Supporting Information

Synthesis of an alanine-based colorimetric sensors and

enantioselective recognition of aspartate and malate anions

Wei-Chi Lin, Yu-Ping Tseng, Chi-Yung Lin and Yao-Pin Yen*

Department of Applied Chemistry, Providence University, 200 Chungchi Road, Sha-Lu, Taichung Hsien, 433, Republic of China (Taiwan).

Corresponding author. E-mail : <u>ypyen@pu.edu.tw</u> Additional spectra

Figure SI-1. Color change of complex **1** upon addition of hydroxide anion in mixture solvent (DMSO/H₂O = 4/1, v/v): (a) **1** only; (b) **1** + 1.0 equiv. of hydroxide.

Figure SI-2a. The 2D NOESY spectrum of receptor 1

Figure SI-2b. The 2D NOESY spectrum of receptor 2

SI-Table 1. Bond lengths^a of receptors **1-2** with D- and L-asparate anions from *ab initio* HF/6-31G(D) calculations

Figure SI-3. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of D-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [D-aspartate] = 10 mM; (b) [**1**] = [D-aspartate] = 5 mM; (c) [**1**] = [D-aspartate] = 3 mM; (d) [**1**] = [D-aspartate] = 1 mM.

Figure SI-4. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of L-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [L-aspartate] = 10 mM; (b) [**1**] = [L-aspartate] = 5 mM; (c) [**1**] = [L-aspartate] = 3 mM; (d) [**1**] = [L-aspartate] = 1 mM.

Figure SI-5. ¹H NMR spectra change of **1** operated in the solution (DMSO- $d_6/H_2O = 4/1$) after addition of 2.0 equivalents of anions: (a) **1** only; (b) **1**+ L-malate; (c) **1**+ D-malate.

Figure SI-6. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of D-malate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [L-malate] = 10 mM; (b) [**1**] = [L-malate] = 5 mM; (c) [**1**] = [L-malate] = 3 mM; (d) [**1**] = [L-malate] = 1 mM.

Figure SI-7. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **1** with a standard solution of D-malate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-8. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **1** with a standard solution of L-malate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-9. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **2** with a standard solution of L-aspartate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-10. ¹HNMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of D-aspartate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-11. ¹HNMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of L-aspartate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-12. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of D-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [D-aspartate] = 10 mM; (b) [**2**] = [D-aspartate] = 5 mM; (c) [**2**] = [D-aspartate] = 1 mM.

Figure SI-13. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of L-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [L-aspartate] = 10 mM; (b) [**2**] = [L-aspartate] = 5 mM; (c) [**2**] = [L-aspartate] = 1 mM.

Figure SI-14. ¹H NMR spectra change of **2** operated in the solution (DMSO- d_6/H_2O = 4/1) after addition of 2.0 equivalents of anions: (a) **2** only; (b) **2**+ L-aspartate; (c) **2**+ D-aspartate.

Figure SI-15. Color changes of complex 2 upon addition of various anions in DMSO/H₂O (4/1, v/v): (a) 2 only; (b) 2 + 2.0 equiv. of L-malate; (c) 2 + 2.0 equiv. of D-malate.

Figure SI-16. ¹HNMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of D-malate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-17. ¹HNMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of L-malate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-18. ¹H NMR spectra change of **2** operated in the solution (DMSO- d_6/H_2O = 4/1) after addition of 2.0 equivalents of anions: (a) **2** only; (b) **2**+ L-malate; (c) **2**+ D-malate.

Figure SI-19. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of D-malate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [D-malate] = 10 mM; (b) [**2**] = [D-malate] = 5 mM; (c) [**2**] = [D-malate] = 1 mM.

Figure SI-20. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of L-malate in the solution (DMSO- d_6 / $H_2O = 4/1$). (a) [**2**] = [L-malate] = 10 mM; (b) [**2**]

= [L-malate] = 5 mM; (c) [2] = [L-malate] = 1 mM.

Figure SI-1. Color change of complex **1** upon addition of hydroxide anion in mixture solvent (DMSO/H₂O = 4/1, v/v): (a) **1** only; (b) **1** + 1.0 equiv. of hydroxide.

Figure SI-2a. The 2D NOESY spectrum of receptor 1

Figure SI-2b. The 2D NOESY spectrum of receptor 2.

