Supporting Information

Intramolecular palladium-catalysed enolate arylation of 2and 3-iodoindole derivatives for the synthesis of β -carbolines, γ -carbolines, and pyrrolo[3,4-*b*]indoles

Daniel Solé,* M.-Lluïsa Bennasar, and Iván Jiménez

Laboratori de Química Orgànica, Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028-Barcelona, Spain

Table of Contents:

General Methods	S2
Experimental procedures and characterization data for the starting materi	als
	S2-S10
¹ H and ¹³ C NMR spectra of all new compounds	S11-S75

General Methods. All commercially available reagents were used without further purification. Unless otherwise noted ¹H- and ¹³C NMR spectra were recorded in CDCl₃ solution, using Me₄Si as the internal standard, with a Varian Gemini 300 or a Varian Mercury 400 instrument. Chemical shifts are reported in ppm downfield (δ) from Me₄Si. TLC was carried out on SiO₂ (silica gel 60 F₂₅₄), and the spots were located with UV light, iodoplatinate reagent or 1% aqueous KMnO₄. Flash chromatography was carried out on SiO₂ (silica gel 60, 230-400 mesh ASTM). Drying of organic extracts during workup of reactions was performed over anhydrous MgSO₄. Evaporation of solvents was accomplished with a rotatory evaporator.

PREPARATION OF THE STARTING MATERIALS

2-Iodo-1-methyl-1*H*-indole-3-carbaldehyde (2)

POCl₃ (1.3 mL, 13.95 mmol) was added slowly to ice-cooled dry DMF (14 mL). The solution was stirred, under Argon, for 15 min at room temperature and then cooled to 0 °C. A solution of 2-iodo-1-methylindole¹ (**1**, 3.36 g, 13.07 mmol) in DMF (14 mL) was then added dropwise. The mixture was stirred at room temperature for 3 h, poured into ice water and made alkaline with 2M NaOH. The resulting mixture was extracted with ether. The organic layer was washed with brine, dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to 9:1 hexanes-EtOAc) to give **2** (3.20 g, 86%). ¹H NMR (CDCl₃, 400 MHz) δ 3.81 (s, 3H), 7.23-7.34 (m, 3H), 8.31 (m, 1H), 9.83 (s, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 34.6 (CH₃), 100.6 (C), 109.9 (CH), 119.1 (C), 120.7 (CH), 122.8 (CH), 124.0 (CH), 126.2 (C), 139.2 (C), 187.6 (CH). ESI-HRMS [M+H]⁺ calcd for C₁₀H₉INO 285.9723, found 285.9725.

N-[(2-Iodo-1-methyl-1*H*-indol-3-yl)methyl]-*N*-methylamine (3)

To a solution of aldehyde 2 (1 g, 3.5 mmol) in CH_2Cl_2 (5 mL) methylamine (4.4 mL of 8M solution in EtOH, 35.2 mmol) and AcOH (0.2 mL, 3.5 mmol) were added. The mixture was stirred at room temperature for 6 h. The solvent was removed *in vacuo*, the residue was dissolved in MeOH (10 mL), and NaBH₄ (0.4 g, 10.5 mmol) was slowly added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH_2Cl_2 and water. The organic layer was dried and concentrated. The residue was purified by chromatography

¹ J. Bergman and N. Eklund, *Tetrahedron* 1980, **36**, 1439.

(SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 10%) to give amine **3** (0.95 g, 90%). ¹H NMR (CDCl₃, 400 MHz) δ 2.42 (broad s, 1H), 2.46 (s, 3H), 3.76 (s, 3H), 3.93 (s, 2H), 7.09 (ddd, *J* = 7.6, 7.2, and 0.8 Hz, 1H), 7.17 (ddd, *J* = 8, 7.2, and 1.2 Hz, 1H), 7.30 (d, *J* = 8 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 34.2 (CH₃), 35.6 (CH₃), 47.9 (CH₂), 88.8 (C), 109.6 (CH), 118.1 (CH), 118.6 (C), 119.6 (CH), 122.0 (CH), 127.8 (C), 138.5 (C). ESI-HRMS [M+H]⁺ calcd for C₁₁H₁₄IN₂ 301.0202, found 301.0205.

