Supporting Information

Readily Available Hydrogen-Bond Catalysts for the Asymmetric Transfer Hydrogenation of Nitroolefins

Jakob F. Schneider,^a Markus B. Lauber,^a Vanessa Muhr,^a Domenic Kratzer,^a Jan Paradies^{*a} ^a Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; jan.paradies@kit.edu

Table of Contents

1. General Information	2
2. Experimental and Characterization Data	3
2.1. Preparation of the catalysts	
2.2. Preparation of the substrates	
2.3. Asymmetric transferhydrogenation of nitroolefins and nitroacrylates	
3. Spectra	
3.1 NMR spectra of the catalysts	
3.2. HPLC data	70
3.3 NMR spectra of the substrates	

1. General Information

¹H NMR spectra were recorded on a 250 MHz and 400 MHz spectrometer. Chemical shifts are reported in ppm with CHCl₃, acetone or DMSO as an internal standard (CHCl₃: 7.26 ppm; acetone: 2.05 ppm; DMSO: 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, b = broad, m = multiplet), integration and coupling constants (Hz). ¹³C NMR spectra were recorded on a 63 MHz and 101 MHz NMR spectrometer. Chemical shifts are reported in ppm with CHCl₃, acetone or DMSO as an internal standard (CHCl₃: 77.2 ppm; acetone: 29.8 ppm; DMSO: 39.5 ppm). MS: The molecular fragments are quoted as the relation between mass and charge (m/z), the intensities as a percentaged value relative to the intensity of the base signal (100%). The abbreviation [M]⁺ refers to the Molecule-Ion. IR spectra were collected as KBr pellets or as solids (platinum ATR and DRIFT). The deposit of the absorption band was given in wave numbers \tilde{v} in cm⁻¹. Unless otherwise specified, all starting materials, reagents and solvents are commercially available and were used without further purification. Flash column chromatography was carried out on silica gel. Routine monitoring of reactions were performed using silica gel coated aluminum plates (silica gel 60, F₂₅₄). All reactions involving moisture sensitive reactants were executed under an argon atmosphere using oven dried glassware.

2. Experimental and Characterization Data

x2.1. Preparation of the catalysts

General Procedure for the preparation of the catalysts 1a-p and 7

General procedures for the synthesis of aminoalcohol-derived thioureas

Catalysts **1a-1c** and **1g-1p** were synthesized following procedure A, catalysts **1d-1f** according to procedure B, and catalyst **7** as described below individually.

Procedure A

To a solution of the respective aminoalcohol (6.61 mmol, 1.00 equiv.) in dry CH_2Cl_2 (7.0 mL) was added 3,5-bis(trifluoromethyl)phenylisothiocyanate (1.33 mL, 7.27 mmol, 1.10 equiv.). After stirring at 40 °C for 3 h, the solvent was removed under reduced pressure. The residue was subjected to flash chromatography (SiO₂, cyclohexane/ethyl acetate) to give the title compound as an off-white solid.

The aminoalcohols, if not commercially available, were synthesized through Grignard reaction of the respective amino acid esters with phenylmagnesiumbromide, following a standard procedure published by *Zhou et al.*¹

Procedure B

$$H_{2}N \xrightarrow{Ph}Ph \xrightarrow{Ph}Ph$$

$$TCD = N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} 1,1-thiocarbonyldiimidazole$$

¹ Kang, Y. F.; Liu, L.; Wang, R.; Yan, W. J.; Zhou, Y. F. Tetrahedron Asymmetry 2004, 15, 3155.

To a solution of the aminoalcohol (4.12 mmol) in dry CHCl₃ (10 mL) was added NEt₃ (5.36 mmol). The reaction was cooled to 0 °C, and trimethylsilyltriflate (5.36 mmol) was added. The reaction was stirred for 16 h at r.t. and sat. NaHCO₃ was added. The layers were separated and the aqueous layer was washed with $CHCl_3$ (3 \times 25 mL). The combined organic layer was dried over MgSO₄, filtered and the volatiles were removed. The crude product was used without further purification (The product can be purified with column chromatography (cyclohexane/ethyl acetate 80/20 v/v)). A solution of the hydroxy-protected aminoalcohol (5.00 mmol) in dry THF (2 mL) was added to a solution of 1,1-thiocarbonyldiimidazole (3.00 mmol) in dry THF (3 mL). The reaction was stirred at r.t. for 72 h. Deprotection of the silvlated compound was conducted subsequently. The mixture was cooled to 0 °C and tetrabutylammonium fluoride (5.5 mmol, 1M) was added. The mixture was stirred for 16 h at r.t.. The reaction was diluted with THF (5 mL) and H₂O (5 mL) was added. The layers were separated and the aqueous layer was washed with $Et_2O(3\times)$. The combined organic layer was dried over MgSO₄, filtered and the volatiles were removed. The residue was subjected to column chromatography (cyclohexane/ethyl acetate 80/20 or 90/10 v/v)) to yield the title compound as white solids.

Synthesis of N-((S)-(2-amino-3-methyl-1,1-diphenyl-butan-1-ol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1a)

Compound **1a** was obtained according to general procedure A, using (S)-1,1-diphenylvalinol (500 mg, 1.96 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 90/10 v/v). The compound was obtained as a white foamy solid (1.05 g, 2.80 mmol, 85%). m.p. 70 °C (capillary); (lit.²: 66-68 °C); R_f (cyclohexane/ethyl acetate, 90:10) = 0.49; $[\alpha]^{20}_{D} = -28.0$ (c = 0.5, CHCl₃); (lit.²: -16.7 (c = 0.32, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 8.60$ (br s, 1H, NH), 7.70–7.15 (m, 13H, H_{Ar}), 6.93–6.86 (m, 1H, CH), 5.58 (br s, 1H, NH), 2.81 (br s, 1H, OH), 2.01–1.98 (m, 1H, CH(CH₃)₂), 1.03 (d, J = 6.8 Hz, 3H, CH₃), 0.85 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.5$ (C=S), 144.9 (C_{Ar}), 144.3 (C_{Ar}), 138.4 (C_{Ar}), 133.0 (2C, ² $J_{CF} = 33.8$ Hz, C_{Ar}–CF₃), 128.6 (4C, CH_{Ar}), 127.4 (CH_{Ar}), 127.3 (CH_{Ar}), 125.3 (2C, CH_{Ar}), 125.1 (2C CH_{Ar}), 123.9 (2C, CH_{Ar}), 122.7 (2C, ¹ $J_{CF} = 273.1$ Hz, CF₃), 119.4 (CH_{Ar}), 83.2 (C-OH), 63.6 (CH), 29.7 (CH₃), 23.4 (CH₃), 18.4 (CH(CH₃)₂); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.86$ (m, 6F, CF₃); IR (KBr): $\tilde{v} = 3445$ (w), 3278 (m), 3218 (w), 3064 (w), 2959 (w), 2875 (vw), 1951 (vw), 1801 (vw), 1623 (vw), 1542 (m), 1468 (m), 1385 (m), 1277 (s), 1150 (s), 1046 (w), 967.2 (w), 895.5 (m), 847.9 (w), 743.4 (w), 702.2 (m), 682.7 (m), 636.9 (w), 540.3 (w); EI-MS *m*/*z* (%): 526.3 (5) [M]⁺, 492.4 (39), 466.2 (15) [M – C₃H₇OH)⁺, 344.2 (40) (C₁₃H₁₄F₆N₂S]⁺, 43.0 (100); HR-EIMS calcd for C₂₆H₂₄F₆N₂OS: 526.1514, found: 526.1511. Analytical data is in agreement with the literature.²

² Lattanzi, A. *Synlett* **2007**, *13*, 2106.

Synthesis of N-((S)-(2-amino-1,1,3-triphenyl-propane-1-ol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (**1b**)

Compound **1b** was obtained according to general procedure A, using (*S*)-1,1diphenylphenylalaninol (1.00 g, 3.30 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 90/10 v/v). The compound was obtained as a white foamy solid (1.42 g, 2.47 mmol, 75%). m.p. 85 °C (capillary); (lit.²: 79-82 °C); R_f (cyclohexane/ethyl acetate, 90:10) = 0.47; $[\alpha]^{20}_{D} = -98.1$ (c = 0.5, CHCl₃); (lit.²: -75.1 (c = 0.33, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 8.17$ (br s, 1H, NH), 7.59–6.76 (m, 20H, 18 × H_{Ar}, 1 × NH, 1 × CH), 5.85 (br s, 1H, OH), 3.20–2.90 (m, 1H, CH₂), 2.77 (dd, ²*J* = 7.0 Hz, ³*J* = 14.1 Hz, 1H, CH₂); ¹³C NMR (63 MHz, CDCl₃): $\delta = 179.8$ (C=S), 144.2 (C_{Ar}), 143.7 (C_{Ar}), 138.4 (C_{Ar}), 138.1 (C_{Ar}), 132.6 (2C, *J*_{CF} = 33.8 Hz, C_{Ar}–CF₃), 129.5 (2C, CH_{Ar}), 128.7 (2C, CH_{Ar}), 128.6 (2C, CH_{Ar}), 127.5 (2C, CH_{Ar}), 127.4 (2C, CH_{Ar}), 126.9 (CH_{Ar}), 125.3 (2C, CH_{Ar}), 125.1 (2C, CH_{Ar}), 122.9 (2C, *J*_{CF} = 273.8 Hz, CF₃), 124.0 (2C, CH_{Ar}), 119.6–119.1 (m, CH_{Ar}), 81.9 (C-OH), 60.8 (CH), 35.7 (CH₂); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.87$ (m, 6F, CF₃); FTIR (KBr): $\tilde{v} = 3322$ (w), 3063 (w), 1962 (vw), 1897 (vw), 1806 (vw), 1603 (w), 1534 (w), 1473 (w), 1450 (w), 1381 (w), 1278 (m), 1181 (w), 1136 (w), 1057 (vw), 1033 (w), 972 (w), 888 (w), 848 (vw), 767 (w), 750 (w), 701 (w), 681 (w); EI-MS m/z (%): 575.2 (30) [M + H]⁺, 574.2 (88) [M]⁺, 556.2 (54), 555.2 (56), 540.2 (100), 537.2 (30). HR-EIMS calcd for C₃₀H₂₄F₆N₂OS: 574.1517, found: 574.1514 [M]⁺. Analytical data is in agreement with the literature.²

