Electronic Supplementary Information

Facile synthesis of spiroisoquinolines based on photocycloaddition of isoquinoline-1,3,4-trione with oxazoles

Chengmei Huang^{*a*}, Haitao Yu^{*a*}, Zhengrui Miao^{*a*}, Jie Zhou^{*a*}, Shuai Wang^{*a*}, Hoong-Kun Fun^{*b*} and Yan Zhang^{**a*}

 ^a School of Chemistry and Chemical Engineering, Key Lab of Analytical Chemistry for Life Science, Ministry of Education of China, Nanjing University, Nanjing, 210093, P. R. China. Fax: (86)-25-83685976; Tel: (86)-25-83593072; E-Mail: <u>njuzy@nju.edu.cn</u>
^b X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Table of Contents

Description	Page number
Experimental description and Characterization of all the new compounds	ESI 2
Copies of ¹ HNMR and ¹³ CNMR spectra of all the new compounds and IR spectra of 2d 3d and 4d	ESI 8
Crystal structure of 3b and 4bi	ESI 33

Experimental description

General

All non-aqueous reactions were run under an inert atmosphere (nitrogen or argon) with rigid exclusion of moisture from reagents and glassware using standard techniques for manipulating air-sensitive compounds. All glassware was stored in the oven and/or was flame-dried prior to use under an inert atmosphere of gas. Flash column chromatography was performed using 300-400 mesh silica of the indicated solvent system according to standard technique. Nuclear magnetic resonance spectra were recorded on 300 MHz spectrometers. Chemical shifts for ¹HNMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform, 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q=quartet, m = multiplet and br = broad), coupling constant in Hz, integration, and assignment. Mass spectra were recorded on a LCQ FLEET mass spectrometer (ESI). Elemental analyses were performed on a Elementar Vario MICRO analyzer. Reagents: Commercial reagents were used as supplied or purified by standard techniques where necessary. Dichloromethane (DCM) and Chloroform were freshly distillated over calcium hydride prior use. CH₃CN was distillated from P₂O₅ firstly, then distillated from K₂CO₃.

Synthesis of substituted oxazoles.

1a-1d were prepared according to reported method reference 4c. **1e** and **1f** were prepared from L-Methionine methyl ester hydrochloride and L-Phenylalanine methyl ester hydrochloride respectively using similar method.

1e: yellow oil separated by petroleum ether/ ethyl acetate; yield 16%; ¹**H** NMR (300 MHz, CDCl₃) δ 3.71 (s, 3H), 2.42 (m, 4H), 2.13 (s, 3H), 1.92 (s, 3H); ¹³**C** NMR (75 MHz, CDCl₃) δ 154.8, 151.9, 113.6, 61.0, 32.7, 24.5, 15.1, 14.0; MS (ESI) *m*/*z* 188 [M+H]⁺; EA Calcd for C₈H₁₃NO₂S C, 51.31; H, 7.00; N, 7.48; found: C, 51.30; H, 7.11; N, 7.47.

1f: colorless oil separated by petroleum ether/ ethyl acetate; yield 53%; ¹**H** NMR (300 MHz, CDCl₃) δ 7.33–7.23 (m, 4H), 7.22–7.14 (m, 1H), 3.82 (s, 3H), 3.71 (s, 2H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 154.9, 152.2, 139.5, 128.5 (2C), 128.4(2C), 126.2, 114.7, 61.1, 30.9, 14.24; MS (ESI) *m/z* 204 [M+H]⁺; **EA** Calcd for C₁₂H₁₃NO₂ C,70.92; H, 6.45; N, 6.89; found: C, 70.96; H, 6.30; N, 6.87.

General procedures for preparative photolysis of IQT with 1a-1f.

The light source was a medium-pressure mercury lamp (500 W) in a cooling water jacket which was further surrounded by a layer of filter solution (1 cm thick, saturated aqueous NaNO₂) to cut off light of wavelength shorter than 400 nm. The solution of **IQT** (0.02M) and corresponding oxazoles **1a-1f** (0.08M) in anhydrous acetonitrile was purged with dry argon for 10 min and then irradiated under continuous argon purging. The reaction course was monitored by TLC. At the end of the reaction, the solvent was removed under reduced pressure and petroleum ether was added to the residue to precipitate the products. The crude products were further purified by recrystalization with acetone and petroleum ether to give pure spiroisoquinolineoxetane products **2a-2f**.

2a, white solid; ¹**H NMR** (300 MHz, CDCl₃) δ 8.20(d, J = 7.8 Hz, 1H), 7.62(t, J = 7.8 Hz, 1H), 7.53(t, J = 7.5 Hz, 1H), 7.30(d, J = 7.5 Hz, 1H), 5.06(s, 1H), 3.42(s, 3H), 3.11(s, 3H), 2.32(s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 171.1, 167.7, 167.4, 163.2, 134.0, 133.7, 129.8, 128.5, 125.4, 125.2, 83.9, 80.9, 52.0, 27.8, 14.0; **MS** (ESI) *m/z* 303 [M+H]⁺; **EA** Calcd for C₁₅H₁₄N₂O₅ C, 59.60; H, 4.67; N, 9.27; Found: C, 59.66; H, 4.601; N, 9.19.

2b, colourless crystal from acetone/petroleum ether; m.p. 164–166°C; ¹H NMR (300 MHz, CDCl₃) δ 8.20–8.17 (m, 1H), 7.82–7.79 (m, 1H), 7.74(dt, *J* = 7.8, 1.5 Hz, 1H), 7.58(dt, *J* = 7.2, 1.2 Hz, 1H), 3.76(s, 3H), 3.31(s, 3H), 2.16(s, 3H), 0.88(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 168.4, 163.6, 135.2, 133.6, 129.6, 128.9, 125.9, 125.2, 124.0, 88.6, 82.2, 52.3, 27.6, 14.8, 14.0; MS (ESI) *m/z* 317 [M+H]⁺; **EA** Calcd for C₁₆H₁₆N₂O₅ C, 60.75; H, 5.10; N, 8.86; Found: C, 60.80; H, 5.20; N, 8.78.

2c, colourless crystal from acetone/petroleum ether; m.p. 178–180°C; ¹H NMR (300 MHz, CDCl₃) δ 8.16(dd, J = 7.8, 0.9 Hz, 1H), 7.84(dd, J=7.5, 0.9 Hz, 1H), 7.74(dt, J = 7.8, 1.5 Hz, 1H), 7.58(dt, J = 7.8, 1.5 Hz, 1H), 3.79(s, 3H), 3.33(s, 3H), 2.20(s, 3H), 1.88–1.79(m, 1H), 0.73(d, J = 6.6 Hz, 3H), 0.40(d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.0, 168.6, 163.8, 136.0, 134.9, 134.4, 133.4, 129.7, 128.4, 127.0, 126.2, 88.5, 52.0, 27.7, 25.9, 17.3, 15.2, 14.8; MS (ESI) m/z 345 [M+H]⁺; EA Calcd for C₁₈H₂₀N₂O₅ C, 62.78; H, 5.85; N, 8.13; Found: C, 62.80; H, 5.81; N, 8.08.

2d, colourless crystal from acetone/petroleum ether; m.p. 148–150°C; ¹H NMR (300 MHz, CDCl₃) δ 8.17–8.14(m, 1H), 7.78–7.75(m, 1H), 7.71(dt, J = 7.2, 1.2 Hz, 1H), 7.55(dt, J = 7.8, 1.5 Hz, 1H), 3.77(s, 3H), 3.30(s, 3H), 2.16(s, 3H), 1.49–1.39(m, 1H), 1.11–0.95(m, 2H), 0.63(d, J = 6.6 Hz, 3H), 0.55(d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 167.7, 163.7, 135.1, 133.4, 129.5, 128.6, 126.2, 125.5, 88.9, 84.8, 76.6, 52.1, 35.8, 27.6, 23.7, 23.6, 22.5, 14.8; MS (ESI) *m/z* 359 [M+H]⁺; EA Calcd for C₁₉H₂₂N₂O₅ C, 63.67; H, 6.19; N, 7.82; Found: C, 63.68; H, 6.20; N, 7.85; IR (KBr pallet) 2872.1, 1736.6, 1690.5, 1678.1, 1664.3, 1658.8, 1600.6, 1423.2, 1225.2, 765.9 cm⁻¹.