4-{N-[(2-Iodo-1-methyl-1*H*-indol-3-yl)methyl]-*N*-methylamino}-2-butanone (4)

To a solution of amine **3** (560 mg, 1.87 mmol) in MeOH (16 mL), MVK (0.53 mL, 6.55 mmol) and Et₃N (0.65 mL, 4.68 mmol) were added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH₂Cl₂ and water. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 1%) to give ketone **4** (450 mg, 65%). ¹H NMR (CDCl₃, 300 MHz) δ 2.10 (s, 3H), 2.22 (s, 3H), 2.66 (m, 2H), 2.77 (m, 2H), 3.64 (s, 2H), 3.76 (s, 3H), 7.07 (ddd, *J* = 8.1, 6.9, and 1.2 Hz, 1H), 7.16 (ddd, *J* = 8.4, 6.9, and 1.2 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 29.9 (CH₃), 34.3 (CH₃), 41.9 (CH₃), 42.0 (CH₂), 52.1 (CH₂), 55.0 (CH₂), 89.6 (C), 109.4 (CH), 117.4 (C), 118.8 (CH), 119.4 (CH), 121.9 (CH), 128.2 (C), 138.6 (C), 208.4 (C). ESI-HRMS [M+H]⁺ calcd for C₁₅H₂₀IN₂O 371.0614, found 371.0615.

Methyl 3-{*N*-[(2-iodo-1-methyl-1*H*-indol-3-yl)methyl]-*N*-methylamino}propanoate (5)

To a solution of amine **3** (430 mg, 1.43 mmol) in MeOH (5 mL), methyl acrylate (0.32 mL, 3.58 mmol) was added. The mixture was stirred at room temperature for 24 h. The solvent was removed *in vacuo* and the residue was purified by chromatography (SiO₂, from hexanes to 7:3 hexanes-EtOAc) to give ester **5** (310 mg, 56%). ¹H NMR (CDCl₃, 400 MHz) δ 2.25 (s, 3H), 2.58 (t, *J* = 7.2 Hz, 2H), 2.82 (t, *J* = 7.2 Hz, 2H), 3.64 (s, 3H), 3.67 (s, 2H), 3.76 (s, 3H), 7.08 (ddd, *J* = 8, 7.2, and 0.8 Hz, 1H), 7.17 (ddd, *J* = 8.4, 7.2, and 0.8 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.70 (dd, *J* = 8 and 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 32.9 (CH₂), 34.2 (CH₃), 41.8 (CH₃), 51.4 (CH₃), 52.9 (CH₂), 54.9 (CH₂), 89.3 (C), 109.4 (CH), 117.6 (C), 119.0 (CH), 119.3 (CH), 121.9 (CH),

128.3 (C), 138.6 (C), 173.1 (C). ESI-HRMS $[M+H]^+$ calcd for $C_{15}H_{20}IN_2O_2$ 387.0564, found 387.0562.

1-{*N*-[(2-Iodo-1-methyl-1*H*-indol-3-yl)methyl]-*N*-methylamino}-2-propanone (6)

To a solution of amine **3** (260 mg, 0.87 mmol) in acetonitrile (5 mL), DIPEA (0.7 mL, 4.0 mmol) and chloroacetone (0.11 mL, 1.39 mmol) were added. After 2.5 h at reflux, the solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 1%) to give ketone **6** (220 mg, 71%). ¹H NMR (CDCl₃, 300 MHz) δ 2.11 (s, 3H), 2.35 (s, 3H), 3.17 (s, 2H), 3.75 (s, 2H), 3.77 (s, 3H), 7.11 (ddd, *J* = 7.6, 7.2, and 0.9 Hz, 1H), 7.19 (ddd, *J* = 8.1, 7.2, and 1.5 Hz, 1H), 7.31 (dd, *J* = 8.1 and 0.9 Hz, 1H), 7.80 (dd, *J* = 7.6 and 1.5 Hz, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 27.5 (CH₃), 34.3 (CH₃), 43.1 (CH₃), 54.8 (CH₂), 66.8 (CH₂), 89.9 (C), 109.5 (CH), 117.1 (C), 118.9 (CH), 119.5 (CH), 122.0 (CH), 128.2 (C), 138.6 (C), 209.0 (C). ESI-HRMS [M+H]⁺ calcd for C₁₄H₁₈IN₂O 357.0458, found 357.0460.