Synthesis of N-((S)-(2-amino-3-(indole-3-yl)-1,1-diphenyl-propane-1-ol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (**1c**)

Compound 1c was obtained according to general procedure A, using (S)-1,1diphenyltryptophanol (500 mg, 1.46 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (712 mg, 1.16 mmol, 80%). m.p. 183 °C (capillary); R_f (cyclohexane/ethyl acetate, 70:30) = 0.61; $[\alpha]^{20}_{D} = -43.4$ (c = 0.5, CHCl₃; ¹H NMR (400 MHz, CDCl₃): δ = 9.90 (br s, 1H, NH), 8.09–8.03 (m, 1H, H_{Ar}), 7.93–7.88 (m, 2H, H_{Ar}), 7.71–7.60 (m, 5H, H_{Ar}), 7.45–7.04 (m, 10H, 8 × H_{Ar} , 2 × NH), 7.00–6.93 (m, 1H, H_{Ar}), 6.91–6.83 (m, 1H, H_{Ar}), 6.26 (br s, 1H, OH), 5.88 (dt, J = 9.8 Hz, J = 2.6 Hz, 1H, CH), 3.20–2.90 (m, 1H, CH₂), 2.85 (dd, J = 14.6 Hz, J = 2.0 Hz, 1H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.4$ (C=S), 146.0 (C_{Ar}), 145.8 (C_{Ar}), 141.8 (C_{Ar}), 135.9 (CH_{Ar}), 129.8 (2C, J_{CF}) = 33.8 Hz, C_{Ar}-CF₃), 128.1 (2C, CH_{Ar}), 127.8 (CH_{Ar}), 127.2 (2C, CH_{Ar}), 126.5 (CH_{Ar}), 126.1 $(2C, CH_{Ar}), 125.6 (C_{Ar}), 125.5 (2C, CH_{Ar}), 125.3 (C_{Ar}), 124.4 (C_{Ar}), 121.9 (2C, J_{CF} = 272.7)$ Hz, CF₃), 121.5 (2C, CH_{Ar}), 117.9 (CH_{Ar}), 117.7 (CH_{Ar}), 115.7 (CH_{Ar}), 110.9 (CH_{Ar}), 110.6 (CH_{Ar}), 80.7 (C-OH), 59.8 (CH), 26.2 (CH₂); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.87$ (m, 6F, CF₃); FTIR (KBr): $\tilde{v} = 3394$ (m), 3302 (m), 3090 (w), 3054 (w), 2932 (vw), 1620 (w), 1551 (m), 1498 (m), 1446 (w), 1419 (w), 1373 (m), 1341 (m), 1280 (s), 1250 (m), 1178 (m), 1130 (s), 1110 (m), 1095 (m), 1059 (w), 980.2 (w), 887.1 (m), 747.6 (m), 734.0 (w), 698.9 (m), 681.8 (m), 661.2 (w), 547.7 (w), 428.4 (w); EI-MS m/z (%): 613.2 (100) $[M]^+$, 450.1 (65), 430.1 (60) $[M - C_{13}H_{11}O]^+$, 397.1 (15), 271.0 (48), 213.1 (10) $[C_8H_3F_6]^+$, 130.1 (32), $[C_9H_8N]^+$, 43 (41); HR-EIMS calcd for $C_{32}H_{25}F_6N_3OS$: 613.1623, found: 613.1621; elemental analysis calcd (%) for C₃₂H₂₅F₆N₃OS: N 6.85, C 62.64, H 4.11, S 5.23, found: N 6.78, C 62.28, H 4.04, S 5.20.

Synthesis of 1,3-bis((S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)thiourea (1d)

Compound **1d** was obtained according to general procedure B, using (*S*)-1,1-diphenylvalinol (1.05 g, 4.12 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 95/5 v/v). The compound was obtained as a white foamy solid (1.08 g, 1.96 mmol, 48%). m.p. 191 °C (capillary); R_f (cyclohexane/ethyl acetate, 90:10) = 0.50; $[\alpha]^{20}_{D} = -98.1$ (c = 0.5, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 8.13$ (s, 2H, NH), 7.55–7.47 (m, 4H, H_{Ar}), 7.41–7.27 (m, 16H, H_{Ar}), 4.49 (d, J = 4.0 Hz, 2H, CH), 1.95 – 1.79 (m, 2H, CH), 1.71 (br s, 2H, OH), 0.91 (d, J = 6.1 Hz, 6H, CH₃), 0.69 (d, J = 6.4 Hz, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 187.9$ (C_q, C=S), 142.3 (2C_q, C_{Ar}), 138.1 (2C_q, C_{Ar}), 128.7 (6C, CH_{Ar}), 128.2 (6C, CH_{Ar}), 126.9 (4C, CH_{Ar}), 125.7 (4C, CH_{Ar}), 95.7 (2C, C-OH), 69.5 (2C, CH), 29.7 (2C, CH), 20.9 (2C, CH₃), 16.3 (2C, CH₃); FTIR (KBr): $\tilde{v} = 3275$ (w), 3061 (w), 2964 (w), 2933 (w), 2874 (w), 1501 (m), 1448 (w), 1345 (w), 1266 (m), 1170 (m), 1122 (w), 1105 (w), 971 (w), 904 (w), 834 (w), 702 (m), 635 (w), 606 (w); EI-MS m/z (%): 553.3 (26) [M]⁺, 535.3 (22) [M – Cl₁H₁₉O]⁺; HR-EIMS calcd for Cl₃H₁₁N₂O₂S: 553.2889, found: 553.2891 [M]⁺.

Synthesis of 1,3-bis((*S*)-1-hydroxy-1,1,3-triphenylpropan-2-yl)thiourea (1e)

Compound **1e** was obtained according to general procedure B, using (*S*)-1,1diphenylphenylalanin (1.35 g, 4.45 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (1.23 g, 1.91 mmol, 43%). m.p. 93 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.26; $[\alpha]^{20}_{D} = -82.6$ (c = 0.5, CHCl₃);

¹H NMR (400 MHz, DMSO): $\delta = 10.3$ (br s, 2H, NH), 7.65–7.63 (m, 4H, H_{Ar}), 7.44–7.28 (m, 16H, H_{Ar}), 7.27–7.16 (m, 6H, H_{Ar}), 7.13–7.09 (m, 4H, H_{Ar}), 5.05 (dd, J = 9.5, Hz, J = 4.6 Hz, 2H, CH), 3.34 (br s, 2H, OH), 2.59 (dd, J = 13.9 Hz, J = 4.6 Hz, 2H, CH₂), 2.33-2.27 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO): $\delta = 185.9$ (C=S), 142.4 (2C, C_{Ar}), 138.4 (2C, C_{Ar}), 136.2 (2C, C_{Ar}), 129.2 (4C, CH_{Ar}), 128.4 (4C, CH_{Ar}), 128.3 (2C, CH_A), 128.2 (4C, CH_{Ar}), 128.1 (4C, CH_{Ar}), 127.8 (2C, CH_A), 126.3 (2C, CH_A), 125.9 (4C, CH_{Ar}), 125.5 (4C, CH_{Ar}), 94.0 (2C, C-OH), 63.6 (2C, CH), 38.0 (2C, CH₂); FTIR (KBr): $\tilde{v} = 3418$ (vw), 3188 (vw), 3061 (vw), 3028 (vw), 2955 (vw), 1601 (vw), 1449 (vw), 1343 (vw), 1267 (vw), 1170 (vw), 1066 (vw), 1031 (vw), 967 (vw), 931 (vw), 755 (vw), 698 (w), 529 (vw); FAB-MS m/z (%): 649.2 (15) [M]⁺, 631.2 [M – OH]⁺, 465.1 (25) [C₃₀H₂₉N₂OS]⁺, 447.1 (20) [C₃₀H₂₈N₂S]⁺, 346.1 (60) [C₂₂H₂₀NOS]⁺, 91.1 (100); HR-FABMS calcd for [C₄₃H₄₁N₂O₂S]⁺: 649.2888, found: 649.2891 [M + H]⁺.

Synthesis of 1,3-bis((S)-1-hydroxy-3-(indol-3-yl)-1,1-diphenylpropan-2-yl)thiourea (1f)

Compound **1f** was obtained according to general procedure B, using (*S*)-1,1diphenyltryptophanol (1.00 g, 2.93 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 75/25 v/v). The compound was obtained as a white foamy solid (0.81 g, 1.11 mmol, 38%). m.p. 163 °C (capillary); R_f (cyclohexane/ethyl acetate, 75:25) = 0.22 ; $[\alpha]_{D}^{20} = -244.6$ (c = 0.5, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 8.20$ (s, 2H, NH), 7.55–7.47 (m, 6H, H_{Ar}), 7.42–7.31 (m, 18H, 14 × H_{Ar}, 2 × NH, 2 × OH), 7.23–7.11 (m, 8H, H_{Ar}), 6.87 (d, J = 2.1 Hz, 2H, H_{Ar}), 4.92 (dd, J = 11.2 Hz, J = 3.1 Hz, 2H, CH), 2.76 (dd, J = 14.5, J = 2.6 Hz, 2H, CH₂), 2.36 (dd, J = 14.5 Hz, J = 11.7 Hz, 2H, CH₂); ¹³C NMR (63 MHz, CDCl₃): $\delta = 187.8$ (C=S), 141.1 (2C, C_{Ar}), 138.2 (2C, C_{Ar}), 136.5 (2C, C_{Ar}), 128.8 (2C, CH_{Ar}), 128.7 (6C, CH_{Ar}), 128.5 (6C, CH_{Ar}), 126.6 (4C, CH_{Ar}), 126.1 (4C, CH_{Ar}), 122.8 (2C, C_{Ar}), 120.1 (2C, CH_{Ar}), 118.1 (2C, CH_{Ar}), 111.6 (2C, CH_{Ar}), 110.2 (2C, C_{Ar}), 95.5 (2C, CH_{Ar}), 63.9 (2C, C-OH), 28.9 (2C, CH), 26.9 (2C, CH₂). FTIR (KBr): $\tilde{v} = 3413$ (w), 3058 (w), 2924 (w), 2848 (w), 1724 (vw), 1618 (vw), 1494 (m), 1448 (w), 1339 (w), 1267 (w), 1170 (m), 1094 (w), 1010 (vw), 965 (w), 930 (w), 902 (vw), 789 (vw), 743 (w), 699 (m), 631 (vw), 578 (w), 539 (w), 429 (vw) cm⁻¹; EI-MS m/z (%) 727.2 (60) [M]⁺, 649.1 (4) [M - C₆H₅]⁺, 543.1 (73) [M - C₁₃H₁₁O]⁺, 384.1 (100) [M - C₂₄H₂₁N₂OS]⁺, 309.1 (56) [M - C₂₃H₁₉N]⁺; HR-EIMS calcd for C₄₇H₄₂N₄O₂S: 726.3028, found: 726.3029 [M]⁺.