2e, colourless crystal from acetone/ petroleum ether; m.p. $132-134^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 8.18(dd, J = 7.8, 0.6 Hz, 1H), 7.80(dd, J = 7.8, 1.2 Hz, 1H), 7.75(dt, J = 7.2, 1.2 Hz, 1H), 7.59(dt, J = 7.5, 1.5 Hz, 1H), 3.78(s, 3H), 3.31(s, 3H), 2.33–2.23(m, 1H), 2.17(s, 3H), 2.09–1.99(m, 1H), 1.78(s, 3H), 1.6–1.4(m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 169.1, 163.5, 134.7, 133.7, 129.9, 129.0, 126.2, 125.4, 123.7, 88.5, 84.0, 52.3, 27.8, 27.7, 15.2, 14.9; MS (ESI) *m/z* 377 [M+H]⁺; EA Calcd for C₁₈H₂₀N₂O₅S C, 57.43; H, 5.36; N, 7.44; Found: C, 57.48; H, 5.31; N, 7.48.

2f, colourless crystal from acetone/ petroleum ether; m.p. 190–192°C; ¹H NMR (300 MHz, CDCl₃) δ 7.91(dd, J = 7.2, 5.1 Hz, 2H), 7.74(dt, J = 7.5, 1.2 Hz, 1H), 7.51(dt, J = 7.5, 1.2 Hz, 1H), 7.11–7.00(m, 3H), 6.87(d, J = 7.2 Hz, 2H), 3.82(s, 3H), 3.25(s, 3H), 2.76(d, J = 14.7 Hz, 1H), 2.54(d, J = 15 Hz, 1H), 2.12(s, 3H); ¹³C NMR (75 MHz, CDCl3) δ 169.7, 168.1, 163.1, 134.8, 133.3, 129.5, 129.2, 128.5, 128.0, 126.6, 126.0, 125.8, 124.0, 87.8, 84.4, 52.4, 33.9, 27.6, 14.8; **MS** (ESI) *m/z* 393 [M+H]⁺; **EA** Calcd for C₂₂H₂₀N₂O₅ C, 67.34; H, 5.14; N, 7.14; Found: C, 67.41; H, 5.17; N, 7.18.

Hydrolysis of 2a-2f using concentrated HCl

To a solution of the spirooxetane (**2a-2f**) in DCM (0.1M) was added corresponding amount of concentrated HCl. The mixture was stirred at room temperature and monitored by TLC. Upon complete conversion, the reaction mixture was poured into water and neutralized to pH=8 with NaHCO₃. The mixture was extracted with DCM. The organic layer was dried over MgSO₄. The solvent was removed under vacum, and the crude product were separated by flash column chromatography on 300-400 mesh silica gel (petroleum ether/ethyl acetate) to give the final products.

3a, white powder; m.p. 180–182°C; ¹**H** NMR (300 MHz, CDCl₃) δ 8.17(d, J = 8.1 Hz, 1H), 7.66(dd, J = 5.1, 1.2 Hz, 2H), 7.57–7.51(m, 1H), 6.27(d, J = 9.0 Hz, 1H), 5.04(d, J = 8.1 Hz, 1H), 4.57(s, 1H), 3.51(s, 3H), 3.36(s, 3H), 2.00(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 170.0, 168.0, 163.7, 136.0, 133.5, 129.4, 128.6, 125.5, 125.0, 76.1, 61.3, 52.7, 27.8, 22.8; MS (ESI) *m/z* 321 [M+H]⁺; EA Calcd for C₁₅H₁₆N₂O₆ C, 56.25; H, 5.04; N, 8.75; Found: C, 56.18; H, 5.11; N, 8.78.