Methyl 2-{*N*-benzyl-*N*-[(2-iodo-1-methyl-1*H*-indol-3-yl)methyl]amino}acetate (7)

To a solution of aldehyde **2** (0.5 g, 1.75 mmol) in DCE (3 mL), glycine methyl ester hydrochloride (0.55 g, 4.38 mmol), AcOH (0.22 mL, 3.85 mmol), and Et₃N (0.54 mL, 3.85 mmol) were added. After 10 min at room temperature NaBH(OAc)₃ (0.89 g, 4.2 mmol) was slowly added. The resulting mixture was stirred at room temperature for 24 h, poured into 1N NaOH and extracted with CH₂Cl₂. The organic layer was dried and concentrated. The residue was dissolved in acetonitrile (10 mL) and benzyl bromide (0.25 mL, 2.1 mmol) and K₂CO₃ (0.48 g, 3.5 mmol) were added. The mixture was stirred at 55 °C for 2.5 h. The solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to 9:1 hexanes-EtOAc) to give ester **7** (0.45 g, 57%). ¹H NMR (CDCl₃, 400 MHz) δ 3.29 (s, 2H), 3.67 (s, 3H), 3.75 (s, 3H), 3.86 (s, 2H), 4.00 (s, 3H), 7.05-7.38 (m, 8H), 7.80 (dd, *J* = 8 and 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 34.2 (CH₃), 51.1 (CH₃), 51.4 (CH₂), 52.8 (CH₂), 57.6 (CH₂), 89.5 (C), 109.4 (CH), 117.5 (C), 119.3 (CH), 119.4 (CH), 122.0 (CH), 126.9 (CH), 128.2 (2 CH), 128.3 (C),

129.1 (2 CH), 138.7 (C), 139.4 (C), 172.1 (C). ESI-HRMS $[M+H]^+$ calcd for $C_{20}H_{22}IN_2O_2$ 449.0720, found 449.0718.

3-Iodo-1-methyl-1*H***-indole-2-carbaldehyde** (9)

To a suspension of NaH (710 mg of 60% dispersion in mineral oil, 17.7 mmol) in THF (70 mL), cooled to 0 °C, a solution of aldehyde 8^2 (2.4 g, 8.85 mmol) in THF (30 mL) was added dropwise. The mixture was stirred at room temperature for 1 h and ICH₃ (1.4 mL, 22.13 mmol) was added. After 24 h at room temperature, the reaction mixture was poured into ice water, was extracted with EtOAc and washed with brine. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to hexanes-EtOAc 1:1) to give aldehyde **9** (2.1 g, 83%). ¹H NMR (CDCl₃, 300 MHz) δ 4.08 (s, 3H), 7.24 (ddd, *J* = 7.5, 6.9, and 1.2 Hz, 1H), 7.35 (dm, *J* = 7.5 Hz, 1H), 7.46 (ddd, *J* = 7.5, 6.9, and 1.2 Hz, 1H), 7.57 (dm, *J* = 7.5 Hz, 1H), 9.99 (s, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 31.8 (CH₃), 75.1 (C), 110.6 (CH), 121.7 (CH), 123.6 (CH), 128.0 (CH), 129.7 (C), 131.4 (C), 140.4 (C), 184.6 (CH). ESI-HRMS [M+H]⁺ calcd for C₁₀H₉INO 285.9723, found 285.9729.

N-[(3-Iodo-1-methyl-1*H*-indol-2-yl)methyl]-*N*-methylamine (10)

To a solution of aldehyde **9** (1.1 g, 3.86 mmol) in CH₂Cl₂ (6 mL) methylamine (4.8 mL of 8M solution in EtOH, 38.5 mmol) and AcOH (0.22 mL, 3.86 mmol) were added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo*, the residue was dissolved in MeOH (10 mL) and NaBH₄ (0.4 g, 10.5 mmol) was slowly added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH₂Cl₂ and water. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 10%) to give amine **10** (1.05 g, 91%). ¹H NMR (CDCl₃, 300 MHz) δ 2.49 (s, 3H), 3.85 (s, 3H), 3.98 (s, 2H), 7.17 (m, 1H), 7.26 (m, 2H), 7.41 (dm, *J* = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 30.6 (CH₃), 36.1 (CH₃), 47.4 (CH₂), 59.6 (C), 109.4 (CH), 120.2 (CH), 121.1 (CH), 122.7 (CH), 129.6 (C), 137.8 (C), 138.3 (C). ESI-HRMS [M+H]⁺ calcd for C₁₁H₁₄IN₂ 301.0202, found 301.0204.

