Supplementary Information for:

Convenient, Enantioselective Hydrosilylation of Imines in Protic Media Catalyzed by a Zn-Trianglamine Complex

Jadwiga Gajewy, Jacek Gawronski and Marcin Kwit*

Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland Fax: (+48)-61-829-1505; e-mail: Marcin.Kwit@amu.edu.pl

Supplementary Info:

- 1. Experimental details
- 2. Full version of Table 2.
- 3. **Table A.** Retention times for HPLC separation of enantiomers of ArCH(NHX)R amines using a Chiralpak IA column.
- 4. Table B. References
- 5. Spectral data for imine 6, and for the product of its reduction
- 6. Copies of ¹H NMR, ¹³C NMR and ³¹P NMR spectra and chromatograms of imine **6**, and of the product of its reduction
- Copies of chromatograms of racemic and non-racemic products of hydrosilylations of imines 4-7
- 8. Computational details
- 9. **Table C.** Single-point energies [in Hartree] calculated at the PBE0/def2-TZVPP level for all stationary points found at the PBE/6-311G(d,p) level.
- 10. Scheme A. Energy profile for the reduction of ketimine 4d calculated at the PBE0/def2-TZVPP//PBE0/6-311G(d,p) level.
- 11. Cartesian coordinates for all structures calculated at the COSMO/PBE0/def2-TZVPP//PBE0/6-311G(d,p) level.

Experimental details

NMR spectra were recorded on a Bruker BioSpin 400 (400 MHz) or Varian MR 300 (300 MHz) instruments at 25 °C using CDCl₃, DMSO or D_2O as solvents, purchased from Sigma-Aldrich. Chemical shifts are reported in ppm relative to the TMS or D_2O peaks. Spectral assignments were obtained by analysis of chemical shifts and comparison with literature data (see Table B for details). Mass spectra were recorded on AMD-402 spectrometer.

Imines **4a-7** were prepared according to the literature procedures (see Table B for details). Imine **6** was prepared according to the procedure described by Krzyzanowska and Stec (*Synthesis*, 1978, 521).

Table 2 (full version). Effect of ligand, silane and solvent on the conve	rsion, yield and
enantioselectivity of the [Zn-diamine]-catalyzed hydrosilylation of imine 4d.	

Entry	Ligand	Silane	Solvent	Conversion ^a	Yield ^b	Ee ^a [%]
				[%]	[%]	
1	1	Ph ₂ SiH ₂	Toluene	>99	82	92
2	1	Ph_2SiH_2	THF	98	71	84
3	1	Ph_2SiH_2	Toluene/MeOH ^c	>99	62	92
4	1	(EtO) ₃ SiH	Toluene	90	14	96
5	1	PMHS	Toluene	89	28	99
6	2	Ph_2SiH_2	Toluene	98	82	90
7	2	Ph_2SiH_2	THF	98	70	86
8	2	Ph_2SiH_2	Toluene/MeOH ^c	>99	74	87
9	2	(EtO) ₃ SiH	Toluene	90	16	98
10	2	PMHS	Toluene	94	16	94
11	3	Ph_2SiH_2	Toluene	99	66	>99
12	3	Ph_2SiH_2	THF	95	85	92
13	3	Ph_2SiH_2	CH_2Cl_2	96	64	94
14	3	Ph_2SiH_2	Toluene/MeOH ^c	>99	58	97
15	3	Ph_2SiH_2	МеОН	97	54	>99
16	3	(EtO) ₃ SiH	Toluene	93	6	97
17	3	(EtO) ₃ SiH	Toluene/MeOH ^c	97	52	96

18	3	PMHS	Toluene	90	56	96
19	3	PMHS	Toluene/MeOH ^c	>99	72	96

Reaction conditions: ligand 5 mol%; silane 1.2 eq, room temperature; reaction time 24 h. [a] Determined by HPLC using a CHIRALPAK IA column; [b] Isolated yields, average of two runs; [c] Solvents ratio 4:1 (v/v).

Table A. References

Product	Reference
N [_] PMP	Mariappan Periasamy, Gadthula Srinivas, Pandi Bharathi
	J. Org. Chem., 1999 , 64, 4204
N [_] P(O)Ph ₂	You-Qing Wang, Sheng-Mei Lu, Yong-Gui Zhou
	J. Org. Chem., 2007, 72, 3729
N ^{_P(O)Ph₂}	Yi-Jing Chen, Chinpiao Chen
	Tetrahedron: Asymmetry, 2008, 19, 2201
N-P(O)Ph ₂	Tohru Yamada, Takushi Nagata, Kiyoaki D. Sugi, Kiyotaka
	Yorozu, Taketo Ikeno, Yuhki Ohtsuka, Daichi Miyazaki, Teruaki
	Mukaiyama
	Chem. Eur. J., 2003 , 9, 4485
HN [_] PMP	Yongxiang Chi, Yong-Gui Zhou, Xumu Zhang
	J. Org. Chem., 2003 , 68, 4120
	You-Qing Wang, Sheng-Mei Lu, Yong-Gui Zhou
	J. Org. Chem., 2006 , 71, 7035
HN [_] P(O)Ph ₂	You-Qing Wang, Sheng-Mei Lu, Yong-Gui Zhou
	J. Org. Chem., 2006 , 71, 7035
HN [_] P(O)Ph ₂	You-Qing Wang, Sheng-Mei Lu, Yong-Gui Zhou
	J. Org. Chem., 2006, 71, 7035
HN-P(O)Ph ₂	Bu-Mahn Park, Soungyun Mun, Jaesook Yun
	Adv. Synth. Catal., 2006, 348, 1029

Entry Substrate	Flow	Hexane	2-Propanol	Ethanol	Retention	time [min]
	$[ml min^{-1}]$	[%]	[%]	[%]	Minor	Major
4c	0.500	95	5	0	16.77	15.93
4d	0.550	90	10	0	26.15	30.57
5	0.500	90	0	10	33.53	26.92
6	0.550	98	0	2	107.99	103.16
7	0.550	90	0	10	22.11	20.87
	Substrate 4c 4d 5 6 7	Substrate Flow [ml min ⁻¹] 4c 0.500 4d 0.550 5 0.500 6 0.550 7 0.550	Substrate Flow Hexane [ml min ⁻¹] [%] 4c 0.500 95 4d 0.550 90 5 0.500 90 6 0.550 98 7 0.550 90	SubstrateFlowHexane2-Propanol $[ml min^{-1}]$ $[\%]$ $[\%]$ 4c0.5009554d0.550901050.50090060.55098070.550900	SubstrateFlowHexane2-PropanolEthanol $[ml min^{-1}]$ $[\%]$ $[\%]$ $[\%]$ 4c0.50095504d0.5509010050.5009001060.550980270.55090010	SubstrateFlowHexane2-PropanolEthanolRetention $[ml min^{-1}]$ $[\%]$ $[\%]$ $[\%]$ Minor4c0.500955016.774d0.5509010026.1550.5009001033.5360.5509802107.9970.5509001022.11

Table B. Retention times for HPLC separation of enantiomers of ArCH(NHX)R amines using

 a Chiralpak IA column.

Spectral data for imine 6, and for product of its reduction

found 397.15824.

¹H NMR spectrum of imine 6 measured in CDCl₃

¹H NMR spectrum of imine **6** measured in DMSO

¹³C NMR spectrum of imine 6 measured in DMSO

 ^{31}P NMR spectrum of imine 6 measured in D₂O

¹H NMR spectrum of the product of imine **6** reduction measured in CDCl₃

13 C NMR spectrum of the product of imine **6** reduction measured in CDCl₃

 ^{31}P NMR spectrum of the product of imine **6** reduction measured in D₂O

Chromatogram of imine 6

Chromatogram of the racemic product of imine 6 reduction.

Copies of HPLC chromatograms of racemic and non-racemic product obtained from imines **4d-7** (only the best results are shown).

Computational details:

Preliminary calculations were performed with the use of split valence double- ξ basis set 6-31G(d) and PBE0 density functional. The next step involved re-optimization of all structures with the use enhanced 6-311G(d,p) basis set and above-mentioned PBE0 functional. No symmetry or internal coordinate constrains were applied during optimizations. All reported ground state structures were confirmed as being true minima by the vibrational analysis. Transition state (TS) structures were located with the use of Berny algorithm and were verified by the presence only one imaginary eigenvalue in the Hessian matrix. The identities of all transition states were confirmed by animating the negative eigenvector coordinate with the use of either GaussView or MOLDEN software and by intrinsic reaction coordinate (IRC) calculation. For all stationary points the Gibbs free energies (ΔG) and enthalpies (ΔH) were calculated at 298 K.

Additionally, single-point calculations with the use of PBE0/def2-TZVPP or COSMO/PBE0/def2-TZVPP methods were also performed to get more accurate energies. The same calculations were performed employing the Conductor-like Screening Model (COSMO) of methanol solution, as implemented in Turbomole software.[1]

Results obtained with the use of both methods show the same trend. Relative energies (in kcal mol⁻¹) reported in the main text are referred to computed total energy difference (ΔE) and unless stated otherwise are given relative to the starting materials in each step of reaction. Binding energies (E_b), activation bariers (E_a) and reaction energies (E_r) were calculated based on respective values of total energies whenever possible and defined according to Sakaki et al. work.[2] Binding energy is defined accordingly to these authors [2] as the energy difference between the precursor complex and the sum of the reactants energies, the activation energy is the energy difference between the product and the sum of the reactants, where negative value of E_r indicates that the reaction is exothermic.

In the case of compounds characterizing by multiple conformational minima, the energetic relationships were calculated and discussed here by taking into account the lowest-energy conformers. Unless stated otherwise for all calculated structures and transition states descriptor "a" is related to the formation of the final amine of (S) absolute configuration, whereas "b" is related to the (R) absolute configuration of amine.

All calculations were carried out with the use of Gaussian 03 or Turbomole 6.0 packages.[1,3]

[1] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel *Chem. Phys. Lett.* **1989**, *162*, 165 (see also www.turbomole-gmbh.com for an overview of the TURBOMOLE program).

[2] S. Sakaki, M. Sumimoto, M. Fukuhara, M. Sugimoto, H. Fujimoto, S. Matsuzaki *Organometallics* **2002**, *21*, 3788.

[3] M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.

Structure	E _{tot}	E _{tot} (COSMO)
C1	-2278.21045167256	-2278.2326840268
C2	-2163.73700713041	-2163.7496474570
C3a	-3407.24540015746	-3407.2651609675
C3b	-3407.24549943596	-3407.2648171379
TSa	-3407.22905634912	-3407.2478210310
TSb	-3407.22437230356	-3407.2442749263
4d	-1243.49552961571	-1243.5136517047
product	-1244.70995404206	-1244.7284065218
MeOH	-115.63970298059	-115.6476986850

Table C. Single-point energies [in Hartree] calculated at the PBE0/def2-TZVPP level for all stationary points found at the PBE/6-311G(d,p) level.

Scheme A. Energy profile for the reduction of ketimine **4d** calculated at the PBE0/def2-TZVPP//PBE0/6-311G(d,p) level.

Cartesian coordinates for all structures optimized at the COSMO/PBE0/def2-TZVPP//PBE0/6-311G(d,p) level.

C1

С	0.00000000	0.00000000	0.00000000
С	1.51840056	0.00000000	0.00000000
Н	-0.36782113	1.03289032	0.00000000
Ν	-0.48666957	-0.64460256	1.22737806
Ν	2.01415133	0.74110588	1.17055821
Н	1.88215971	-1.03116716	0.07992436
Н	-0.30774351	-1.65242177	1.15497858
Н	1.94034509	1.74413907	0.96818840
С	-1.91517444	-0.41852412	1.45830707
С	3.40383770	0.41798529	1.50360524
Н	-2.52836081	-0.68709945	0.58975314
Н	-2.05996061	0.63563435	1.70481522
Н	-2.23514498	-1.01489764	2.31523607
Н	4.07132489	0.49077168	0.63656792
Н	3.43710139	-0.59323433	1.91449334
Н	3.75289701	1.10575990	2.27629344

Н	1.90384073 0.41585965 -0.93898954
Н	-0.38557553 -0.49245866 -0.90191564
Zn	0.68429761 0.24357731 2.73211366
Ο	1.51258071 -1.06589729 3.78346666
С	2.19239927 -0.59846935 4.89954256
Н	2.68486728 -1.42308637 5.44429453
Н	2.99524952 0.12838306 4.66144345
С	-0.95948808 1.75466382 4.39701194
Н	1.54061181 -0.09084270 5.63761271
Н	-0.33419034 1.56029184 5.29034565
Ο	-0.23751549 1.80774974 3.21305172
Н	-1.74348457 0.97058951 4.40620293
Н	-1.48284374 2.70706769 4.59282931

C2

С	0.00000000	0.00000000	0.00000000
С	1.52016559	0.00000000	0.00000000
Н	-0.38027397	1.03023667	0.00000000
Ν	-0.48750430	-0.66301366	1.20449474
Ν	2.01421238	0.66154964	1.20877935
Н	1.87321833	-1.03439024	0.05432655
Н	-0.15313223	-1.63064535	1.20498155
Н	1.80526040	1.65339704	1.16516468
С	-1.92985827	-0.60273757	1.36529712
С	3.44470464	0.46903937	1.42760827
Н	-2.47630186	-0.99172514	0.49377450
Н	-2.23954240	0.43323869	1.53104273
Н	-2.22164533	-1.18215539	2.24362600
Н	4.06179696	0.81070091	0.58576850
Н	3.61367310	-0.59699934	1.59486210
Н	3.74450133	1.00930848	2.32862972
Н	1.90563770	0.46067741	-0.92067138
Н	-0.37059282	-0.47609361	-0.92072545

Z	n	0.95305580	-0.31714161	2.82884574
0		1.55838917	-2.02311900	2.28425504
С		2.14708268	-3.00542556	3.05908671
Η		2.33962687	-3.91701234	2.46852689
Η		3.12423804	-2.70300530	3.48501611
Η		0.64509026	0.65926805	3.98592670
Н	1.	52680458 -3	3.32104542	3.92026168

4d

С	1.72518900	-0.03868200	1.02564800
С	3.00674200	-0.00797200	0.26738200
С	2.98950900	0.19077700	-1.11707800
С	4.23971300	-0.17268500	0.90410000
С	4.16793000	0.22239000	-1.84304800
Н	2.02976100	0.32646100	-1.60148500
С	5.42229500	-0.14601500	0.17568300
Н	4.28473600	-0.32815900	1.97560500
С	5.39003200	0.05203600	-1.19826900
Н	4.13795800	0.38273300	-2.91572500
Н	6.37096900	-0.27960800	0.68460400
Н	6.31411800	0.07620100	-1.76647700
С	1.80526200	-0.09737000	2.52578300
Н	2.29089900	-1.03017900	2.83098700
Н	2.41993200	0.72608600	2.90138900
Н	0.81308500	-0.05090400	2.97169300
Ν	0.64138800	-0.01544700	0.34640100
Р	-0.94890800	-0.01383700	0.89843800
0	-1.28103500	-0.01225000	2.35575900
С	-1.61131900	1.46408300	0.07563700
С	-1.33153600	1.78722800	-1.25295900
С	-2.44548000	2.28849400	0.82950100
С	-1.88452400	2.92651900	-1.82072900
Н	-0.67801000	1.14996500	-1.83834100

С	-2.99643600	3.42889200	0.25696000
Н	-2.64324900	2.02537800	1.86352200
С	-2.71748700	3.74717000	-1.06634900
Н	-1.66457300	3.17756200	-2.85323200
Н	-3.64328800	4.07040800	0.84637900
Н	-3.14818300	4.63766100	-1.51278100
С	-1.62679700	-1.47246200	0.05654600
С	-2.69794900	-2.11562800	0.67768600
С	-1.13279400	-1.95947000	-1.15455400
С	-3.27850300	-3.22905200	0.08422700
Η	-3.05287000	-1.74237600	1.63274100
С	-1.71445300	-3.07556600	-1.74173300
Η	-0.28316100	-1.47435500	-1.62164900
С	-2.78921400	-3.70753000	-1.12573500
Η	-4.11019800	-3.72819400	0.57048500
Η	-1.32496600	-3.45671500	-2.68010700
Η	-3.24185800 -4	.57923900	-1.58724300

The product

С	-1.63991700	0.80035000	0.74358900
С	-2.95199400	0.19098700	0.26904600
С	-3.02436900	-0.34941900	-1.01943000
С	-4.08888500	0.15122500	1.07359200
С	-4.20629000	-0.90781100	-1.48392200
Н	-2.14193000	-0.33746100	-1.65526600
С	-5.27329800	-0.41278300	0.60742600
Н	-4.06413100	0.56338900	2.07607300
С	-5.33651300	-0.94290300	-0.67254200
Η	-4.24457200	-1.31880500	-2.48765600
Н	-6.14696700	-0.43460800	1.25102800
Н	-6.25944500	-1.38135600	-1.03800900
С	-1.69612400	1.42578700	2.13027400
Н	-2.46489200	2.20125000	2.18713100

Н	-1.90577200	0.67242300	2.89598500
Н	-0.73197100	1.88267800	2.35921900
Ν	-0.54642300	-0.18738400	0.69039900
Р	0.58639600	-0.17211300	-0.54734400
0	0.14494500	-0.33013700	-1.96656800
С	1.42354800	1.42576100	-0.33087100
С	1.86725800	1.89120600	0.90843600
С	1.64199400	2.19272600	-1.47516800
С	2.52110300	3.11225800	1.00014100
Н	1.69749500	1.29892900	1.80127200
С	2.29324900	3.41688400	-1.37919400
Н	1.28813600	1.81442000	-2.42867000
С	2.73311400	3.87574600	-0.14381100
Н	2.86499800	3.47111000	1.96467900
Н	2.45712900	4.01278000	-2.27095600
Н	3.24303500	4.83082000	-0.06965100
С	1.70039000	-1.50856000	-0.03347000
С	2.23373300	-2.30743800	-1.04555000
С	2.03949300	-1.75984100	1.29792700
С	3.10378800	-3.34298000	-0.72887900
Н	1.94364000	-2.11110900	-2.07264300
С	2.90771400	-2.79773400	1.60976700
Н	1.61380400	-1.15216400	2.08928600
С	3.44216500	-3.58698600	0.59687800
Н	3.51422100	-3.96376100	-1.51835100
Н	3.16644000	-2.99309100	2.64524800
Н	4.12079700	-4.39710800	0.84338700
Н	-1.37712400	1.59499500	0.03390900
Н	-0.84438600	-1.11771000	0.95845300

C3a

C 2.06303800 -1.48818800 1.40132700

20

С	2.32443300	-2.42790500	0.23605800
Н	1.03556400	-1.10976200	1.35778400
Ν	2.97645200	-0.34863000	1.32292800
Ν	2.16834100	-1.69916400	-1.02851600
Н	3.36331800	-2.76915200	0.27965400
Н	3.93532900	-0.69911600	1.40902300
Н	1.16784300	-1.52407400	-1.16038400
С	2.70743700	0.68296300	2.31107300
С	2.66547200	-2.46477800	-2.17043000
Н	2.72307300	0.30016500	3.34187700
Н	1.72366000	1.12478300	2.12785700
Н	3.45399000	1.47546900	2.22434400
Н	2.17648400	-3.44278100	-2.26825300
Н	3.74191000	-2.60528400	-2.04626700
Н	2.49186500	-1.89588900	-3.08712400
Н	1.65202000	-3.29443500	0.29007600
Н	2.16351900	-2.03385900	2.35140000
Zn	3.45697900	-0.01933200	-0.77612400
0	4.96200200	-1.09291300	-0.33062800
С	6.23199200	-1.04901400	-0.87097100
Н	6.92646200	-1.70262800	-0.31524300
Н	6.27320700	-1.38705300	-1.92599200
Н	3.23677100	1.33016800	-1.52318500
С	-0.58451000	1.70708500	-0.63213800
С	-0.38227700	3.07641800	-0.09637300
С	-1.35500000	3.66167100	0.71898600
С	0.79176500	3.78359900	-0.37300300
С	-1.16722300	4.93368400	1.23423700
Н	-2.25995600	3.10203200	0.92647100
С	0.98621300	5.05022100	0.16284700
Н	1.57002900	3.33371000	-0.98120700
С	0.00670800	5.62998700	0.95942300
Н	-1.93551400	5.38679100	1.85201500

Н	1.90704800	5.58463400	-0.04474700
Н	0.15646100	6.62454200	1.36679800
С	0.19298600	1.34108500	-1.85643900
Н	-0.17334500	0.42230600	-2.30780000
Н	0.16656600	2.15992400	-2.57883400
Η	1.25025100	1.19472800	-1.59146900
Η	6.68525700	-0.03819100	-0.86098700
Ν	-1.39493900	0.94000900	0.00370500
Р	-1.74271600	-0.66482600	-0.34036000
0	-0.79413300	-1.49450400	-1.16078300
С	-3.38413700	-0.59406000	-1.10815000
С	-3.58773300	-1.33420700	-2.27188000
С	-4.42596700	0.16597600	-0.57319600
С	-4.82848200	-1.31219700	-2.89821500
Н	-2.76562100	-1.91730700	-2.67390800
С	-5.66221600	0.18414100	-1.20272900
Н	-4.26961400	0.74081800	0.33348500
С	-5.86366700	-0.55468900	-2.36482600
Η	-4.98588100	-1.88778800	-3.80432300
Н	-6.47161600	0.77533700	-0.78744100
Н	-6.83194800	-0.53883400	-2.85438100
С	-1.93896700	-1.36375600	1.32067600
С	-1.80151200	-2.74723000	1.45263700
С	-2.21665900	-0.58431100	2.44427000
С	-1.95107800	-3.34523100	2.69655200
Н	-1.56126200	-3.34255600	0.57762400
С	-2.36236700	-1.18797400	3.68743800
Н	-2.29311700	0.49187100	2.33860600
С	-2.23353000	-2.56631800	3.81366000
Н	-1.84246100	-4.42015500	2.79602400
Н	-2.57142100	-0.57952200	4.56119000
Η	-2.34775800 -	3.03454000	4.78591500

C3b			
С	-3.07549600	-1.80830000	-1.98762600
С	-2.88852900	-2.46791000	-0.63156100
Н	-2.09812200	-1.53972200	-2.40601400
Ν	-3.86103000	-0.58468500	-1.82890500
Ν	-2.23344700	-1.52343600	0.27818600
Н	-3.87039200	-2.69582000	-0.20508600
Н	-4.77637300	-0.83560900	-1.43984400
Н	-1.26317900	-1.41846800	-0.03382700
С	-4.01088600	0.17670400	-3.05683500
С	-2.23946800	-1.98626200	1.66362400
Н	-4.45763500	-0.41087900	-3.87218700
Н	-3.03352700	0.53460900	-3.39428000
Н	-4.64402600	1.04740200	-2.87197600
Н	-1.76915900	-2.97119300	1.78429100
Н	-3.27593400	-2.03383600	2.00657400
Н	-1.69972400	-1.26670200	2.28411800
Н	-2.31253300	-3.39689700	-0.73853500
Н	-3.54950800	-2.51434100	-2.68611400
Zn	-3.45392200	0.21406900	0.16447700
0	-5.05811800	-0.72767400	0.55965700
С	-6.01954700	-0.43215200	1.50633900
Н	-6.87001800	-1.13272100	1.44404700
Н	-5.64555300	-0.49615400	2.54748700
Н	-2.85899100	1.62116500	0.47688100
С	0.72982900	1.73736500	-0.42231500
С	0.80894900	3.15026100	0.02097200
С	2.03379200	3.69534400	0.41399300
С	-0.34343400	3.93789900	0.08423700
С	2.10988400	5.01089700	0.84187900
Н	2.91884500	3.07096500	0.36498500
С	-0.26736400	5.24830100	0.53736100
Н	-1.30657900	3.51057500	-0.17524900

С	0.95770200	5.78957500	0.90721900
Н	3.06767000	5.43284000	1.12804400
Н	-1.17006400	5.84594900	0.60490300
Н	1.01591900	6.81753600	1.24991600
С	-0.36455800	1.39236300	-1.38666000
Н	-0.18579300	0.43109300	-1.86338400
Н	-1.31905000	1.33527500	-0.84449800
Н	-0.46407700	2.18176000	-2.13512000
Н	-6.44824800	0.58395600	1.40167000
Ν	1.59809500	0.92272200	0.05437600
Р	1.69642200	-0.73020200	-0.19577100
0	0.53173600	-1.49450300	-0.76486000
С	2.12205700	-1.33116400	1.45956100
С	1.90175300	-2.68376500	1.72871800
С	2.65519700	-0.50460000	2.44922100
С	2.22440600	-3.20597500	2.97364700
Н	1.46490900	-3.31523000	0.96191400
С	2.97243600	-1.03234200	3.69484400
Н	2.79523400	0.55010400	2.24148400
С	2.76201200	-2.38118300	3.95603800
Н	2.05119100	-4.25691200	3.18020900
Н	3.37926400	-0.38642400	4.46588300
Н	3.01090000	-2.78998300	4.92993200
С	3.16477900	-0.91059000	-1.24522700
С	3.07310100	-1.75394500	-2.35138200
С	4.35982200	-0.24096100	-0.97606600
С	4.17175600	-1.92486700	-3.18561300
Н	2.13554900	-2.26461400	-2.54549000
С	5.45318900	-0.41483100	-1.81246000
Н	4.43284500	0.41290600	-0.11350500
С	5.35955800	-1.25633400	-2.91695300
Н	4.09905700	-2.58108500	-4.04660800
Н	6.38167600	0.10614100	-1.60354500