Synthesis of N-((1R,2S)-(2-amino-1,2-diphenylethanol))-N'-(3,5-bis-(trifluoro-methyl)-phenyl)-thiourea (**1g**)

Compound **1g** was obtained according to general procedure A, using (1*R*,2*S*)-2-amino-1,2diphenylethanol (500 mg, 2.34 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (1.06 g, 2.19 mmol, 94%). m.p. 65 °C (capillary) (lit.³: 62 °C); R_f (cyclohexane/ethyl acetate, 80:20) = 0.23; $[\alpha]^{20}_{D}$ = 54.5 (c = 0.5, CHCl₃), (lit.³: +112.0 (c = 1.12, CHCl₃);

¹H NMR (250 MHz, CDCl₃): δ = 10.36 (br s, 1H, NH), 8.73 (br d, *J* = 8.8 Hz, 1H, NH), 8.29 (s, 2H, H_{Ar}), 7.73 (s, 1H, H_{Ar}), 7.34–7.01 (m, 10H, H_{Ar}), 5.87 (br. d, J = 4.3 Hz, 1H, OH), 5.71–5.61 (m, 1H, CH), 5.18–5.09 (m, 1H, CH) ppm; ¹³C NMR (63 MHz, CDCl₃): δ = 179.5 (C=S), 142.1 (C_{Ar}), 141.8 (C_{Ar}), 137.9 (C_{Ar}), 130.1 (q, *J* =31.1 Hz, 2C, CCF₃), 128.6 (2C, CH_{Ar}), 127.5 (2C, CH_{Ar}), 127.2 (2C, CH_{Ar}), 126.9 (CH_{Ar}), 126.8 (CH_{Ar}), 126.3 (2C, CH_{Ar}), 123.1 (q, *J* =272.8 Hz, 2C, CF₃), 121.5 (2C, CH_{Ar}), 116.2–115.8 (m, CH_{Ar}), 74.0 (CH), 62.8 (CH) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.9 (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu}$ = 3279 (w), 3065 (w), 2929 (vw), 1953 (vw), 1806 (vw), 1528 (m), 1472 (w), 1382 (m), 1279 (m), 1170 (m), 1137 (m), 1055 (w), 1001 (vw), 958 (w), 888 (w), 848 (vw), 749 (vw), 701 (m), 682 (m), 587 (vw) cm⁻¹; MS (FAB), m/z (%): 485.1 (100) [M + H]⁺, 467.1 (20) [M – OH]⁺, 378.1 (15) [C₁₆H₁₂F₆N₂S]⁺, 289.1 (20) [C₉H₇F₆N₂S]⁺, 196.3 (80) [C₁₄H₁₂O]⁺ 105.4 (20); HR-FABMS calcd for C₂₃H₁₉F₆N₂OS: 485.1122, found 485.1125 [M + H]⁺. Analytical data is in accordance with the literature.³

³ Sibi, M.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 8064.

Synthesis of N-((S)-(2-amino-1-phenylethanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1h)

Compound **1h** was obtained according to general procedure A, using (*S*)-2-amino-1-phenylethanol (600 mg, 4.97 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 to 60/40 v/v). The compound was obtained as a white foamy solid (1.85 g, 4.52 mmol, 91%). m.p. 147.3 °C (capillary) (lit.²: 145-147 °C); R_f (cyclohexane/ethyl acetate, 80:20) = 0.20; $[\alpha]^{20}_{D} = -74.2$ (c = 0.5, CHCl₃), (lit.²: -55.0 (c = 0.30, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 9.57$ (br s, 1H, NH), 8.36 (s, 2H, H_{Ar}), 7.80 (br s, 1H, NH), 7.72 (s, 1H, H_{Ar}), 7.52–7.44 (m, 2H, H_{Ar}), 7.42–7.23 (m, 3H, H_{Ar}), 5.12–5.01 (m, 1H, CH), 4.82 (br s, 1H, OH), 4.19–3.97 (m, 1H, CH₂), 3.69–3.51 (m, 1H, CH₂) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 183.5$ (C=S), 144.9 (C_{Ar}), 143.9 (C_{Ar}), 132.9 (q, *J* =32.3 Hz, 2C, CCF₃), 130.1 (2C, CH_{Ar}), 129.3 (CH_{Ar}), 127.7 (2C, CH_{Ar}), 125.5 (q, *J* =271.0 Hz, 2C, CF₃), 124.3 (2C, CH_{Ar}), 118.6–118.3 (m, CH_{Ar}), 73.2 (CH), 53.8 (CH₂) ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.9$ (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu}$ = 3382 (vw), 3234 (vw), 3067 (vw), 1818 (vw), 1555 (w), 1493 (vw), 1467 (vw), 1369 (w), 1272 (m), 1172 (m), 1153 (w), 1126 (m), 1062 (w), 1028 (vw), 948 (m), 925 (vw), 904 (vw), 890 (m), 847 (vw), 767 (vw), 743 (vw), 700 (m), 679 (m), 619 (vw), 584 (vw), 530 (vw), 421 (vw) cm⁻¹; MS (FAB), m/z (%): 409.0 (100) [M + H]⁺, 391.0 (20) [M – OH]⁺, 289.6 (55) [C₉H₇F₆N₂S]⁺, 121.9 (40) [C₈H₉O]⁺; HR-FABMS calcd for C₁₇H₁₅F₆N₂OS: 409.0809, found 409.0811 [M + H]⁺. Synthesis of N-((1R,2S)-(2-amino-1-phenylpropanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1i)

Compound **1i** was obtained according to general procedure A, using (*S*)-norephedrine (1.00 g, 6.61 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (2.49 g, 5.88 mmol, 89%). m.p. 62 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.25; $[\alpha]^{20}_{D} = -100.7$ (c = 0.5, CHCl₃);

¹H NMR (250 MHz, CDCl₃): $\delta = 9.49$ (br s, 1H, NH), 8.37 (s, 2H, H_{Ar}), 7.84–7.58 (m, 2H, 1 × NH, 1 × H_{Ar}), 7.54–7.44 (m, 2H, H_{Ar}), 7.41–7.31 (m, 2H, H_{Ar}), 7.30–7.20 (m, 1H, H_{Ar}), 5.23–5.11 (m, 1H, CH), 4.93–4.60 (m, 2H, 1 × OH, 1 × CH), 1.06 (d, *J* = 7.0 Hz, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 182.3$ (C=S), 144.4 (C_{Ar}), 143.9 (C_{Ar}), 132.9 (q, *J* = 32.3 Hz, 2C, CCF₃), 129.8 (2C, CH_{Ar}), 128.8 (CH_{Ar}), 127.7 (2C, CH_{Ar}), 125.6 (q, *J* = 271.6 Hz, 2C, CF₃), 124.1 (2C, CH_{Ar}), 118.6–118.1 (m, 1C, CH_{Ar}), 75.6 (CH), 57.5 (CH), 13.5 (CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.9$ (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu} = 3244$ (vw), 3066 (vw), 2115 (vw), 1527 (vw), 1470 (vw), 1455 (vw), 1379 (w), 1273 (w), 1171 (w), 1125 (m), 1001 (vw), 885 (w), 847 (vw), 755 (vw), 699 (w), 679 (w), 617 (vw), 573 (vw), 531 (vw) cm⁻¹; MS (FAB), m/z (%): 423.0 (100) [M + H]⁺, 405.0 (20) [M – OH]⁺, 289.6 (50) [C₉H₇F₆N₂S]⁺, 135.8 (35) [C₉H₁₁O]⁺; HR-FABMS calcd for C₁₈H₁₇F₆N₂OS: 423.0965, found 423.0963 [M + H]⁺.

Synthesis of N-((R)-(2-amino-2-phenylethanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1j)

Compound **1j** was obtained according to general procedure A, using *R*-(-)-phenylglycinol (800 mg, 5.8 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 to 60/40 v/v). The compound was obtained as a white foamy solid (2.16 g, 5.28 mmol, 91%). m.p. 59 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.21; $[\alpha]^{20}_{D}$ = 26.6 (c = 0.5, CHCl₃);

¹H NMR (400 MHz, CDCl₃): $\delta = 8.67$ (br s, 1H, NH), 7.70 (s, 2H, H_{Ar}), 7.55 (s, 1H, H_{Ar}), 7.48–7.43 (m, 1H, CH), 7.29–7.17 (m, 5H, H_{Ar}), 5.54 (br s, 1H, OH), 3.94–3.76 (m, 2H, CH₂), 2.79 (br s, 1H, NH) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.8$ (C=S), 139.4 (CH_{Ar}), 137.2 (C_{Ar}), 132.3 (q, *J* =34.5 Hz, 2C, CCF₃), 129.2 (CH_{Ar}), 128.5 (C_{Ar}), 126.6 (4C, CH_{Ar}), 123.6 (CH_{Ar}), 122.8 (q, *J* =272.9 Hz, 2C, CF₃), 119.1–118.8 (m, CH_{Ar}), 66.0 (CH₂), 60.3 (CH) ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.0$ (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu} = 3259$ (vw), 3067 (vw), 1667 (vw), 1529 (vw), 1470 (vw), 1380 (w), 1342 (vw), 1273 (w), 1170 (w), 1123 (w), 1060 (vw), 1001 (vw), 976 (vw), 955 (vw), 885 (vw), 847 (vw), 748 (vw), 697 (w), 679 (w), 593 (vw), 528 (vw), 401 (vw) cm⁻¹; MS (FAB), m/z (%): 409.0 (100) [M + H]⁺, 390.0 (20) [M – H₂O]⁺, 288.7 (10) [C₉H₇F₆N₂S]⁺, 122.0 (25); HR-FABMS calcd for C₁₇H₁₅F₆N₂OS: 409.0809, found 409.0806 [M + H]⁺. Analytical data is in accordance with the literature.⁴

⁴ Dorwald, F. Z.; Hansen, J. B.; Mogensen, J. P.; Tagmose, T. M.; Pirotte, B.; Lebrun, P.; De Tullio, P.; Boverie, S.; Delarge, J. PCT Int. Appl. (**1999**), 48 pp. CODEN:PIXXD2; WO9907672

Synthesis of N-((S)-(3-amino-3-phenylpropanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1k)

Compound 1k was obtained according to general procedure A, using (S)-3-amino-3phenylpropanol (250 mg, 1.65 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (650 mg, 1.53 mmol, 93%). m.p. 56 °C (capillary); Rf (cyclohexane/ethyl acetate, 80:20) = 0.30; $[\alpha]^{20}_{D}$ = 65.2 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.53$ (br s, 1H, NH), 7.76 (s, 2H, H_{Ar}), 7.65 (s, 1H, H_{Ar}), 7.61 (br s, 1H, NH), 7.38–7.20 (m, 5H, H_{Ar}), 5.76 (br s, 1H, OH), 3.84–3.55 (m, 2H, CH₂), 2.87–2.63 (m, 1H, CH₂), 2.21–2.11 (m, 1H, CH), 2.05–1.88 (m, 1H, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.0$ (C=S), 139.9 (C_{Ar}), 138.9 (C_{Ar}), 132.6 (q, J = 36.0 Hz, 2C, CCF₃), 128.9 $(2C, CH_{Ar})$, 127.8 (CH_{Ar}) , 126.3 $(2C, CH_{Ar})$, 123.7 (br s, 2C, $CH_{Ar})$, 122.8 (q, J = 275.1 Hz, 2C, CF₃), 119.2–118.9 (m, 1C, CH_{Ar}), 58.9 (CH₂), 57.2 (CH), 37.4 (CH₂) ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.99$ (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu} = 3279$ (m), 3062 (w), 2953 (w), 1805 (vw), 1622 (w), 1535 (m), 1472 (m), 1383 (m), 1343 (m), 1279 (s), 1177 (s), 1135 (s), 1044 (w), 1001 (w), 947 (w), 888 (m), 847 (w), 754 (w), 700 (m), 681 (m), 594 (w), 535 (w), 404 (vw) cm⁻¹; MS (FAB), m/z (%): 423.1 (100) $[M + H]^+$, 389.1 (10), 289.1 (30) $[C_9H_7F_6N_2S]^+$, 135.2 (10), 105.4 (60), 91.4 (35); HR-FABMS calcd for $C_{18}H_{17}F_6N_2OS$: 423.0965, found 423.0962 $[M + H]^+$.

Synthesis of N-(2S)-propanol-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (11)

Compound **11** was obtained according to general procedure A, using *L*-alaninol (364 mg, 4.85 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 50/50 v/v). The compound was obtained as a white foamy solid (1.63 g, 4.70 mmol, 97%). m.p. 84 °C (capillary); R_f (cyclohexane/ethyl acetate, 70:30) = 0.16; $[\alpha]^{20}_{D} = -27.0$ (c = 0.5, CHCl₃);

¹H NMR (400 MHz, CDCl₃): δ = 8.89 (br s, 1H, NH), 7.81 (s, 2H, H_{Ar}), 7.61 (s, 1H, H_{Ar}), 7.02–6.88 (m, 1H, CH), 4.59 (br s, 1H, NH), 3.80 (dd, *J* = 10.8 Hz, *J* = 2.7 Hz, 1H, CH₂), 3.80 (dd, *J* = 10.8 Hz, *J* = 7.2 Hz, 1H, CH₂), 3.18 (br s, 1H, OH), 1.20 (d, *J* = 6.8 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 180.7 (C=S), 139.6 (C_{Ar}), 132.2 (q, *J* =33.0 Hz, 2C, CCF₃), 123.5 (2C, CH_{Ar}), 122.8 (q, *J* =272.9 Hz, 2C, CF₃), 118.7 (CH_{Ar}), 66.3 (CH), 52.5 (CH₂), 16.4 (CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ = -63.1 (m, 6F, CF₃) ppm; FTIR (Platinum ATR): \tilde{v} = 3240 (vw), 3055 (vw), 1623 (vw), 1547 (w), 1468 (vw), 1381 (w), 1351 (vw), 1269 (m), 1173 (w), 1126 (m), 1046 (w), 1009 (vw), 991 (vw), 926 (vw), 888 (w), 847 (vw), 767 (vw), 743 (vw), 701 (w), 678 (w), 618 (vw), 590 (vw), 508 (vw) cm⁻¹; MS (FAB), m/z (%): 347.0 (100) [M + H]⁺, 327.9 (30) [M – H₂O]⁺, 312.8 (20), 288.8 (30) [C₉H₇F₆N₂S]⁺, 136.7 (25); HR-FABMS calcd for C₁₂H₁₃F₆N₂OS: 347.0652, found 347.0655 [M + H]⁺.

Synthesis of N-((S)-(3-methylbutanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1m)

Compound **1m** was obtained according to general procedure A, using (*S*)-valinol (500 mg, 4.85 mmol) as starting material. The crude product was washed with hexane and dried. The compound was obtained as a white solid (1.67 g, 4.46 mmol, 92%). m.p. 121 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.30; $[\alpha]^{20}_{D} = -71.0$ (c = 0.5, CHCl₃);

¹H NMR (400 MHz, acetone-d₆): δ = 9.42 (br s, 1H, NH), 8.36 (s, 2H, H_{Ar}), 7.68 (s, 1H, H_{Ar}), 7.55 (br s, 1H, NH), 4.50–4.34 (m, 1H, CH), 3.95 (br s, 1H, OH), 3.87–3.67 (m, 1H, CH₂), 3.70–2.97 (m, 1H, CH₂), 2.16–2.07 (m, 1H, CH), 1.10 (d, *J* = 7.0 Hz, 6H, CH₃); ¹³C NMR (100 MHz, acetone-d₆): δ = 183.3 (C=S), 144.1 (C_{Ar}), 132.9 (q, *J* = 32.9 Hz, 2C, CCF₃), 122.8 (q, *J* = 277.3 Hz, 2C, CF₃), 124.0 (2C, CH_{Ar}), 118.1 (CH_{Ar}), 62.8 (br s, 2C, CH, CH₂), 31.0 (CH), 20.7 (CH₃), 20.3 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ = -63.1 (m, 6F, CF₃) ppm; FTIR (KBr): \tilde{v} = 3648 (w), 2484 (w), 3270 (m), 3049 (m), 2970 (m), 1792 (vw), 1624 (w), 1538 (m), 1468 (m), 1385 (s), 1358 (m), 1277 (s), 1185 (s), 1138 (s), 1063 (w), 983 (w), 951 (w), 926 (vw), 889 (m), 847 (w), 822 (vw), 709 (m), 681 (m), 594 (w) cm⁻¹; EI-MS m/z (%): 374.2 (15) [M]⁺, 356.2 (38) [M – OH]⁺, 341.1 (58) [M – CH₃]⁺, 289.1 (100) [M – C₅H₁₁O]⁺; HR-EIMS calcd for C₁₄H₁₆F₆N₂OS: N 7.48, C 44.92, H 4.31; found: N 7.44, C 44.83, H 4.13. Synthesis of N-((2S)-(3-phenylpropanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1n)

Compound **1n** was obtained according to general procedure A, using (*S*)-phenylalaninol (1.00 g, 6.61 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 70/30 v/v). The compound was obtained as a white foamy solid (2.54 g, 6.02 mmol, 91%). m.p. 102 °C (capillary); (lit.⁵: 62 °C); R_f (cyclohexane/ethyl acetate, 70:30) = 0.32; $[\alpha]^{20}_{D} = -56.8$ (c = 0.5, CHCl₃); (lit.⁵: -54 (c = 0.3, CHCl₃);

¹H NMR (250 MHz, acetone-d₆): $\delta = 9.49$ (br s, 1H, NH), 8.35 (s, 2H, H_{Ar}), 7.69 (s, 1H, H_{Ar}), 7.63 (br s, 1H, NH), 7.38–7.16 (m, 5H, H_{Ar}), 4.71 (br. s, 1H, OH), 4.34–4.07 (m, 1H, CH), 3.78–3.59 (m, 2H, CH₂), 3.11 (dd, J = 13.4 Hz, J = 6.1 Hz, 1H, CH₂), 2.97 (dd, J = 13.4 Hz, J = 8.2 Hz, 1H, CH₂) ppm; ¹³C NMR (63 MHz, acetone-d₆): $\delta = 182.7$ (C=S), 143.9 (C_{Ar}), 140.5 (C_{Ar}), 132.9 (q, J = 35.4 Hz, 2C, CCF₃), 131.1 (2C, CH_{Ar}), 130.2 (2C, CH_{Ar}), 128.1 (CH_{Ar}), 125.6 (q, J = 272.8 Hz, 2C, CF₃), 124.2 (br s, 2C, 2 × CH), 118.6–118.0 (m, 1C, CH_{Ar}), 62.9 (CH₂), 59.2 (CH₂), 38.0 (CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.98$ (s, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu} = 3581$ (m), 3481 (m), 3211 (s), 3057 (s), 2926 (m), 2876 (m), 1955 (vw), 1806 (vw), 1662 (w), 1623 (w), 1535 (s), 1470 (s), 1383 (s), 1341 (s), 1277 (vs), 1173 (vs), 1132 (vs), 1043 (m), 984 (m), 942 (w), 914 (w), 893 (s), 847 (w), 828 (vw), 752 (m), 701 (s), 681 (s), 660 (w), 638 (w), 581 (w), 506 (w), 468 (vw) cm⁻¹; MS (FAB), m/z (%): 423.1 (100) [M + H]⁺, 404.1 (20) [M – H₂O]⁺, 389.2 (10), 289.1 (10) [C₉H₇F₆N₂S]⁺, 91.4 (35); HR-FABMS calcd for C₁₈H₁₇F₆N₂OS: 423.0965, found 423.0961 [M + H]⁺. Analytical data is in accordance with the literature.⁵

⁵ Herrera, R. P.; Monge, D.; Martin-Zamora, E.; Fernandez, R.; Lassaletta, J. M. Org. Let. 2007, 9, 17, 3303.