SI-Table 1. Bond lengths^a of receptors **1-2** with D- and L-asparate anions from *ab initio* HF/6-31G(D) calculations

-	HN HN S NH NH NO					
compound.	Anione	H(1)L-₽	H(2)L-+	H(5)L·v	H(6)L-v	ę
1.2	D-aspartate*	0.9795(O1)¢	2.5285(O2)¢	2.5485(O3)¢	1.9485(O4)	ę
	L-aspartate@	1.9535(O1)+ ³	1.8885(O2)¢	2.6225(O3) _e	1.9595(O4)	ç
	D-malate.	0.9795(O1)+ ³	2.5665(O2)¢	2.4875(O3)¢	1.9285(O4)¢	ą
	L-malate₽	1.7995(O1)+ ²	1.8625(O2) ₄ ,	2.8215(O3)~	2.0425(O4)¢	¢
2.0	D-aspartate₽	1.8315(O1)+ ³	1.9345 (O2)+	2.8245(O3)	1.8685(O4)¢	ę
	L-aspartate₽	1.8125(O1)+ ²	1.9335(O2)¢	2.7665(O3)	1.8375(O4)¢	¢
	D-malate.	1.8135(O1)+ ³	1.8785 (O2)+	2.1775(O3) ₄ 9	1.8135(O4)+	Ģ
	L-malate₽	1.8105(O1)¢	1.8455(O2)¢	2.8015(O3) ²	1.9155(O4)¢	ę.

a The unit of computed distances is Å.4

 b Four oxygen atoms(O1 \times O2 \times O3 and O4) of guest form hydrogen bonds with the receptors where O1 is hydrogen-bonded * to H1 and O2 to H2 and O3 to H5 and O4 to H6. Footnote text. o

Figure SI-3. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of D-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [D-aspartate] = 10 mM; (b) [**1**] = [D-aspartate] = 5 mM; (c) [**1**] = [D-aspartate] = 3 mM; (d) [**1**] = [D-aspartate] = 1 mM.

Figure SI-4. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of L-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [L-aspartate] = 10 mM; (b) [**1**] = [L-aspartate] = 5 mM; (c) [**1**] = [L-aspartate] = 3 mM; (d) [**1**] = [L-aspartate] = 1 mM.

Figure SI-5. ¹H NMR spectra change of **1** operated in the solution (DMSO- $d_6/H_2O = 4/1$) after addition of 2.0 equivalents of anions: (a) **1** only; (b) **1**+ L-malate; (c) **1**+ D-malate.

Figure SI-6. Dilution experiment by ¹H NMR of **1** in the presence of 1.0 equiv. of D-malate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**1**] = [L-malate] = 10 mM; (b) [**1**] = [L-malate] = 5 mM; (c) [**1**] = [L-malate] = 3 mM; (d) [**1**] = [L-malate] = 1 mM.

Figure SI-7. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **1** with a standard solution of D-malate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-8. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **1** with a standard solution of L-malate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-9. A series of spectra taken over the course of the titration of a 5×10^{-5} M DMSO/H₂O (4/1, v/v) in **2** with a standard solution of L-aspartate at 25°C. The titration profile (insert) indicates the formation of a 1:1 complex.

(DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of D-aspartate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

(DMSO- d_6 / H₂O = 4/1) upon addition of various quantities of L-aspartate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-12. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of D-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [D-aspartate] = 10 mM; (b) [**2**] = [D-aspartate] = 5 mM; (c) [**2**] = [D-aspartate] = 1 mM.

Figure SI-13. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of L-aspartate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [L-aspartate] = 10 mM; (b) [**2**] = [L-aspartate] = 5 mM; (c) [**2**] = [L-aspartate] = 1 mM.

Figure SI-14. ¹H NMR spectra change of **2** operated in the solution (DMSO- $d_6/H_2O=$ 4/1) after addition of 2.0 equivalents of anions: (a) **2** only; (b) **2**+ L-aspartate; (c) **2**+ D-aspartate.

Figure SI-15. Color changes of complex **2** upon addition of various anions in DMSO/H₂O (4/1, v/v): (a) **2** only; (b) **2** + 2.0 equiv. of L-malate; (c) **2** + 2.0 equiv. of D-malate.

Figure SI-16. ¹H NMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of D-malate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-17. ¹HNMR (400Hz) spectra of sensor **2** (10 mM) in the solution (DMSO- $d_6/H_2O = 4/1$) upon addition of various quantities of L-malate: (a) 0 eq.; (b) 0.2 eq.; (c) 1.0 eq.

Figure SI-18. ¹H NMR spectra change of **2** operated in the solution (DMSO- $d_6/H_2O=$ 4/1) after addition of 2.0 equivalents of anions: (a) **2** only; (b) **2**+ L-malate; (c) **2**+ D-malate.

D-malate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [D-malate] = 10 mM; (b) [**2**] = [D-malate] = 5 mM; (c) [**2**] = [D-malate] = 1 mM.

Figure SI-20. Dilution experiment by ¹H NMR of **2** in the presence of 1.0 equiv. of L-malate in the solution (DMSO- d_6 / H₂O = 4/1). (a) [**2**] = [L-malate] = 10 mM; (b) [**2**] = [L-malate] = 5 mM; (c) [**2**] = [L-malate] = 1 mM.