot.