Supporting Information for

Oxidative Aromatic C-N Bond Formation: Convenient Synthesis of *N*-Aminoindole-3-carbonitriles via FeBr₃-Mediated Intramolecular Cyclization

Zisheng Zheng, Lina Tang, Yanfeng Fan, Xiuxiang Qi, Yunfei Du* and Daisy Zhang-Negrerie*

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China E-mail: <u>duyunfeier@tju.edu.cn</u>, <u>daisy_negrerie@tju.edu.cn</u> Fax: +86-22-27404031 Tel: +86-22-27404031

Supplementary Material

		Page
Ι	¹ H and ¹³ C NMR spectra of the Substrates 1	S2-S20
II	¹ H and ¹³ C NMR spectra of <i>N</i> -aminoindole-3-carbonitriles 2	S21-S39
III	¹ H and ¹³ C NMR spectra of 5-aminopyrazole compounds 4	S40-S42
IV	X-ray Structure and Data of Product 2a	S43-S55

S3

S6

S24

S30

X-ray structure and data of 2a

Table 1. Crystal data and structure refinement for **2a**.

The crystal of **2a** has been depostited in CCDC with number 772745.

Identification code	2a	
Empirical formula	$C_{12}H_{13}N_3$	
Formula weight	199.25	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a = 8.8268(18) A b = 8.9764(18) A c = 16.501(3) A	alpha = 99.27(3) deg. beta = 96.72(3) deg. gamma = 118.09(3) deg.
Volume Z, Calculated density	1110.1(4) A^3 4, 1.192 Mg/m^3	
Absorption coefficient	0.074 mm^-1	
F(000)	424.0	
Crystal size	0.30 x 0.27 x 0.21	mm

Theta range for data collection	2.99 to 25.20 deg.
Limiting indices	-10<=h<=10, -10<=k<=10, -19<=l<=19
Reflections collected / unique	10965/3982 [R(int) = 0.0291]
Completeness to theta $= 25.20$	99.7 %
Absorption correction	Multi-scan
Max. and min. transmission	0.9847 and 0.9782
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3982 / 0 / 277
Goodness-of-fit on F^2	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.1461
R indices (all data)	R1 = 0.1123, wR2 = 0.2100
Largest diff. peak and hole	0.22 and -0.20 e.A^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 2a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	V	Z	U(eq)
C(1)	1519(3)	-803(4)	939.2(18)	660(7)
C(2)	560(4)	-2202(4)	1288(2)	778(9)
C(3)	37(4)	-1861(4)	2018(2)	808(9)
C(4)	433(4)	-189(4)	2408(2)	771(8)
C(5)	1373(4)	1203(4)	2078(18)	711(8)
C(6)	1914(3)	879(4)	1342(18)	635(7)
C(7)	3015(3)	1074(4)	168(18)	664(7)
C(8)	2236(4)	-640(4)	200(18)	681(7)
C(9)	2163(4)	-1991(4)	-417(2)	796(9)
C(10)	2355(4)	4390(4)	984(2)	848(9)
C(11)	5031(4)	4657(4)	1800(2)	820(9)
C(12)	3881(4)	1916(4)	-479(2)	857(9)
C(13)	11012(4)	3684(4)	4366(17)	659(7)
C(14)	12663(4)	4905(4)	4271(2)	796(9)
C(15)	12759(5)	5705(4)	3623(2)	889(10)
C(16)	11229(5)	5282(4)	3063(2)	884(10)
C(17)	9578(5)	4037(4)	3115	(19)
C(18)	9496(4)	3248(4)	3777(17)	653(7)
C(19)	8629(4)	1649(4)	4744(17)	653(7)
C(20)	10431(4)	2676(4)	4970(17)	656(7)
C(21)	7397(4)	406(4)	5168(19)	802(9)
C(22)	11500(4)	2739(4)	5698(19)	714(8)
C(31)	6034(5)	-50(5)	2778(2)	1002(11)
C(32)	5509(4)	2178(5)	3562(2)	1022(12)
N(1)	2845(3)	1994(3)	8634(14)	664(6)
N(2)	3642(3)	3815(3)	1036(15)	691(6)
N(3)	2110(4)	-3083(4)	-908(2)	1043(10)
N(4)	8065(3)	1981(3)	4019(14)	680(6)
N(5)	6279(3)	1037(3)	3596(15)	763(7)
N(6)	12393(4)	2807(4)	6286(18)	955(9)

Supplementary Material	(ESI) for Organic & Biomolecular Chemistry
This journal is (c)	The Royal Society of Chemistry 2011

C(1)-C(6)	1.404(4)
C(1)-C(2)	1.404(4)
C(1)-C(8)	1.436(4)
C(2)-C(3)	1.380(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.389(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.376(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.393(4)
C(5)-H(5)	0.9300
C(6)-N(1)	1.390(3)
C(7)-N(1)	1.369(3)
C(7)-C(8)	1.371(4)
C(7)-C(12)	1.484(4)
C(8)-C(9)	1.422(4)
C(9)-N(3)	1.145(4)
C(10)-N(2)	1.452(4)
С(10)-Н(10А)	0.9600
С(10)-Н(10В)	0.9600
С(10)-Н(10С)	0.9600
C(11)-N(2)	1.457(4)
C(11)-H(11A)	0.9600
С(11)-Н(11В)	0.9600
С(11)-Н(11С)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
С(12)-Н(12С)	0.9600
C(13)-C(14)	1.398(4)
C(13)-C(18)	1.404(4)
C(13)-C20)	1.430(4)
C(14)-C(15)	1.369(4)
C(14)-H(14)	0.9300
C(15)-C(16)	1.391(4)
C(15)-H(15)	0.9300
C(16)-C(17)	1.380(4)
С(16)-Н(16)	0.9300
C(17)-C(18)	1.386(4)
С(17)-Н(17)	0.9300
C(18)-N(4)	1.400(3)
C(19)-C(20)	1.374(4)
C(19)-N(4)	1.372(3)

Table 3.	Bond l	lengths	[A]	and	angles	[deg]	for 2a .
----------	--------	---------	-----	-----	--------	-------	-----------------

$\begin{array}{cccccc} C(20)-C(22) & 1.414(4) \\ C(21)-H(21A) & 0.9600 \\ C(21)-H(21B) & 0.9600 \\ C(21)-H(21C) & 0.9600 \\ C(22)-N(6) & 1.150(3) \\ C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(21)-H(21A) & 0.9600 \\ C(21)-H(21B) & 0.9600 \\ C(21)-H(21C) & 0.9600 \\ C(22)-N(6) & 1.150(3) \\ C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(21)-H(21B) & 0.9600 \\ C(21)-H(21C) & 0.9600 \\ C(22)-N(6) & 1.150(3) \\ C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(21)-H(21C) & 0.9600 \\ C(22)-N(6) & 1.150(3) \\ C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(22)-N(6) & 1.150(3) \\ C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(31)-N(5) & 1.459(4) \\ C(31)-H(31A) & 0.9600 \\ C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
C(31)-H(31A)0.9600 $C(31)-H(31B)$ 0.9600 $C(31)-H(31C)$ 0.9600 $C(32)-N(5)$ 1.476(4) $C(32)-H(32A)$ 0.9600 $C(32)-H(32B)$ 0.9600 $C(32)-H(32C)$ 0.9600 $N(1)-N(2)$ 1.403(3) $N(4)-N(5)$ 1.409(3) $C(6)-C(1)-C(2)$ 119.3(3) $C(6)-C(1)-C(8)$ 106.2(3) $C(2)-C(1)-C(8)$ 134.5(3) $C(3)-C(2)-C(1)$ 118.2(3) $C(3)-C(2)-C(1)$ 118.2(3) $C(3)-C(2)-H(2)$ 120.9 $C(1)-C(2)-H(2)$ 120.9 $C(2)-C(3)-C(4)$ 119.1 $C(4)-C(3)-H(3)$ 119.1 $C(4)-C(3)-H(3)$ 119.1 $C(5)-C(4)-C(3)$ 121.0(3)
$\begin{array}{cccc} C(31)-H(31B) & 0.9600 \\ C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(31)-H(31C) & 0.9600 \\ C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(32)-N(5) & 1.476(4) \\ C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{cccc} C(32)-H(32A) & 0.9600 \\ C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{cccc} C(32)-H(32B) & 0.9600 \\ C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{ccccc} C(32)-H(32C) & 0.9600 \\ N(1)-N(2) & 1.403(3) \\ N(4)-N(5) & 1.409(3) \\ C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 106.2(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ccccc} C(6)-C(1)-C(2) & 119.3(3) \\ C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \\ \end{array}$
$\begin{array}{cccc} C(6)-C(1)-C(8) & 106.2(3) \\ C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \end{array}$
$\begin{array}{cccc} C(2)-C(1)-C(8) & 134.5(3) \\ C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \end{array}$
$\begin{array}{cccc} C(3)-C(2)-C(1) & 118.2(3) \\ C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \end{array}$
$\begin{array}{c} C(3)-C(2)-H(2) & 120.9 \\ C(1)-C(2)-H(2) & 120.9 \\ C(2)-C(3)-C(4) & 121.8(3) \\ C(2)-C(3)-H(3) & 119.1 \\ C(4)-C(3)-H(3) & 119.1 \\ C(5)-C(4)-C(3) & 121.0(3) \end{array}$
C(1)-C(2)-H(2)120.9C(2)-C(3)-C(4)121.8(3)C(2)-C(3)-H(3)119.1C(4)-C(3)-H(3)119.1C(5)-C(4)-C(3)121.0(3)
C(2)-C(3)-C(4)121.8(3)C(2)-C(3)-H(3)119.1C(4)-C(3)-H(3)119.1C(5)-C(4)-C(3)121.0(3)
C(2)-C(3)-H(3)119.1C(4)-C(3)-H(3)119.1C(5)-C(4)-C(3)121.0(3)
C(4)-C(3)-H(3) 119.1 C(5)-C(4)-C(3) 121.0(3)
C(5)-C(4)-C(3) 121.0(3)
C(5)-C(4)-H(4) 119.5
C(3)-C(4)-H(4) 119.5
C(4)-C(5)-C(6) 117.8(3)
C(4)-C(5)-H(5) 121.1
C(6)-C(5)-H(5) 121.1
C(5)-C(6)-N(1) 130.9(3)
C(5)-C(6)-C(1) 121.8(3)
N(1)-C(6)-C(1) 107.2(3)
N(1)-C(7)-C(8) 108.0(3)
N(1)-C(7)-C(12) 122.1(3)
C(8)-C(7)-C(12) 130.0(3)
C(7)-C(8)-C(9) 124.2(3)
C(7)-C(8)-C(1) 108.5(3)
C(9)-C(8)-C(1) 127.4(3)
N(3)-C(9)-C(8) 179.5(4)
N(2)-C(10)-H(10A) 109.5
N(2)-C(10)-H(10B) 109.5
H(10A)-C(10)-H(10B) 109.5

N(2)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
N(2)-C(11)-H(11A)	109.5
N(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
N(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(7)-C(12)-H(12A)	109.5
C(7)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(7)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-C(18)	119.4(3)
C(14)-C(13)-C(20)	134.0(3)
C(18)-C(13)-C(20)	106.6(3)
C(15)-C(14)-C(13)	119.2(3)
C(15)-C(14)-H(14)	120.4
C(13)-C(14)-H(14)	120.4
C(14)-C(15)-C(16)	120.1(3)
C(14)-C(15)-H(15)	120.0
C(16)-C(15)-H(15)	120.0
C(17)-C(16)-C(15)	122.7(3)
C(17)-C(16)-H(16)	118.7
C(15)-C(16)-H(16)	118.7
C(16)-C(17)-C(18)	116.7(3)
C(16)-C(17)-H(17)	121.6
C(18)-C(17)-H(17)	121.6
C(17)-C(18)-N(4)	131.4(3)
C(17)-C(18)-C(13)	121.9(3)
N(4)-C(18)-C(13)	106.7(3)
C(20)-C(19)-N(4)	107.5(3)
C(20)-C(19)-C(21)	129.9(3)
N(4)-C(19)-C(21)	122.6(3)
C(19)-C(20)-C(22)	124.6(3)
C(19)-C(20)-C(13)	108.8(3)
C(22)-C(20)-C(13)	126.6(3)
C(19)-C(21)-H(21A)	109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

$\mathbf{U}(21\mathbf{D}) \mathbf{C}(21) \mathbf{U}(21\mathbf{C})$	100 5
H(21B)-C(21)-H(21C)	109.5
N(6)-C(22)-C(20)	178.9(4)
N(5)-C(31)-H(31A)	109.5
N(5)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
N(5)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
N(5)-C(32)-H(32A)	109.5
N(5)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
N(5)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(7)-N(1)-C(6)	110.2(2)
C(7)-N(1)-N(2)	120.8(2)
C(6)-N(1)-N(2)	128.9(2)
N(1)-N(2)-C(10)	112.1(2)
N(1)-N(2)-C(11)	111.6(2)
C(10)-N(2)-C(11)	115.7(2)
C(19)-N(4)-C(18)	110.4(2)
C(19)-N(4)-N(5)	121.1(2)
C(18)-N(4)-N(5)	128.4(2)
N(4)-N(5)-C(31)	111.0(2)
N(4)-N(5)-C(32)	111.8(2)
C(31)-N(5)-C(32)	114.1(3)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
C(1)	59(15)	70(18)	65(18)	18(15)	9(14)	29(14)
C(2)	71(18)	72(19)	86(2)	27(17)	13(17)	32(16)
C(3)	68(18)	89(2)	88(2)	45(19)	22(17)	34(17)
C(4)	71(18)	93(2)	74(2)	34(18)	24(16)	40(18)
C(5)	69(17)	75(19)	67(19)	19(16)	17(15)	34(16)
C(6)	58(15)	68(18)	62(17)	21(14)	15(13)	27(14)
C(7)	58(15)	74(19)	59(18)	15(15)	11(13)	27(15)
C(8)	61(16)	69(18)	63(18)	10(15)	8(14)	27(14)
C(9)	66(18)	82(2)	78(2)	5(18)	8(16)	33(17)
C(10)	76(19)	93(2)	94(2)	36(19)	19(17)	45(18)
C(11)	70(18)	75(19)	81(2)	15(17)	3(16)	26(16)
C(12)	84(2)	105(2)	68(2)	28(18)	25(17)	43(19)
C(13)	71(18)	71(18)	57(17)	10(14)	12(14)	38(15)
C(14)	75(2)	83(2)	76(2)	15(17)	17(16)	37(17)
C(15)	92(2)	86(2)	87(2)	25(19)	32(2)	40(19)
C(16)	115(3)	92(2)	79(2)	37(19)	38(2)	60(2)
C(17)	94(2)	92(2)	66(2)	26(17)	23(17)	55(2)
C(18)	70(17)	71(17)	59(17)	15(14)	15(14)	38(15)
C(19)	73(18)	77(18)	53(16)	16(14)	12(14)	44(16)
C(20)	68(17)	74(18)	55(16)	11(14)	7(13)	38(15)
C(21)	81(2)	92(2)	74(2)	30(18)	24(17)	44(18)
C(22)	70(18)	77(19)	60(18)	11(15)	7(15)	34(16)
C(31)	95(2)	96(2)	80(2)	-4(2)	-1(19)	37(2)
C(32)	88(2)	134(3)	105(3)	30(2)	12(2)	73(2)
N(1)	68(14)	62(14)	63(15)	18(12)	17(12)	26(12)
N(2)	62(13)	60(14)	74(16)	16(12)	9(12)	24(11)
N(3)	95(2)	105(2)	103(2)	-4(19)	15(18)	54(19)
N(4)	65(14)	81(15)	59(14)	15(12)	8(11)	39(13)
N(5)	66(14)	92(18)	67(16)	14(14)	4(12)	40(14)
N(6)	93(19)	113(2)	75(19)	23(16)	3(16)	50(18)

Table 4. Anisotropic displacement parameters (A² x 10³) for **2a**. The anisotropic displacement factor exponent takes the form: $-2 \text{ pi}^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	Х	у	Z	U(eq)
H(2)	284	-3328	1033	930
H(3)	-598	-2775	2257	970
H(4)	57	-7	2899	930
H(5)	1639	2322	2338	850
H(10A)	1661	3963	419	1270
H(10B)	2953	5640	1135	1270
H(10C)	1601	3946	1363	1270
H(11A)	4517	4448	2281	1230
H(11B)	5683	5888	1848	1230
H(11C)	5809	4189	1776	1230
H(12A)	3080	2100	-838	1290
H(12B)	4208	1177	-809	1290
H(12C)	4915	3016	-207	1290
H(14)	13684	5170	4642	960
H(15)	13848	6532	3558	1070
H(16)	11322	5862	2636	1060
H(17)	8571	3742	2724	950
H(21A)	8056	232	5612	1200
H(21B)	6625	-688	4766	1200
H(21C)	6713	869	5399	1200
H(31A)	6607	680	2417	1500
H(31B)	4799	-766	2527	1500
H(31C)	6535	-778	2850	1500
H(32A)	6117	3018	3254	1530
H(32B)	5624	2771	4124	1530
H(32C)	4286	1487	3286	1530

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (A² x 10³) for **2a**.

C(6)-N(1)-N(2)-C(10)	-69.51
C(6)-N(1)-N(2)-C(11)	62.16
C(7)-N(1)-N(2)-C(10)	114.66
C(7)-N(1)-N(2)-C(11)	-113.67
C(6)-C(1)-C(2)-C(3)	0.14
C(8)-C(1)-C(2)-C(3)	-178.20
C(2)-C(1)-C(6)-N(1)	-179.44
C(2)-C(1)-C(6)-C(5)	-0.29
C(8)-C(1)-C(6)-N(1)	-0.67
C(8)-C(1)-C(6)-C(5)	178.47
C(2)-C(1)-C(8)-C(7)	178.21
C(2)-C(1)-C(8)-C(9)	-1.08
C(6)-C(1)-C(8)-C(7)	-0.28
C(6)-C(1)-C(8)-C(9)	-179.58
C(1)-C(2)-C(3)-C(4)	0.08
C(2)-C(3)-C(4)-C(5)	-0.16
C(3)-C(4)-C(5)-C(6)	0.00
C(4)-C(5)-C(6)-N(1)	179.14
C(4)-C(5)-C(6)-C(1)	0.22
C(1)-C(6)-N(1)-N(2)	-174.78
C(1)-C(6)-N(1)-C(7)	-1.41
C(5)-C(6)-N(1)-N(2)	6.19
C(5)-C(6)-N(1)-C(7)	-177.63
C(8)-C(7)-N(1)-N(2)	174.95
C(8)-C(7)-N(1)-C(6)	-1.59
C(12)-C(7)-N(1)-N(2)	-6.32
C(12)-C(7)-N(1)-C(6)	177.13
N(1)-C(7)-C(8)-C(1)	1.14
N(1)-C(7)-C(8)-C(9)	-179.54
C(12)-C(7)-C(8)-C(1)	-177.46
C(12)-C(7)-C(8)-C(9)	1.87
C(6)-C(1)-C(2)-H(2)	-180
C(8)-C(1)-C(2)-H(2)	2
C(1)-C(2)-C(3)-H(3)	-180
H(2)-C(2)-C(3)-C(4)	-180
H(2)-C(2)-C(3)-H(3)	0
C(2)-C(3)-C(4)-H(4)	180
H(3)-C(3)-C(4)-C(5)	180
H(3)-C(3)-C(4)-H(4)	0
C(3)-C(4)-C(5)-H(5)	-180
H(4)-C(4)-C(5)-C(6)	-180

Tał	ole 6.	Torsion a	angles [deg] fo	or 2a .
			· 0 · · L		

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

H(4)-C(4)-C(5)-H(5)	0
H(5)-C(5)-C(6)-N(1)	-1
H(5)-C(5)-C(6)-C(1)	-180
N(1)-C(7)-C(12)-H(12A)	-78
N(1)-C(7)-C(12)-H(12B)	162
N(1)-C(7)-C(12)-H(12C)	42
C(8)-C(7)-C(12)-H(12A)	100
C(8)-C(7)-C(12)-H(12B)	-20
C(8)-C(7)-C(12)-H(12C)	-140
H(10A)-C(10)-N(2)-N(1)	-63
H(10A)-C(10)-N(2)-C(11)	167
H(10B)-C(10)-N(2)-N(1)	177
H(10B)-C(10)-N(2)-C(11)	47
H(10C)-C(10)-N(2)-N(1)	57
H(10C)-C(10)-N(2)-C(11)	-73
H(11A)-C(11)-N(2)-N(1)	-70
H(11A)-C(11)-N(2)-C(10)	60
H(11B)-C(11)-N(2)-N(1)	170
H(11B)-C(11)-N(2)-C(10)	-60
H(11C)-C(11)-N(2)-N(1)	50
H(11C)-C(11)-N(2)-C(10)	180
C(18)-N(4)-N(5)-C(31)	62.80
C(18)-N(4)-N(5)-C(32)	-65.95
C(19)-N(4)-N(5)-C(31)	-113.14
C(19)-N(4)-N(5)-C(32)	118.10
C(18)-C(13)-C(14)-C(15)	2.78
C(20)-C(13)-C(14)-C(15)	-177.23
C(14)-C(13)-C(18)-N(4)	178.54
C(14)-C(13)-C(18)-C(17)	-2.20
C(20)-C(13)-C(18)-N(4)	-1.45
C(20)-C(13)-C(18)-C(17)	177.81
C(14)-C(13)-C(20)-C(19)	-179.06
C(14)-C(13)-C(20)-C(22)	2.64
C(18)-C(13)-C(20)-C(19)	0.93
C(18)-C(13)-C(20)-C(22)	-177.36
C(13)-C(14)-C(15)-C(16)	-0.99
C(14)-C(15)-C(16)-C(17)	-1.54
C(15)-C(16)-C(17)-C(18)	2.12
C(16)-C(17)-C(18)-N(4)	178.82
C(16)-C(17)-C(18)-C(13)	-0.23
C(13)-C(18)-N(4)-N(5)	-174.79
C(13)-C(18)-N(4)-C(19)	1.50
C(17)-C(18)-N(4)-N(5)	6.05
C(17)-C(18)-N(4)-C(19)	-177.66

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

C(20)-C(19)-N(4)-N(5)	175.68
C(20)-C(19)-N(4)-C(18)	-0.92
C(21)-C(19)-N(4)-N(5)	-5.57
C(21)-C(19)-N(4)-C(18)	177.83
N(4)-C(19)-C(20)-C(13)	-0.03
N(4)-C(19)-C(20)-C(22)	178.32
C(21)-C(19)-C(20)-C(13)	-178.65
C(21)-C(19)-C(20)-C(22)	-0.31
C(18)-C(13)-C(14)-H(14)	-177
C(20)-C(13)-C(14)-H(14)	3
C(13)-C(14)-C(15)-H(15)	179
H(14)-C(14)-C(15)-C(16)	179
H(14)-C(14)-C(15)-H(15)	-1
C(14)-C(15)-C(16)-H(16)	178
H(15)-C(15)-C(16)-C(17)	178
H(15)-C(15)-C(16)-H(16)	-2
C(15)-C(16)-C(17)-H(17)	-178
H(16)-C(16)-C(17)-C(18)	-178
H(16)-C(16)-C(17)-H(17)	2
H(17)-C(17)-C(18)-N(4)	-1
H(17)-C(17)-C(18)-C(13)	180
N(4)-C(19)-C(21)-H(21A)	172
N(4)-C(19)-C(21)-H(21B)	52
N(4)-C(19)-C(21)-H(21C)	-68
C(20)-C(19)-C(21)-H(21A)	-10
C(20)-C(19)-C(21)-H(21B)	-130
C(20)-C(19)-C(21)-H(21C)	110
H(31A)-C(31)-N(5)-N(4)	-66
H(31A)-C(31)-N(5)-C(32)	62
H(31B)-C(31)-N(5)-N(4)	174
H(31B)-C(31)-N(5)-C(32)	-58
H(31C)-C(31)-N(5)-N(4)	54
H(31C)-C(31)-N(5)-C(32)	-178
H(32A)-C(32)-N(5)-N(4)	62
H(32A)-C(32)-N(5)-C(31)	-65
H(32B)-C(32)-N(5)-N(4)	-58
H(32B)-C(32)-N(5)-C(31)	175
H(32C)-C(32)-N(5)-N(4)	-178
H(32C)-C(32)-N(5)-C(31)	55

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for **2a** [A and deg.].

D-H...A

d(D-H) d(H...A) d(D...A) <(DHA)