Synthesis of N-((2S,3S)-(2-amino-3-methyl-pentanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (10)

Compound 10 was obtained according to general procedure A, using (S)-isoleucinol (901 mg, 7.68 mmol) as starting material. The crude product was purified by column chromatography $(SiO_2, cyclohexane/ethyl acetate 80/20 v/v)$. The compound was obtained as a white foamy solid (2.80 g, 7.19 mmol, 93%). m.p. 59 °C (capillary); R_f (cyclohexane/ethyl acetate, 70:30) = 0.28; $[\alpha]_{D}^{20} = 60.2$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.96$ (br s, 1H, OH), 7.76 (s, 2H, H_{Ar}), 7.61 (s, 1H, H_{Ar}), 6.99–6.77 (m, 1H, CH), 4.50 (br s, 1H, NH), 3.92–3.81 (m, 1H, CH₂), 3.70–3.58 (m, 1H, CH₂), 3.02 (br s, 1H, NH), 1.73–1.57 (m, 1H, CH), 1.53– 1.38 (m, 1H, CH₂), 1.27–1.07 (m, 1H, CH₂), 0.94–0.85 (m, 6H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.9$ (C=S), 139.2 (C_{Ar}), 132.4 (q, J = 35.9 Hz, 2C, CCF₃), 123.7 (br s, 2C, CH_{Ar}), 122.9 (q, J = 276.6 Hz, 2C, CF₃), 119.3–118.3 (m, 1C, CH_{Ar}), 62.7 (CH), 60.5 (CH₂), 36.0 (CH₂), 25.8 (CH₂), 15.4 (CH₃), 11.1 (CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃); δ = -63.1 (m, 6F, CF₃) ppm; FTIR (Platinum ATR): \tilde{v} = 3199 (w), 3047 (w), 2970 (w), 2883 (w), 1794 (vw), 1622 (vw), 1531 (w), 1469 (w), 1383 (m), 1346 (w), 1285 (m), 1178 (m), 1130 (m), 1109 (w), 1022 (vw), 997 (w), 972 (w), 949 (w), 891 (w), 848 (vw), 775 (vw), 704 (w), 682 (w), 589 (vw) cm⁻¹; MS (FAB), m/z (%): 389.2 (100) $[M + H]^+$, 370.2 (20) $[M - H]^+$ H_2O^{\dagger} , 341.2 (10), 289.2 (20) $[C_9H_7F_6N_2S^{\dagger}]^+$, 118.5 (10) $[C_6H_{16}NO^{\dagger}]^+$; HR-FABMS calcd for $C_{15}H_{19}F_6N_2OS$: 389.1122, found 389.1129 [M + H]⁺.

Synthesis of N-((S)-(2-amino-3,3-dimethylbutanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (1p)

Compound **1p** was obtained according to general procedure A, using (*S*)-*tert*-leucinol (800 mg, 6.83 mmol) as starting material. The crude product was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate 80/20 v/v). The compound was obtained as a white foamy solid (2.49 g, 6.40 mmol, 94%). m.p. 56 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.34; $[\alpha]^{20}_{D} = -75.6$ (c = 0.5, CHCl₃);

¹H NMR (400 MHz, acetone-d₆): δ = 9.50 (br s, 1H, OH), 8.38 (s, 2H, H_{Ar}), 7.67 (s, 1H, H_{Ar}), 7.58 (d, *J* = 7.4 Hz, 1H, NH), 4.64–4.55 (m, 1H, CH), 3.94–3.83 (m, 2H, CH₂, NH), 3.81– 3.73 (m, 1H, CH₂), 1.04 (s, 9H, CH₃) ppm; ¹³C NMR (100 MHz, acetone-d6): δ = 184.0 (C=S), 144.1 (C_{Ar}), 132.9 (q, *J* = 33.0 Hz, 2C, CCF₃), 125.4 (q, *J* = 271.9 Hz, 2C, CF₃), 123.9 (2C, CH_{Ar}), 118.1 (CH_{Ar}), 64.8 (CH), 62.9 (CH₂), 36.4 (C), 28.6 (3C, CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ = -63.10 (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{\nu}$ = 3265 (vw), 2965 (vw), 1532 (w), 1471 (vw), 1379 (w), 1342 (vw), 1273 (m), 1169 (w), 1124 (m), 1042 (w), 996 (vw), 972 (vw), 885 (w), 847 (vw), 700 (w), 680 (w), 571 (vw), 401 (vw) cm⁻¹; MS (FAB), m/z (%): 389.1 (100) [M + H]⁺, 370.1 (20), 355.1 (10), 289.1 (15) [C₉H₇F₆N₂S]⁺; HR-FABMS calcd for C₁₅H₁₈F₆N₂OS: N 7.21, C 46.39, H 4.67; found: N 6.97, C 45.97, H 4.51. Analytical data is in agreement with the literature.⁶

The catalyst *ent*-1**p** was prepared according to the same procedure starting from commercially available (*R*)-*tert*leucinol. The spectroscopic data is in accordance with the spectroscopic data of 1**p**. $[\alpha]^{20}{}_{\rm D}$ = +77.9 (c = 0.59, CHCl₃)

⁶ Munslow, I. J.; Wade, A. R.; Deeth, R. J.; Scott, P. Chem. Comm. 2004, 22, 2596-2597.

Synthesis of TMS-protected N-((S)-(3-methylbutanol))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (7)

To a solution of 7 (0.10 g, 0.26 mmol, 1.00 equiv) in CH₂Cl₂ (3 mL) was added NEt₃ (0.11 mL, 0.80 mmol, 3.00 equiv) and TMSTf (0.18 g, 0.81 mmol, 3.00 equiv). The reaction was stirred for 2 h, and NaHCO₃ was added. The layers were separated and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure, to yield the title compound as a colorless oil (0.11 g, 0.25 mmol, 97%).; R_f (cyclohexane/ethyl acetate, 70:30) = 0.80; $[\alpha]^{20}_{D} = -36.6$ (c = 0.5, CHCl₃);

¹H NMR (250 MHz, acetone-d₆): $\delta = 9.47$ (br s, 1H, NH), 8.36 (s, 2H, H_{Ar}), 7.68 (s, 1H, H_{Ar}), 7.50 (br s, 1H, NH), 4.54–4.30 (m, 1H, CH), 3.87–3.68 (m, 2H, CH₂), 2.18–2.06 (m, 1H, CH), 1.00 (d, J = 7.0 Hz, 6H, CH₃), 0.12 (s, 9H, SiMe₃); ¹³C NMR (63 MHz, acetone-d₆): $\delta =$ 183.2 (C=S), 144.0 (C_{Ar}), 132.9 (q, J = 32.9 Hz, 2C, CCF₃), 125.3 (q, J = 271.6 Hz, 2C, CF₃), 124.1 (2C, CH_{Ar}), 118.2 (CH_{Ar}), 63.3 (CH), 62.3 (CH₂), 48.7 (CH), 20.8 (CH₃), 20.0 (CH₃), 0.5 (SiMe₃); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.9$ (m, 6F, CF₃) ppm; FTIR (Platinum ATR): $\tilde{v} = 3220$ (vw), 1544 (w), 1469 (w), 1382 (w), 1270 (m), 1172 (m), 1125 (m), 1104 (m), 838 (m), 678 (m) cm⁻¹; EI-MS m/z (%): 446.2 (5) [M]⁺, 356.2 (50) [M – OTMS]⁺, 341.1 (50) [C₁₃H₁₂F₆N₂S]⁺, 158.1 (40), 143.1 (100); HR-EIMS calcd for C₁₇H₂₄F₆N₂OSSi: 446.1282, found: 446.1284 [M]⁺. Synthesis of N-((S)-(2-amino-3,3-dimethylbutan))-N'-(3,5-bis-(trifluoro-methyl)phenyl)-thiourea (8)

Compound 1x was obtained according to general procedure A, using (*S*)-3,3-dimethyl-2butylamine (1,15 g, 11.4 mmol) as starting material. The crude product was recrystallized two times from dichloromethane. The compound was obtained as a white foamy solid (4.16 g, 1.17 mmol, 98%). m.p. 156 °C (capillary); R_f (cyclohexane/ethyl acetate, 80:20) = 0.25; $[\alpha]^{20}{}_D = -61.3$ (c = 0.5, CHCl₃);

¹H NMR (250 MHz, acetone-d₆): $\delta = 9.29$ (br s, 1H, NH), 8.35 (s, 2H, H_{Ar}), 7.68 (s, 1H, H_{Ar}), 7.40 (br s, 1H, NH), 4.63–4.43 (m, 1H, CH), 1.15 (d, J = 6.7 Hz, 3H, CH₃), 0.90 (s, 9H, CH₃) ppm; ¹³C NMR (63 MHz, acetone-d₆): $\delta = 182.8$ (C=S), 144.2 (C_{Ar}), 132.9 (q, J = 33.6 Hz, 2C, CCF₃), 125.4 (q, J = 272.2 Hz, 2C, CF₃), 124.0 (2C, CH_{Ar}), 118.4–117.9 (m, 1C, CH_{Ar}), 59.6 (CH), 36.3 (C), 27.7 (3C, CH₃), 16.4 (CH₃) ppm; FTIR (Platinum ATR): $\tilde{\nu} = 2970$ (vw), 1276 (vw), 1124 (w), 888 (vw), 681 (vw) cm⁻¹; MS (FAB), m/z (%): 373.1 (100) [M + H]⁺, 100.3 (10) [C₆H₁₄N]⁺, 85.3 (35); HR-FABMS calcd for C₁₅H₁₉F₆N₂S: 373.1173, found 373.1171 [M + H]⁺; elemental analysis calcd (%) for C₁₅H₁₈F₆N₂S: N 7.52, C 48.38, H 4.87, S 8.61; found: N 7.44, C 48.82, H 4.92, S 8.71.

2.2. Preparation of the substrates

Preparation of nitroalkenes

The nitroolefins were prepared according to a procedure published by *Campos et al.*⁷ starting from the respective olefins. The nitroolefins were obtained by procedure C (Wittig reaction)⁸ & E (olefins **2a**, **2e-2g**), by procedure D & E (olefin **2h**) or from commercial sources & E (olefins **2b**, **2c**, and **2d**).

Procedure C

$$\mathbb{R}^{2} \xrightarrow{\mathsf{R}^{1}} \mathbb{O} \xrightarrow{\mathsf{MeP}(\mathsf{Ph})_{3}\mathsf{Br}, n-\mathsf{BuLi}} \mathbb{R}^{2} \xrightarrow{\mathsf{R}^{1}} \mathbb{R}^{2}$$

A solution of methyltriphenylphosphonium bromide (34 mmol) in dry Et₂O (110 mL) under argon atmosphere was cooled to 0 °C and *n*-BuLi (2.5 M, 34 mmol) was added. The reaction was stirred for 3 h at this temperature and a solution of the respective ketone (37 mmol) in dry Et₂O (17 mL) was added slowly. The reaction was refluxed over night, poured into water, extracted with Et₂O (3×), dried over MgSO₄ and filtered. The volatiles were removed and the residue was subjected to column chromatography (cyclohexane/Et₂O 99:1 v/v) to yield the respective olefin.

Procedure D

According to a procedure published by *Eisch et al.*,⁹ a solution of epoxystyrene (21 mmol) in dry THF (70 mL) was cooled to -78 °C and *t*-BuLi (1.6 M in pentane, 23 mmol) was added slowly. The reaction was stirred at this temperature for 10 min and was then allowed to warm to r.t.. Water was added slowly, the layers were separated, the combined organic layer was dried over MgSO₄, filtered and concentrated. The resulting olefin was used without further purification.

⁷ Campos, P. D.; Garcia, B.; Rodriguez, M. A. Tetrahedron Lett. 2000, 41, 979.

⁸ Andrade, R. M.; Munoz, A. H.; Tamariz, J. Synthetic Communications 1992, 22, 11, 1603.

⁹ Eisch, J. J.; Galle, J. E. J. Org. Chem. 1990, 55, 4835.

Procedure E

To a solution of CuO (4 mmol) in HBF₄ (35%, aqueous solution, 8 mmol), acetonitrile (20 mL) and NaNO₂ (24 mmol) were added respectively. After stirring for 5 min, iodine (6 mmol) and the respective olefin (20 mmol) were added. The reaction was stirred over night, water was added, and the mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layer was washed carefully with sat. Na₂S₂O₃, dried over MgSO₄, filtered and concentrated. The residue was subject to column chromatography (SiO₂, pentane/Et₂O, 99/1 – 97/3 v/v) to yield the respective *E*-nitroolefins.

(*E*)-2-Phenyl-1-nitro-1-propene (**2a**)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.47-7.41$ (m, 5H, H_{Ar}), 7.33–7.29 (m, 1H, CHNO₂), 2.65 (d, J = 1.53, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.8$ (C), 138.2 (C, CCH₃), 136.2 (CH, CHNO₂), 130.2 (CH, CH_{Ar}), 128.9 (2C, CH_{Ar}), 126.7 (2C, CH_{Ar}), 18.4 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

(*E*)-2-(4-Methylphenyl)-1-nitro-1-propene (**2b**)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.39-7.31$ (m, 3H, 2 × H_{Ar}, CHNO₂), 7.25-7.16 (m, 2H, H_{Ar}), 2.63 (d, 3H, J = 1.2 Hz, CCH₃), 2.40 (s, 3H, Ar-CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 150.0$ (C, CCH₃), 140.9 (C, CCH₃), 135.8 (CH), 135.3 (C), 129.7 (2C, CH_{Ar}), 126.8 (2C, CH_{Ar}), 21.3 (CH₃), 18.4 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

¹⁰ Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976.

(*E*)-2-(4-Methoxyphenyl)-1-nitro-1-propene (2c)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.47 - 7.40$ (m, 2H, H_{Ar}), 7.35 - 7.32 (m, 1H, CHNO₂), 6.98 - 6.91 (m, 2H, H_{Ar}), 3.85 (s, 3H, OCH₃), 2.64 (d, J = 1.3 Hz, 2 H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 161.6 (C_{Ar}), 149.7 (C_{Ar}), 135.1 (CHNO₂), 130.2 (C), 128.4 (CH_{Ar}), 114.4 (CH_{Ar}), 55.4 (OCH₃), 18.3 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

(*E*)-2-(4-Chlorophenyl)-1-nitro-1-propene (2d)

¹H NMR (250 MHz, CDCl₃): δ = 7.45–7.36 (m, 4H, H_{Ar}), 7.28 (q, *J* = 1.4 Hz, 1H, CHNO₂), 2.62 (d, J = 1.4 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.5$ (C), 136.6 (C), 136.4 (CH), 129.3 (2C, CH), 129.0 (C), 128.1 (2C, CH), 18.5 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

(*E*)-2-(4-Fluorophenyl)-1-nitro-1-propene (2e)

¹H NMR (250 MHz, CDCl₃): δ = 7.49–7.41 (m, 2H, H_{Ar}), 7.29–7.26 (m, 1H, CHNO₂), 7.16– 7.07 (m, 2H, H_{Ar}), 2.62 (d, J = 1.53, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.0$ $(d, J_{CF} = 251.6 \text{ Hz}, \text{CF}), 148.7 (CCH_3), 136.2 (CHNO_2), 134.3 (d, J_{CF} = 3.5 \text{ Hz}, \text{C}, \text{C}_{Ar}), 128.8$ (d, 2C, J_{CF} = 8.7 Hz, CH_{Ar}), 116.2 (d, 2C, J_{CF} = 21.8 Hz, CH_{Ar}), 18.6 (CH₃) ppm.

Analytical data is in agreement with the literature.¹⁰

(*E*)-2-(4-Cyanophenyl)-1-nitro-1-propene (**2f**)

¹H NMR (250 MHz, CDCl₃): δ = 7.81–7.72 (m, 2H, H_{Ar}), 7.59–7.52 (m, 2H, H_{Ar}), 7.29–7.27 (m, 1H, CHNO₂), 2.63 (d, *J* = 1.53, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 147.3 (C), 142.7 (C, CCH₃), 137.6 (CH, CHNO₂), 132.7 (2C, CH_{Ar}), 127.5 (2C, CH_{Ar}), 117.9 (CN), 113.9 (CCN), 18.3 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

(*E*)-2-Phenyl-1-nitro-1-butene (**2g**)

¹H NMR (250 MHz, CDCl₃): δ = 7.48–7.38 (m, 5H, H_{Ar}), 7.19 (s, 1H, CHNO₂), 3.09 (q, *J* = 7.6 Hz, 2H, CH₂), 1.16 (t, *J* = 7.5 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.6 (CHNO₂), 136.9 (C), 135.6 (C), 130.1 (CH), 128.9 (2C, CH), 127.0 (2C, CH), 24.6 (CH₂), 12.6 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰

(*E*)-3,3-Dimethyl-2-phenyl-1-nitro-1-butene (**2h**)

¹H NMR (250 MHz, CDCl₃): δ = 7.41–7.32 (m, 3H, H_{Ar}), 7.13–7.11 (m, 1H, CHNO₂), 7.09–7.02 (m, 2H, H_{Ar}), 1.18 (s, 9H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 159.2 (C), 135.4 (CH_{Ar}), 134.7 (C_{Ar}), 127.8 (2C, CH_{Ar}), 127.7 (CHNO₂), 127.4 (2C, CH_{Ar}), 36.6 (CCH₃), 28.6 (3C, CH₃) ppm.

(*E*)-2-cyclohexyl-1-nitro-1-butene (2i)

¹H NMR (250 MHz, CDCl₃): $\delta = 6.96-6.93$ (m, 1H, CHNO₂), 2.21 (d, J = 1.2 Hz, 3H, CH₃), 1.89–1.65 (m, 5H, Cy), 1.60–1.55 (m, 1H, Cy), 1.35–1.17 (m, 5H, Cy) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 157.7$ (C, CCH₃), 134.8 (CH, CHNO₂), 46.5 (CH_{Cy}), 30.9 (2C, CH₂), 26.1 (2C, CH₂), 25.8 (CH₂), 17.2 (CH₃) ppm. Preparation of nitroacrylates

Nitroacrylates **5a and 5b** were obtained following procedure F and G. Nitroacrylate **5c** was obtained as indicated individually below.

General procedure F:

Preparation of the β -nitro- α -hydroxyesters:¹¹

To a solution of the β -ketoester (20 mmol) in nitromethane (80 mL) was added triethylamine (4.0 mmol). The solution was stirred for 48 h. The volatiles were removed by rotary evaporation and the residue was purified by flash chromatography to give the β -nitro- α -hydroxyesters.

General procedure G:

 $HO = O R = Ac_2O O R O R$

Preparation of the β -nitroacrylic ester:¹²

To a stirred solution of the respective β -nitro- α -hydroxyester (2.0 mmol) in dry DMSO (7 mL) was added Ac₂O (6.0 mmol). The reaction was stirred for 48 h. The mixture was poured into water. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The organic layer was washed with sat. NaHCO₃, dried over MgSO₄ and the volatiles were removed by rotary evaporation. The crude product was purified by flash chromatography to afford the β -nitroacrylic esters.

¹¹ Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 4875-4881.

¹² Martin, J. A.; Cheng, X.; List, B. J. Am. Chem. Soc. 2008, 130, 13862.

Preparation of (*Z*)-methyl 3-nitro-2-phenylacrylate (**5**a):

Starting from methylbenzoylformate, the corresponding β -nitro- α -hydroxyester was synthesized according to general procedure A. The product was purified by flash chromatography (cyclohexane/ethylacetate 90/10) (65% yield). The β -nitro- α -hydroxyester was converted into the β -nitroacrylic ester following the general procedure B. The product was purified by flash chromatography (cyclohexane/ethylacetate 95/5) (66% yield).

¹H NMR (250 MHz, CDCl₃): δ = 7.52–7.46 (m, 5H, H_{Ar}), 7.36 (s, 1H, CHNO₂), 3.99 (s, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 165.3 (C=O), 143.1 (C), 134.6 (CH), 132.2 (CH), 129.5 (2C, CH), 129.3 (C), 127.5 (2C, CH), 53.4 (CH₃) ppm. Analytical data is in agreement with the literature.¹²

Preparation of (*Z*)-ethyl 3-nitro-2-phenylacrylate (**5b**):

Starting from ethylbenzoylformate (18.3 mmol) the corresponding β -nitro- α -hydroxyester was synthesized according to general procedure A. The product was purified by flash chromatography (cyclohexane/ethylacetate 90/10) (80% yield). The β -nitro- α -hydroxyester was converted into the β -nitroacrylic ester following thegeneral procedure B. The product was purified by flash chromatography (pentane/ether 98/2) (40% yield).

¹H NMR (250 MHz, CDCl₃): δ = 7.54–7.47 (m, 5H, H_{Ar}), 7.36 (s, 1H, CHNO₂), 4.85 (q, *J* = 7.2 Hz, 2H, CH₂), 1.40 (t, *J* = 7.2 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 164.7 (C=O), 143.3 (C), 134.4 (CH), 132.1 (CH), 129.5 (2C, CH), 128.4 (C), 127.5 (2C, CH), 62.8 (CH₂), 13.9 (CH₃) ppm. Analytical data is in agreement with the literature. ¹²

Preparation of (Z)-Isopropyl 3-nitro-2-phenylacrylate (5c):^{13,14}

To a solution of 2-oxo-2-phenylacetic acid (25.6 mmol) in benzene (60 mL) at 0 °C was added DMAP (2.68 mmol), DCC (25.6 mmol) and isopropanol (50 mmol). The solution was stirred for 12 h at r.t. and then filtered through a plug of celite. The filtrate was concentrated and the obtained isopropyl 2-oxo-2-phenylacetate was directly used according to procedure A. The product was purified by flash chromatography (cyclohexane/ethylacetate 95/5) (80% yield). To a solution of the β -nitro- α -hydroxyester (20.0 mmol) in CH₂Cl₂ (100 mL) was added MeSO₂Cl (60.0 mmol) and triethylamine (60.0 mmol) respectively. The solution was stirred for 24 h and the poured into ice water. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layer was washed with a 15% NaOH solution, water and brine and dried over MgSO₄. After filtration the volatiles were removed by rotary evaporation and the crude product was purified by flash chromatography (pentane/ether 98/2) to afford the title compound in 82% yield. Analytical data is in agreement with the literature.¹²

¹H NMR (250 MHz, CDCl₃): δ = 7.53–7.46 (m, 5H, H_{Ar}), 7.34 (s, 1H, CHNO₂), 5.38 (sept., *J* = 6.3 Hz, 1H, C<u>H(</u>CH₃)₂) 1.39 (d, *J* = 6.3 Hz, 6H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 164.2 (C=O), 143.4 (C), 134.2 (CH), 132.0 (CH), 129.7 (C), 129.5 (2C, CH), 127.4 (2C, CH), 70.9 (CH), 21.5 (2C, CH₃) ppm. Analytical data is in agreement with the literature.¹²

¹³ Hu, S.; Neckers, D. C. J. Org. Chem. **1996**, 61, 6407-6415.

¹⁴ Jayakanthan, K.; Madhusudanan, K. P.; Vankar, Y. D. *Tetrahedron* **2004**, *60*, 397-403.

2.3. Asymmetric transferhydrogenation of nitroolefins and nitroacrylates

The asymmetric transferhydrogenation was performed following a modified procedure published by List et al..¹⁵

A solution of the respective nitroolefin or nitroacrylate (0.3 mmol) in 1,2-dichloroethane (0.3 mL) was cooled to 0 °C and the compound (0.06 mmol) and *t*-Bu-Hantzschester (**3**) (0.36 mmol) were added respectively. The reaction was stirred at 0 °C for 3 d. The mixture was diluted with pentane/Et₂O (99/1 v/v, 0.7 mL) and was directly subjected to column chromatography (pentane/Et₂O 99/1 - 98/2 v/v for nitroalkanes and 95/5 v/v for esters). Yields were obtained based on isolated material, except for compound **4i** (2-(Cyclohexyl)-1-nitropropane) (yield determined by GC analysis, using dodecane as internal standard).

The mechanistic studies of the asymmetric transferhydrogenation were performed according to the following procedures.

A solution of the (*E*)-2-phenyl-1-nitro-1-propene (**2a**) (0.3 mmol) in 1,2-dichloroethane (0.3 mL) was cooled to 0 °C and the catalyst **8** (0.06 mmol) and Hantzschester (**9**) (0.36 mmol) were added respectively. The reaction was stirred at 0 °C for 3 d. The mixture was diluted with pentane/Et₂O (99/1 v/v, 0.7 mL) and was directly subjected to column chromatography (pentane/Et₂O 99/1 - 98/2 v/v). Yields were determined by GC analysis, using dodecane as internal standard.

¹⁵ Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

A solution of the (*E*)-2-phenyl-1-nitro-1-propene (**2a**) (0.3 mmol) in 1,2-dichloroethane (0.3 mL) was cooled to 0 °C and the catalyst **8** (0.06 mmol), Hantzschester (**9**) (0.36 mmol) and Ethanol (0.3 mmol) were added respectively. The reaction was stirred at 0 °C for 3 d. The mixture was diluted with pentane/Et₂O (99/1 v/v, 0.7 mL) and was directly subjected to column chromatography (pentane/Et₂O 99/1 - 98/2 v/v). Yields were determined by GC analysis, using dodecane as internal standard.

Racemic material was obtained by NaBH₄ reduction in EtOH (3 h) at 0 $^{\circ}$ C.¹⁶

The absolute configuration was determined by comparison of analytical data available for substrate **4a** in the literature (HPLC spectra and optical rotation).¹⁷ The absolute configuration of other substrates was determined in analogy.

(*R*)-2-(4-Methylphenyl)-1-nitropropane (4a)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.45-7.23$ (m, 5H, H_{Ar}), 4.63–4.46 (m, 2H, CH₂NO₂), 3.75– 3.59 (m, 1H, CH), 1.42 (d, J = 7.0 Hz, 3H, CH₃) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 140.8 (C), 129.0 (2C, CH_{Ar}), 127.6 (CH_{Ar}), 126.9 (2C, CH_{Ar}), 81.9 (CH₂), 38.6 (CH), 18.7 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 99/1, 7 °C, 0.7 mL/min). Major enantiomer: t_R = 13.40 min, minor enantiomer: t_R = 14.30 min (70% *ee*).

(S)-2-(4-Methylphenyl)-1-nitropropane (*ent*-4a)

The spectroscopic data is in accordance with the data for **4a**. Minor enantiomer: $t_R = 13.40$ min, major enantiomer: $t_R = 14.30 \text{ min} (70\% \text{ ee})$.

¹⁶ Kadin, S. B. J. Org. Chem. 1966, 31, 620.

¹⁷ Fryszkowska, A.; Fisher, K.; Gardiner, J. M.; Stephens, G. M. J. Org. Chem. 2008, 73,4295.

(*R*)-2-(4-Methylphenyl)-1-nitropropane (4b)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.19-7.09$ (m, 4H, H_{Ar}), 4.59–4.41 (m, 2H, CH₂), 3.69–3.52 (m, 1H, CH), 2.34 (s, 3H, Ar-CH₃), 1.37 (d, J = 7.3 Hz, 3H, CHCH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 137.8$ (C, CCH), 137.2 (C, CCH₃), 129.6 (2C, CH_{Ar}), 126.7 (2C, CH_{Ar}), 81.9 (CH₂), 38.2 (CH), 21.0 (Ar-CH₃), 18.7 (CHCH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 99/1, 10 °C, 0.7 mL/min). Major enantiomer: t_R = 11.31 min, minor enantiomer: t_R = 11.98 min (50% *ee*).

(*R*)-2-(4-Methoxyphenyl)-1-nitropropane (4c)

¹H NMR (250 MHz, CDCl₃): δ = 7.18–7.11 (m, 2H, H_{Ar}), 6.92–6.83 (m, 2H, H_{Ar}), 4.58–4.39 (m, 2H, CH₂), 3.79 (s, 3 H, OCH₃), 3.66–3.52 (m, 1H, CH), 1.36 (d, *J* = 7.0 Hz, 3 H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 158.9 (C_{Ar}), 132.8 (C_{Ar}), 127.9 (CH_{Ar}), 114.3 (CH_{Ar}), 82.1 (CH₂NO₂), 55.3 (OCH₃), 37.4 (CH), 18.8 (CH₃) ppm.

Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak OD column (heptanes/isopropanol 90/10, 7 °C, 0.7 mL/min). Minor enantiomer: $t_R = 10.35$ min, major enantiomer: $t_R = 17.47$ min (62% *ee*).

(*R*)-2-(4-Chlorophenyl)-1-nitropropane (4d)

¹H NMR (250 MHz, CDCl₃): δ = 7.33–7.28 (m, 2H, H_{Ar}), 7.19–7.13 (m, 2H, H_{Ar}), 4.58–4.44 (m, 2H, CH₂NO₂), 3.71–3.55 (m, 1H, CH), 1.36 (d, *J* = 6.7 Hz, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): δ = 139.3 (C), 133.4 (C), 129.1 (2 C, CH), 128.3 (2 C, CH), 81.6 (CH₂), 38.1

(CH), 18.7 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IB column (heptanes/isopropanol 99/1, 10 °C, 0.4 mL/min). Major enantiomer: $t_R = 34.67$ min, minor enantiomer: $t_R = 29.02$ min (67% *ee*).

(*R*)-2-(4-Fluorophenyl)-1-nitropropane (4e)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.27-7.14$ (m, 2H, H_{Ar}), 7.08–6.95 (m, 2H, H_{Ar}), 4.56–4.14 (m, 2H, CH₂), 3.70–3.54 (m, 1H, CH), 1.36 (d, J = 7.0, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 162.0$ (d, $J_{CF} = 245.9$ Hz, CF), 136.5 (d, $J_{CF} = 3.1$ Hz, C_{Ar}), 128.4 (d, 2C, $J_{CF} = 7.9$ Hz, CH_{Ar}), 115.8 (d, 2C, $J_{CF} = 21.4$ Hz, CH_{Ar}), 81.8 (CH₂), 37.9 (CCH₃), 18.8 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IB column (heptanes/isopropanol 99/1, 10 °C, 0.4 mL/min). Major enantiomer: t_R = 28.65 min, minor enantiomer: t_R = 27.59 min (63% *ee*).

