Supporting information for the manuscript:

Fullerenolates: Metallated Polyhydroxylated Fullerenes with Potent Antiamyloid Activity

By A.G. Bobylev¹, A. B. Kornev², L. G. Bobyleva¹, M. D. Shpagina¹, I. S. Fadeeva¹, R. S. Fadeev¹, D. G. Deryabin³, J. Balzarini⁴, P. A. Troshin^{2*}, Z. A. Podlubnaya^{1,5}

¹Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia

²Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

³Orenburg State University, Prospect Pobedy 13, GSP, Orenburg, 460018, Russia

⁴ Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
⁵Pushchino State University, Pushchino, Moscow region, 142290 Russia

CONTENTS

	Page
Figure S1. Electron micrograph of the amyloid fibrils of $A\beta(1-42)$ -peptide formed	
in a solution containing 0.03 M KCl and 10 mM imidazole (pH 7.0) and incubated at	~
37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate. Scale	2
bar is 100 nm.	
Figure S2. Electron micrograph of the NaFL dispersion in a solution containing 0.03	
M KCl and 10 mM imidazole (pH 7.0) and incubated at 37°C for 24 h. Negative	3
staining with 2% aqueous solution of uranyl acetate. Scale bar is 100 nm.	
Figure S3. Electron micrograph of the 1:1 (w/w) mixture of $A\beta(1-42)$ -peptide and	
NaFL co-incubated in a solution containing 0.03 M KCl and 10 mM imidazole (pH	4
.0) at 37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate.	
Scale bar is 100 nm.	
Figure S4. Electron micrograph of the 1:1 (w/w) mixture of the preformed fibrils of	5
A β (1-42)-peptide and NaFL co-incubated in a solution containing 0.03 M KCl and	
10 mM imidazole (pH 7.0) at 37°C for 24 h. Negative staining with 2% aqueous	
solution of uranyl acetate. Scale bar is 100 nm.	
Figure S5, Figure S6 – The fluoresce spectra of different systems	6-7
Figure S7. The FTIR spectrum of NaFL (KBr pellet).	8

Figure S1. Electron micrograph of the amyloid fibrils of $A\beta(1-42)$ -peptide formed in a solution containing 0.03 M KCl and 10 mM imidazole (pH 7.0) and incubated at 37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate. Scale bar is 100 nm.

Figure S2. Electron micrograph of the NaFL dispersion in a solution containing 0.03 M KCl and 10 mM imidazole (pH 7.0) and incubated at 37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate. Scale bar is 100 nm.

Figure S3. Electron micrograph of the 1:1 (w/w) mixture of $A\beta(1-42)$ -peptide and NaFL co-incubated in a solution containing 0.03 M KCl and 10 mM imidazole (pH 7.0) at 37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate. Scale bar is 100 nm.

Figure S4. Electron micrograph of the 1:1 (w/w) mixture of the preformed fibrils of $A\beta(1-42)$ -peptide and NaFL co-incubated in a solution containing 0.03 M KCl and 10 mM imidazole (pH 7.0) at 37°C for 24 h. Negative staining with 2% aqueous solution of uranyl acetate. Scale bar is 100 nm.

Figure S5. The fluorescence spectra of:

- I. the reference solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the absence of thioflavin T;
- II. the reference solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the presence of thioflavin T;
- III. A β (1-42)-peptide fibrils in solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the presence of thioflavin T;
- IV. incubated 1:1 mixture of A β (1-42)-peptide and NaFL in solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the presence of thioflavin T;
- V. incubated 1:1 mixture of the preformed fibrils of $A\beta(1-42)$ -peptide and NaFL in solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the presence of thioflavin T;
- VI. NaFL in solution containing 30 mM KCl, 10 mM imidazole, pH 7.0 in the presence of thioflavin T;

Figure S6. The fluorescence spectra of:

I - Bidistilled water

IIA and IIB (two independent experiments) – Thioflavine T in bidistilled water IIIA and IIIB (two independent experiments) – Thioflavine T + NaFL in bidistilled water

Figure S7. The FTIR spectrum of NaFL (KBr pellet).