TSa

С	1.54450100	-2.72405900	0.96427100
С	1.86952400	-3.23911300	-0.43085500
Н	0.47380700	-2.50902700	1.04674700
Ν	2.27374300	-1.47792500	1.21348000
Ν	1.56600800	-2.21045100	-1.42586200
Н	2.94343400	-3.44599900	-0.49698400
Н	3.27700600	-1.67370700	1.21063700
Н	0.55141600	-2.04363600	-1.47021600
С	1.88857800	-0.81330500	2.45297700
С	2.08471100	-2.52770700	-2.75098600
Н	1.98071800	-1.47226600	3.32757100
Н	0.85555700	-0.47023700	2.36759800
Н	2.52360300	0.06192500	2.60497100
Н	1.73382200	-3.49999000	-3.12168600
Н	3.17724700	-2.52842500	-2.71207400
Н	1.76331500	-1.75469000	-3.45263800
Н	1.32304500	-4.17284900	-0.62301300
Н	1.78317400	-3.49379100	1.71208100
Zn	2.46800000	-0.49508100	-0.66472700
0	4.25716000	-1.06955000	-0.63724000
С	5.38900600	-0.54892600	-1.23275500
Н	5.31018400	-0.46064600	-2.33462700
Н	5.65974000	0.46004500	-0.86449300
Н	1.60614900	0.79499900	-1.02139700
С	0.23298100	1.56250900	-0.40469200
С	1.01573100	2.54696200	0.42202200
С	0.61907000	2.80290400	1.73321400
С	2.09688600	3.26032900	-0.09956500
С	1.28410000	3.74787300	2.50618900
Н	-0.22221100	2.24763900	2.13035300

С	2.76345600	4.20177100	0.66904500
Н	2.44525700	3.04446000	-1.10421500
С	2.35771500	4.45114100	1.97708500
Н	0.95935500	3.93567300	3.52464500
Н	3.60925800	4.73716700	0.25047000
Н	2.88049600	5.18688600	2.57938400
С	-0.11793700	2.00861800	-1.80855400
Н	-0.40535700	1.15451600	-2.42314700
Н	-0.97341200	2.69157000	-1.73952700
Н	0.70462700	2.53404800	-2.29203000
Н	6.26581200	-1.19007400	-1.04015800
Ν	-0.52847600	0.73436500	0.28019900
Р	-1.59996300	-0.32620900	-0.38615100
0	-1.10448100	-1.32107300	-1.40931300
С	-3.02180000	0.58324800	-1.07448500
С	-3.57391200	0.13463000	-2.27327900
С	-3.56921200	1.69637800	-0.43432600
С	-4.66282300	0.79581100	-2.82933500
Н	-3.13000700	-0.72647400	-2.76238000
С	-4.65722400	2.35430400	-0.99209300
Н	-3.13864300	2.05133100	0.49699800
С	-5.20458300	1.90415600	-2.18974700
Н	-5.08806100	0.44617000	-3.76457500
Н	-5.07893300	3.22108900	-0.49367100
Н	-6.05432200	2.42069900	-2.62431000
С	-2.26294200	-1.19597200	1.06352800
С	-2.86518500	-2.43822700	0.85543800
С	-2.21258400	-0.66367000	2.35158600
С	-3.40965500	-3.13827600	1.92402500
Н	-2.88678900	-2.85551500	-0.14621100
С	-2.76017100	-1.36534900	3.41901200
Н	-1.72686500	0.29321800	2.50761800
С	-3.35984700	-2.60142000	3.20597200