² T. Choshi, T. Sada, H. Fujimoto, C. Nagayama, E. Supino and S. Hibino, J. Org. Chem. 1997, 62, 2535.

4-{*N*-[(3-Iodo-1-methyl-1*H*-indol-2-yl)methyl]-*N*-methylamino}-2-butanone (11)

To a solution of amine **10** (550 mg, 1.83 mmol) in MeOH (15 mL), MVK (0.53 mL, 6.55 mmol) and Et₃N (0.65 mL, 4.68 mmol) were added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH₂Cl₂ and water. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 1%) to give ketone **11** (583 mg, 86%). ¹H NMR (CDCl₃, 400 MHz) δ 2.05 (s, 3H), 2.22 (s, 3H), 2.59 (t, *J* = 7.2 Hz, 2H), 2.79 (t, *J* = 7.2 Hz, 2H), 3.72 (s, 2H), 3.80 (s, 3H), 7.17 (m, 1H), 7.27 (m, 2H), 7.41 (d, *J* = 8 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 29.8 (CH₃), 30.5 (CH₃), 41.4 (CH₃), 42.5 (CH₂), 51.9 (CH₂), 53.9 (CH₂), 61.0 (C), 109.3 (CH), 120.2 (CH), 121.2 (CH), 122.7 (CH), 129.6 (C), 136.6 (C), 138.1 (C), 207.9 (C). ESI-HRMS [M+H]⁺ calcd for C₁₅H₂₀IN₂O 371.0614, found 371.0617.

Methyl 3-{*N*-[(3-iodo-1-methyl-1*H*-indol-2-yl)methyl]-*N*-methylamino}propanoate (12)

To a solution of amine **10** (480 mg, 1.6 mmol) in MeOH (5 mL), methyl acrylate (0.36 mL, 4.0 mmol) was added. The mixture was stirred at room temperature for 24 h. The solvent was removed *in vacuo* and the residue was purified by chromatography (SiO₂, from hexanes to 7:3 hexanes-EtOAc) to give ester **12** (435 mg, 70%). ¹H NMR (CDCl₃, 400 MHz) δ 2.21 (s, 3H), 2.49 (t, *J* = 6.8 Hz, 2H), 2.79 (t, *J* = 6.8 Hz, 2H), 3.60 (s, 3H), 3.73 (s, 2H), 3.79 (s, 3H), 7.16 (m, 1H), 7.25 (m, 2H), 7.41 (dm, *J* = 8 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 30.4 (CH₃), 32.7 (CH₂), 41.2 (CH₃), 51.5 (CH₃), 52.7 (CH₂), 53.9 (CH₂), 60.9 (C), 109.2 (CH), 120.1 (CH), 121.2 (CH), 122.6 (CH), 129.6 (C), 136.6 (C), 138.0 (C), 172.8 (C). ESI-HRMS [M+H]⁺ calcd for C₁₅H₂₀IN₂O₂ 387.0564, found 387.0561.

1-{*N*-[(3-Iodo-1-methyl-1*H*-indol-2-yl)methyl]-*N*-methylamino}-2-propanone (13)

To a solution of amine **10** (475 mg, 1.58 mmol) in acetonitrile (10 mL), DIPEA (1.4 mL, 8.0 mmol) and chloroacetone (0.26 mL, 3.32 mmol) were added. After 2.5 h at reflux, the solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 1%) to give ketone **13** (450 mg, 80%). ¹H NMR (CDCl₃, 400 MHz) δ

2.05 (s, 3H), 2.36 (s, 3H), 3.24 (s, 2H), 3.82 (s, 2H), 3.94 (s, 3H), 7.18 (m, 1H), 7.28 (m, 2H), 7.42 (d, J = 7.6 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 27.5 (CH₃), 30.7 (CH₃), 43.0 (CH₃), 53.2 (CH₂), 61.5 (C), 66.0 (CH₂), 109.5 (CH), 120.3 (CH), 121.3 (CH), 122.9 (CH), 129.5 (C), 136.2 (C), 138.1 (C), 206.8 (C). ESI-HRMS [M+H]⁺ calcd for C₁₄H₁₈IN₂O 357.0458, found 357.0457.