3b, colourless crystal from acetone/ petroleum ether; m.p. 164–166°C; ¹H NMR (300 MHz, CDCl₃) δ 8.13(d, J = 7.8 Hz, 1H), 7.68–7.59(m, 2H), 7.54(dt, J = 6.9, 1.5 Hz, 1H), 6.54(s, 1H), 5.30(s, 1H), 3.65(s, 3H), 3.34(s, 3H), 1.94(s, 3H), 1.51(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 171.1, 170.0, 164.2, 135.7, 133.0, 129.4, 128.1, 126.7, 126.2, 77.9, 66.8, 53.1, 27.9, 23.6, 18.2; MS (ESI) *m/z* 335 [M+H]⁺; EA Calcd for C₁₆H₁₈N₂O₆ C, 57.48; H, 5.43; N, 8.38; Found: C, 57.51; H, 5.34; N, 8.38.

4b, colourless crystal from acetone/ petroleum ether; m.p. 142–144°C; ¹**H** NMR (300 MHz, CDCl₃) δ 8.16(dd, J = 7.2, 1.5 Hz, 1H), 7.57(dt, J=7.2, 1.5 Hz, 1H), 7.51(dt, J = 7.5, 1.5 Hz, 1H), 7.30(dd, J = 7.5, 1.2 Hz, 1H), 3.39(s, 3H), 3.07(s, 3H), 2.33(s, 3H), 1.49(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 169.3, 165.8, 163.6, 134.7, 133.3, 129.6, 128.5, 125.8, 124.8, 88.2, 85.3, 52.2, 27.3, 22.3, 14.1; **MS** (ESI) *m/z* 317 [M+H]⁺; **EA** Calcd for C₁₆H₁₆N₂O₅ C, 60.75; H, 5.10; N, 8.86; Found: C, 60.69; H, 5.14; N, 8.78.

4bi, colourless crystal from acetone/ petroleum ether; m.p. $135-137^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 8.24(dd, J = 7.8, 1.2 Hz, 1H), 7.68(dt, J = 7.5, 1.2 Hz, 1H), 7.58(dt, J = 7.5, 1.2 Hz, 1H), 7.43(dd, J = 7.5, 1.5 Hz, 1H), 3.70(s, 3H), 3.30(s, 3H), 2.31(s, 3H), 1.02(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 170.4, 165.5, 163.5, 133.9, 133.0, 129.7, 129.2, 126.1, 125.7, 87.8, 84.4, 53.2, 27.6, 24.5, 14.1; MS (ESI) *m/z* 317 [M+H]⁺; EA Calcd for C₁₆H₁₆N₂O₅ C, 60.75; H, 5.10; N, 8.86; Found: C, 60.71; H, 5.08; N, 8.84.

4c, colourless crystal from acetone/petroleum ether; m.p. 139–142°C; ¹H NMR (300 MHz, CDCl₃) δ 8.13(dd, J = 7.8, 1.2 Hz, 1H), 7.61–7.48(m, 2H), 7.15(dd, J = 7.8, 0.9 Hz, 1H), 3.42(s, 3H), 3.14(s, 3H), 2.44(s, 3H), 2.16–2.07(m, 1H), 1.04(d, J = 6.6 Hz, 3H), 0.91(d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 164.9, 164.0, 135.0, 133.2, 129.5, 127.9, 126.4, 124.4, 93.1, 89.0, 51.6, 35.1, 27.9, 20.3, 17.5, 13.8; **MS** (ESI) *m/z* 345 [M+H]⁺; **EA** Calcd for C₁₈H₂₀N₂O₅ C, 62.78; H, 5.85; N, 8.13; Found: C, 62.72; H, 5.79; N, 8.18.