Η	-3.87274300 -4.105401	00 1.75728400
Н	-2.71489400 -0.948871	00 4.42014100
Н	-3.78601200 -3.14887400	4.04048100

TSb

С	-1.20693800	-3.08738500	-0.39580600
С	-1.84616800	-2.62839300	0.90609900
Н	-0.15096200	-2.80188900	-0.43314700
Ν	-1.87227500	-2.43717600	-1.52687800
Ν	-1.81247700	-1.16717900	1.01324500
Н	-2.90269000	-2.91781000	0.90914700
Н	-2.84360900	-2.74511800	-1.56905600
Н	-0.86316600	-0.83744000	1.18863300
С	-1.20416800	-2.67776700	-2.80444400
С	-2.72324300	-0.65312100	2.03512500
Н	-1.11825300	-3.74963400	-3.03042300
Н	-0.20816700	-2.23192400	-2.76499300
Н	-1.77616000	-2.19997000	-3.60301600
Н	-2.56158800	-1.11911100	3.01618100
Н	-3.74564300	-0.84140500	1.69914900
Н	-2.58308100	0.42535900	2.12896600
Н	-1.35694500	-3.11448000	1.76068300
Н	-1.25675600	-4.18378100	-0.46423200
Zn	-2.38353700	-0.47954400	-0.89235000
0	-4.18462000	-0.98454700	-0.83237800
С	-5.33287700	-0.23135700	-0.97354700
Н	-6.23261700	-0.86291600	-0.88003700
Н	-5.43702700	0.56709000	-0.21136600
Н	-1.43309300	0.70379400	-1.35356500
С	-2.82427500	3.91745600	2.00798800
С	-1.61935600	3.44010400	2.50620500
С	-0.79534200	2.65533100	1.70689500
С	-1.16222200	2.34049500	0.39907100

С	-2.37178800	2.83178000	-0.09417300
С	-3.19744200	3.61042200	0.70256000
Н	-3.47289600	4.52342800	2.63199000
Н	-1.31730500	3.67765500	3.52119600
Н	0.14734800	2.27514100	2.08323900
Н	-2.67786200	2.56872400	-1.10098800
Н	-4.14212700	3.96922300	0.30764600
С	-0.21224300	1.53168400	-0.44321100
С	0.23206000	2.17154600	-1.73887300
Н	1.02259200	2.89450000	-1.50061200
Н	0.63471300	1.42069500	-2.41981300
Н	-0.58566400	2.70164800	-2.22693200
Н	-5.41587900	0.27318900	-1.95671800
Ν	0.53139400	0.68024100	0.22755400
Р	1.72578900	-0.24303200	-0.46181300
0	1.39321000	-1.06034800	-1.67759100
С	2.21820900	-1.31216900	0.92462200
С	1.93951400	-1.00172800	2.25631100
С	2.91038000	-2.48713600	0.62349800
С	2.34925900	-1.85609700	3.27382800
Н	1.38700300	-0.09594900	2.48224500
С	3.31870600	-3.33816600	1.64175800
Н	3.10960700	-2.73331800	-0.41468200
С	3.03985500	-3.02288100	2.96759000
Н	2.12702800	-1.61148800	4.30760400
Н	3.85355500	-4.25124800	1.40143500
Н	3.35929000	-3.68915200	3.76243500
С	3.17326100	0.81777100	-0.78182800
С	3.82008300	0.69448700	-2.01028800
С	3.63852800	1.74150000	0.15557500
С	4.92220700	1.49074200	-2.30020100
Н	3.44070900	-0.02488500	-2.72921400
С	4.73952500	2.53491400	-0.13648000

Н	3.13877400	1.83941700	1.11440100
С	5.38148100	2.41014800	-1.36496100
Н	5.42247200	1.39381100	-3.25835300
Н	5.09878900	3.25262000	0.59390300
Н	6.24161100	3.03189000	-1.59160700

MeOH

0	-0.74543800	0.12373300	0.00000000
С	0.66005600	-0.02019000	-0.00002200
Н	1.09016600	0.98402000	-0.00149500
Н	1.02931500	-0.54520800	0.89159500
Н	1.02903500	-0.54787800	-0.89006400
Н	-1.14534800 -	0.75966000	0.00009600