Methyl 2-{*N*-benzyl-*N*-[(3-iodo-1-methyl-1*H*-indol-2-yl)methyl]amino}acetate (14)

To a solution of aldehyde 9 (0.35 g, 1.23 mmol) in DCE (3 mL), glycine methyl ester hydrochloride (0.39 g, 3.1 mmol), AcOH (0.16 mL, 2.8 mmol), and Et₃N (0.4 mL, 2.8 mmol) were added. After 10 min at room temperature NaBH(OAc)₃ (0.63 g, 2.97 mmol) was slowly added. The resulting mixture was stirred at room temperature for 24 h, poured into 1N NaOH and extracted with CH₂Cl₂. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to 1:1 hexanes-EtOAc) to give methyl $2-\{N-[(3-iodo-1-methyl-1H-indol-2$ yl)methyl]amino}acetate (0.28 g, 64%). ¹H NMR (CDCl₃, 400 MHz) δ 3.41 (s, 2H), 3.71 (s, 3H), 3.87 (s, 3H), 4.07 (s, 2H), 7.16 (m, 1H), 7.26 (m, 1H), 7.40 (d, J = 8 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 30.6 (CH₃), 44.7 (CH₂), 49.1 (CH₂), 51.8 (CH₃), 60.3 (C), 109.4 (CH), 120.3 (CH), 121.2 (CH), 122.8 (CH), 129.5 (C), 137.3 (C), 138.0 (C), 172.8 (C).

To a solution of methyl 2-{N-[(3-iodo-1-methyl-1H-indol-2-yl)methyl]amino}acetate (0.28 g, 0.78 mmol) in acetonitrile (10 mL), benzyl bromide (0.11 mL, 0.94 mmol) and K₂CO₃ (0.21 g, 1.56 mmol) were added. The mixture was stirred at 55 °C for 2.5 h. The solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to 9:1 hexanes-EtOAc) to give ester **14** (0.32 g, 91%). ¹H NMR (CDCl₃, 400 MHz) δ 3.28 (s, 2H), 3.64 (s, 3H), 3.80 (s, 2H), 3.84 (s, 3H), 4.03 (s, 2H), 7.12-7.42 (m, 9H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 30.7 (CH₃), 50.2 (CH₂), 51.4 (CH₃), 53.3 (CH₂), 58.2 (CH₂), 61.6 (C), 109.4 (CH), 120.2 (CH), 121.2 (CH), 122.8 (CH), 127.3 (CH), 128.3 (2 CH), 129.1 (2 CH), 129.6 (C), 136.3 (C), 138.2 (C), 138.4 (C), 171.5 (C). ESI-HRMS [M+H]⁺ calcd for C₂₀H₂₂IN₂O₂ 449.0720, found 449.0716.

N-[(3-Iodo-1-phenylsulfonyl-1*H*-indol-2-yl)methyl]-*N*-methylamine (16)

To a solution of aldehyde 15^2 (0.6 g, 1.46 mmol) in CH₂Cl₂ (5 mL), methylamine (1.9 mL of 8M solution in EtOH, 15.2 mmol) and AcOH (0.1 mL, 1.75 mmol) were added. The mixture was stirred overnight at room temperature. The solvent was removed *in vacuo*, the residue was dissolved in MeOH (10 mL) and NaBH₄ (0.22 g, 5.84 mmol) was slowly added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH₂Cl₂ and water. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 10%) to give amine **16** (0.55 g, 88%). ¹H NMR (CDCl₃, 400 MHz) δ 2.43 (s, 4H), 4.27 (s, 2H), 7.30-7.44 (m, 5H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.881 (m, 2H), 8.14 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 34.6 (CH₃), 48.2 (CH₂), 77.2 (C), 114.9 (CH), 122.3 (CH), 124.5 (CH), 126.2 (CH), 126.5 (2 CH), 129.3 (2 CH), 131.4 (C), 134.1 (CH), 136.8 (C), 138.1 (C), 138.2 (C).