(R)-2-(4-Cyanophenyl)-1-nitropropane (4f)

¹H NMR (250 MHz, CDCl₃): δ 7.68–7.61 (m, 2H, H_{Ar}), 7.39–7.32 (m, 2H, H_{Ar}), 4.62–4.47 (m, 2H, CH₂NO₂), 3.79–3.62 (m, 1H, CH), 1.40 (d, *J* = 7.3, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 146.2 (C), 132.8 (2C, CH_{Ar}), 127.8 (2C, CH_{Ar}), 115.3 (CN), 113.2 (CCN), 80.9 (CH₂), 38.6 (CH), 18.6 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 90/10, 15 °C, 0.7 mL/min). Major enantiomer: t_R = 46.24 min, minor enantiomer: t_R = 59.08 min (56% *ee*).

(*R*)-1-nitro-2-phenyl-butane (**4g**)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.39-7.25$ (m, 3H, H_{Ar}), 7.23–7.16 (m, 2H, H_{Ar}), 4.61–4.53 (m, 2H, CH₂NO₂), 3.44–3.30 (m, 1H, CH), 1.83–1.63 (m, 1H, CH₂CH₃), 1.83–1.63 (m, 1H, CH₂CH₃), 0.85 (t, *J* = 7.2 Hz, 1H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 139.2$ (C), 128.8 (2C, CH), 127.5 (3C, CH), 80.7 (CH₂NO₂), 46.0 (CHCH₂), 26.1 (CH₂), 11.5 (CH₃) ppm. Analytical data is in agreement with the literature.¹⁰ Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak OD column (heptanes/isopropanol 99/1, 10 °C, 0.7 mL/min). Major enantiomer: t_R = 26.58 min, minor enantiomer: t_R = 18.74 min (68% *ee*).

(*R*)-1,1-Dimethyl-2-(4-methylphenyl)-1-nitrobutane (4h)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.26-7.17$ (m, 3H, H_{Ar}), 7.14–7.08 (m, 2H, H_{Ar}), 4.80–4.68 (m, 2H, CH₂NO₂), 3.30–3.25 (m, 1H, CH), 0.87 (s, 9H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.5$ (C), 129.0 (CH_{Ar}), 128.1 (2C, CH_{Ar}), 127.4 (2C, CH_{Ar}), 77.1 (CH₂NO₂), 54.3 (CH), 33.6 (CCH₃), 28.0 (3C, CH₃) ppm. Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IB column (heptanes/isopropanol 99/1, 5 °C, 0.3 mL/min). Major enantiomer: t_R = 25.38 min, minor enantiomer: t_R = 26.55 min (87% *ee*).

(R)-2-(Cyclohexyl)-1-nitropropane (4i)

¹H NMR (250 MHz, CDCl₃): $\delta = 4.46-4.37$ (m, 1H, CH₂NO₂), 4.23-4.10 (m, 1H, CH₂NO₂), 2.31-2.12 (m, 1H, CHCH₃), 1.81-1.59 (m, 5H, Cy), 1.32-1.00 (m, 6, Cy), 0.96 (d, J = 7.0 Hz,

3H, CH₃), ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 80.2$ (CH, CHNO₂), 40.4 (CH, Cy), 37.7 (CH₂, Cy), 30.2 (CH₂, Cy), 28.7 (CH₂, Cy), 26.9 (CH, CHCH₃), 26.3 (CH₂, Cy), 26.2 (CH₂, Cy), 14.0 (CH₃) ppm. Yield determined by GC analysis using dodecane as internal standard (Zebron ZB-5MS column, 40 °C to 280 °C, ramp: 20 °C/min, R_t(dodecane) = 11.4, R_t(product) = 12.5 min). Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 99/1, 10 °C, 0.7 mL/min). Major enantiomer: t_R = 10.17 min, minor enantiomer: t_R = 11.15 min (40% *ee*). The unpolarity of the compound made it impossible to obtain a clean sample for HPLC analysis by common chromatographic means. The enantiomers could clearly be determined by comparison of the respective UV spectra and comparison with racemic material.

(R)-Methyl 3-nitro-2-phenylpropanoate (6a)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.38-7.24$ (m, 5H, H_{Ar}), 5.10 (dd, J = 14.5 Hz, J = 9.8 Hz, 1H, CH₂NO₂), 4.55 (dd, J = 14.5 Hz, J = 5.1 Hz, 1H, CH₂NO₂), 4.44 (dd, J = 9.8 Hz, J = 5.1 Hz, 1H, CH) 3.73 (s, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 170.4$ (C=O), 132.5 (C), 128.7 (2C, CH), 128.0 (CH), 127.1 (2C, CH), 75.0 (CH₂), 52.2 (CH), 47.9 (CH₃) ppm. Determination of the enantiomeric excess ee was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 99/1, 10 °C, 0.7 mL/min). Major enantiomer: t_R = 62.97 min, minor enantiomer: t_R = 36.16 min (60% ee).

(*R*)-Ethyl 3-nitro-2-phenylpropanoate (**6b**)

¹H NMR (250 MHz, CDCl₃): δ = 7.38–7.25 (m, 5H, H_{Ar}), 5.10 (dd, *J* = 14.6 Hz, *J* = 10.0 Hz, 1H, CH₂NO₂), 4.54 (dd, *J* = 14.6 Hz, *J* = 5.1 Hz, 1H, CH₂NO₂), 4.42 (dd, *J* = 10.0 Hz, *J* = 5.1 Hz, 1H, CH), 4.2 (m, 2H, CH₂CH₃), 1.22 (t, *J* =7.1 Hz, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): δ = 170.5 (C=O), 133.3 (C), 129.3 (2C, CH), 128.6 (CH), 127.9 (2C, CH), 75.8 (CH₂), 61.9 (CH), 48.8 (CH₂), 13.9 (CH₃) ppm. Determination of the enantiomeric excess *ee*

was accomplished by HPLC analysis using a Chiralpak IB column (heptanes/isopropanol 99/1, 10 °C, 0.5 mL/min). Major enantiomer: $t_R = 59.24$ min, minor enantiomer: $t_R = 35.04$ min (58% ee).

(*R*)-Isopropyl 3-nitro-2-phenylpropanoate (6c)

¹H NMR (250 MHz, CDCl₃): $\delta = 7.36-7.20$ (m, 5H, H_{Ar}), 5.12–4.92 (m, 2H, CH(CH₃)₂), CH₂NO₂), 4.50 (dd, *J* = 14.6 Hz, *J* = 5.1 Hz, 1H, CH₂NO₂), 4.37 (dd, *J* = 10.1 Hz, *J* = 5.1 Hz, 1H, CHCO), 1.25 (d, J = 6.3 Hz, 3H, CH₃), 1.11 (d, J = 6.2 Hz, 3H, CH₃) ppm; ¹³C NMR (63 MHz, CDCl₃): $\delta = 170.2$ (C=O), 133.6 (C), 129.5 (2C, CH), 128.7 (CH), 128.0 (2C, CH), 76.0 (CH₂), 69.8 (CH), 49.2 (CH), 21.8 (CH₃), 21.5 (CH₃) ppm. Determination of the enantiomeric excess ee was accomplished by HPLC analysis using a Chiralpak IC column (heptanes/isopropanol 99/1, 10 °C, 0.7 mL/min). Major enantiomer: $t_R = 34.34$ min, minor enantiomer: $t_R = 19.95 \min(54\% ee)$.

Screening of solvents

entry	solvent	yield (%)	ee (%)
1	Et ₂ O	54,8	77,4
2	THF	96,2	52,9
3	benzene	56,7	63,5
4	EtOAc	82,7	51,4
5	hexane	79,4	55,5
6	toluene	80	57.3
7	1,2-DCE	91,2	67,0
8	CH ₂ Cl ₂	63	61.9
9	DMSO/DCE	89	0
	(1:1)		
Screening of conditions

NO ₂ + OtBu H		O H OtBu	1m 1, tim	, 20 mol% 1-DCE ne, temp	NO ₂	
entry	time	solvent (conc)	temp	yield (%)	ee (%)	
1	3d	DCE (0,1M)	0	65,9	58,4	
2	3d	DCE (2M)	0	96,5	59,5	
3	6d	DCE (0.5 M)	-24	40,3	56,1	
4	8d	DCE (1M)	-24	68,0	60,4	
5	2d	DCE (1M)	20	99	43	

NMR spectra of catalyst **1p** with different amounts of (*E*)-2-phenyl-1-nitro-1-propene (**2a**).

3. Spectra

S38

1c

1g 10.356 8.742 8.708 8.291 7.210 7.182 5.152 5.136 5.136 5.119 2.500 2.493 7.726 5.874 5.857 5.857 5.690 5.672 5.658 5.641 3.363 JS_393 JL020S.207 250 MHz, CDCI3 CF3 S Í .OH F₃C N H 'N H Ē + <u>1.02</u> J 1.10 _ - 0.92 __ \mathbf{L} - 0.98 10.30 1.0 5.0 0.0 10.0 ppm (t1) 142.079 141.751 133.868 130.868 130.868 130.346 129.834 129.837 128.597 128.597 128.597 128.597 128.593 128.593 128.593 128.593 122.5883 122.5883 122.5883 122.5883 122.598 122.598 122.5983 122.5985 122.5985 122.5985 122.5985 122.5985 122.5985 122.5985 122.5985 125 179.511 62.768 40.097 39.764 39.430 39.096 38.762 74.039 JS 393 jl021.S.207 63 MHz, DMSO-d6 ĊF₃ S II .OH F₃C 'N' H 'N H Ē

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

S53

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

3.2. HPLC data

4a

rac-4a (Varian HPLC)

ent-4a (Varian HPLC)

4c

4d

4e

4f

4g

4i

6a

6b

6c

Current Chromatogram(s)

5a

5b

NMR spectra of hydrogenated compounds

S95