4-{*N*-[(3-Iodo-1-phenylsulfonyl-1*H*-indol-2-yl)methyl]-*N*-methylamino}-2-butanone (17)

To a solution of amine **16** (0.54 g, 1.27 mmol) in MeOH (15 mL), MVK (0.4 mL, 4.9 mmol) and Et₃N (0.5 mL, 3.6 mmol) were added. The mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was partitioned between CH₂Cl₂ and water. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 3%) to give ketone **17** (0.33 g, 52%). ¹H NMR (CDCl₃, 400 MHz) δ 2.10 (s, 3H), 2.17 (s, 3H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.2 Hz, 2H), 4.03 (s, 2H), 7.28-7.44 (m, 5H), 7.52 (tt, *J* = 8 and 1.2 Hz, 1H), 8.03-8.10 (m, 3H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 30.0 (CH₃), 40.7 (CH₂), 41.0 (CH₃), 51.5 (CH₂), 53.4 (CH₂), 76.5 (C), 114.7 (CH), 122.3 (CH), 123.9 (CH), 126.0 (CH), 127.1 (2 CH), 128.8 (2 CH), 130.9 (C), 133.5 (CH), 136.6 (C), 136.9 (C), 139.4 (C), 208.0 (C). ESI-HRMS [M+H]⁺ calcd for C₂₀H₂₂IN₂O₃S 497.0390, found 497.0388.

1-{*N*-[(**3-Iodo-1-phenylsulfonyl-1***H***-indol-2-yl**)methyl]-*N*-methylamino}-2propanone (18)

To a solution of amine **16** (0.45 g, 1.06 mmol) in acetonitrile (5 mL), DIPEA (0.7 mL, 4.0 mmol) and chloroacetone (0.2 mL, 2.53 mmol) were added. After 2.5 h at reflux, the solvent was removed *in vacuo* and the residue was partitioned between dichloromethane

and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 2%) to give ketone **18** (0.41 g, 81%). ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (s, 3H), 2.40 (s, 3H), 3.39 (s, 2H), 4.25 (s, 2H), 7.27-7.47 (m, 5H), 7.52 (tt, *J* = 8 and 1.2 Hz, 1H), 8.04 (dd, *J* = 8.4 and 0.8 Hz, 1H), 8.18 (m, 2H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 27.8 (CH₃), 41.5 (CH₃), 53.1 (CH₂), 65.8 (CH₂), 76.3 (C), 114.7 (CH), 122.3 (CH), 123.9 (CH), 126.0 (CH), 127.4 (2 CH), 128.9 (2 CH), 130.9 (C), 133.7 (CH), 136.5 (C), 136.9 (C), 138.9 (C), 206.9 (C). ESI-HRMS [M+H]⁺ calcd for C₁₉H₂₀IN₂O₃S 483.0234, found 483.0232.

2-(2-Iodo-1-phenylsulfonyl-1*H*-indol-3-yl)ethyl *p*-toluenesulfonate (20)

To a cooled (0 °C) solution of iodotryptophol **19**³ (0.71 g, 1.66 mmol) in CH₂Cl₂ (10 mL), TsCl (0.35 g, 1.83 mmol), DMAP (10 mg) and Et₃N (0.58 mL, 4.15 mmol) were added. The resulting mixture was stirred at room temperature for 24 h. The reaction mixture was diluted with CH₂Cl₂ and washed with 1N HCl and saturated Na₂CO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to 1:1 hexanes-EtOAc) to give **20** (0.8 g, 75%). ¹H NMR (CDCl₃, 400 MHz) δ 2.41 (s, 3H), 3.01 (t, *J* = 7.2 Hz, 2H), 4.17 (t, *J* = 7.2 Hz, 2H), 7.19-7.58 (m, 10H), 7.83 (m, 2H), 8.25 (d, *J* = 8 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 21.6 (CH₃), 27.8 (CH₂), 68.2 (CH₂), 80.1 (C), 115.6 (CH), 118.5 (CH), 123.8 (CH), 125.1 (CH), 126.7 (C), 127.1 (2 CH), 127.4 (2 CH), 129.2 (2 CH), 129.6 (2 CH), 130.1 (C), 132.3 (C), 134.0 (CH), 138.1 (C), 138.8 (C), 144.8 (C). ESI-HRMS [M+NH₄]⁺ calcd for C₂₃H₂₄IN₂O₅S₂ 599.0166, found 599.0165.

{*N*-[2-(2-Iodo-1-phenylsulfonyl-1*H*-indol-3-yl)ethyl]-*N*-methylamino}-2-propanone (21)

A mixture of **20** (0.7 g, 1.17 mmol), methylamine (3 mL of 8M solution in EtOH, 24 mmol), and K_2CO_3 (0.34 g, 2.46 mmol) in acetonitrile (7 mL) was stirred at 85 °C in a sealed tube for 24 h. The solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was dissolved in acetonitrile (10 mL), and DIPEA (1 mL, 5.7 mmol) and chloroacetone (0.2 mL, 2.46 mmol) were added. After 5

³ J. T. Kuethe, A. Wong, I. W. Davies and P. J. Reider, *Tetrahedron Lett.* 2002, **43**, 3871.

h at reflux, the solvent was removed *in vacuo* and the residue was partitioned between dichloromethane and saturated NaHCO₃ aqueous solution. The organic layer was dried and concentrated. The residue was purified by chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂-MeOH 1%) to give ketone **21** (270 mg, 46%). ¹H NMR (CDCl₃, 300 MHz) δ 2.05 (s, 3H), 2.39 (s, 3H), 2.53 (m, 2H), 2.86 (m, 2H), 3.24 (s, 2H), 7.21-7.32 (m, 2H), 7.36-7.46 (m, 3H), 7.53 (tt, *J* = 7.2 and 1.6 Hz, 1H), 7.85 (m, 2H), 8.30 (dm, *J* = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 26.2 (CH₂), 27.5 (CH₃), 42.7 (CH₃), 56.3 (CH₂), 67.5 (CH₂), 79.3 (C), 115.9 (CH), 118.5 (CH), 123.8 (CH), 125.1 (CH), 127.1 (2 CH), 129.0 (2 CH), 130.3 (C), 130.4 (C), 133.9 (CH), 138.0 (C), 139.2 (C), 207.3 (C). ESI-HRMS [M+H]⁺ calcd for C₂₀H₂₂IN₂O₃S 497.0396, found 497.0391.

2-{*N*-Benzyl-*N*-[(3-iodo-1-methyl-1*H*-indol-2-yl)methyl]amino}-*N*,*N*dimethylacetamide (22)

A solution of dimethylamine hydrochloride (296 mg, 3.63 mmol) in toluene (6 mL) was cooled to -30 °C under argon, and a 2M solution of trimethylaluminum in toluene (1.82 mL, 3.63 mmol) was added dropwise. The solution was stirred at room temperature for 1h.

A solution of ester **14** (0.54 g, 1.20 mmol) in dichloromethane (12 mL) was cooled to 0 °C. The solution of AlMe₂-NMe₂ complex prepared above was added dropwise to the ester solution, the temperature being kept below 5 °C. The mixture was slowly warmed to room temperature. The solution was stirred at 50 °C for 24 h. The reaction was quenched by slowly adding it to an ice-cold solution containing 10% aqueous KH₂PO₄ (40 mL), THF (30 mL), and EtOAc (30 mL). The mixture was warmed to 40 °C and stirred for 1h. The organic layer was then separated, washed with brine, dried, filtered through Celite, and concentrated. The residue was purified by chromatography (SiO₂, from hexanes to hexanes-EtOAc 1:1) to give amide **22** (266 mg, 48%). ¹H NMR (CDCl₃, 400 MHz) δ 2.74 (s, 3H), 2.90 (s, 3H), 3.29 (s, 2H), 3.77 (s, 3H), 3.79 (s, 2H), 3.98 (s, 2H), 7.11-7.42 (m, 9H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 30.6 (CH₃), 35.4 (CH₃), 36.6 (CH₃), 50.2 (CH₂), 54.5 (CH₂), 58.7 (CH₂), 61.7 (C), 109.4 (CH), 120.2 (CH), 121.1 (CH), 122.7 (CH), 127.2 (CH), 128.2 (2 CH), 129.4 (2 CH), 129.6 (C), 136.7 (C), 138.0 (C), 138.7 (C), 170.2 (C). ESI-HRMS [M+H]⁺ calcd for C₂₁H₂₅IN₃O 462.1037, found 462.1036.

S-11