3d, colourless crystal from acetone/petroleum ether; m.p. 128–130°C; ¹H NMR (300 MHz, CDCl₃) δ 8.08(d, J = 7.5 Hz, 1H), 7.70–7.61(m, 2H), 7.50(dt, J = 7.8, 1.8 Hz, 1H), 6.49(s, 1H), 5.47(s, 1H), 3.72(s, 3H), 3.33(s, 3H), 2.87(dd, J = 14.4, 4.2 Hz, 1H), 1.92(s, 3H), 1.90–1.82(m, 1H), 1.39–1.31(m, 1H), 0.84(d, J = 6.6 Hz, 3H), 0.65(d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 171.6, 170.2, 164.6, 136.0, 132.7, 129.2, 127.9, 127.2, 126.1, 80.2, 72.7, 53.4, 35.7, 27.8, 25.1, 24.2, 23.8, 21.7; MS (ESI) *m/z* 377 [M+H]⁺; EA Calcd for C₁₉H₂₄N₂O₆ C, 60.63; H, 6.43; N, 7.44; Found: C, 60.69; H, 6.50; N, 7.48; IR (KBr pallet) 3326.6, 2871.4, 1743.3, 1724.0, 1674.6, 1639.2, 1605.9, 1523.2, 1420.8, 1236.1, 1208.3, 1163.4, 761.8 cm⁻¹.

4d, colourless crystal from acetone/petroleum ether; m.p. $148-150^{\circ}$ C; ¹**H** NMR (300 MHz, CDCl₃) δ 8.14(dd, J = 7.5, 1.2 Hz, 1H), 7.58(dt, J = 7.5, 1.2 Hz, 1H), 7.50(dt, J = 7.5, 0.9 Hz, 1H), 7.23(d, J = 8.1 Hz, 1H), 3.39(s, 3H), 3.04(s, 3H), 2.34(s, 3H), 1.79–1.58(m, 3H), 0.95(d, J = 6.3 Hz, 3H), 0.76(d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 167.8, 163.8, 135.2, 133.5, 129.6, 128.7, 126.3, 125.6, 124.1, 88.9, 84.8, 52.2, 35.8, 27.7, 23.8, 23.7, 22.5, 14.9; MS (ESI) *m/z* 359 [M+H]⁺; EA Calcd for C₁₉H₂₂N₂O₅ C, 63.67; H, 6.19; N, 7.82; Found: C, 63.69; H, 6.14; N, 7.78; **IR** (KBr pallet) 2871.1, 1754.1, 1726.6; 1678.1, 1600.8, 1428.7, 1238.7, 1147.5, 765.3 cm⁻¹.

3e, colourless crystal from acetone/petroleum ether; m.p. 124–126°C; ¹H NMR (300 MHz, CDCl₃) δ 8.08(dd, J = 7.8, 0.9 Hz, 1H), 7.72(dd, J = 8.1, 1.2 Hz, 1H), 7.64(dt, J = 7.2, 1.2 Hz, 1H), 7.52(dt, J = 7.8, 1.2 Hz, 1H), 6.40(s, 1H), 4.95(s, 1H), 3.77(s, 3H), 3.32(s, 3H), 3.19–3.10(m, 1H), 2.39–2.19(m, 2H), 2.06–1.99(m, 1H), 1.97(s, 3H), 1.86(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 170.7, 169.4, 164.5, 135.3, 132.9, 129.4, 127.9, 127.1, 126.2, 79.7, 72.7, 53.8, 29.3, 27.8, 27.6, 24.2, 15.4; MS (ESI)

m/z 395 [M+H]⁺; **EA** Calcd for C₁₈H₂₂N₂O₆S C, 54.81; H, 5.62; N, 7.10; Found: C, 54.71; H, 5.64; N, 7.18.

4e, colourless crystal from acetone/ petroleum ether; m.p. 143–145°C; ¹H NMR (300 MHz, CDCl₃) δ 8.14(dd, J = 7.5, 1.5 Hz, 1H), 7.58(dt, J = 7.5, 1.5 Hz, 1H), 7.50(dd, J = 7.5, 1.2 Hz, 1H), 7.24(dd, J = 7.5, 0.9 Hz, 1H), 3.39(s, 3H), 3.05(s, 3H), 2.70(dt, J = 10.8, 4.5 Hz, 1H), 2.32(s, 3H), 2.25(dt, J = 11.4, 5.4 Hz, 1H), 2.06(dt, J = 12.3, 5.1 Hz, 1H), 2.01(s, 3H), 1.92(dt, J = 12.6, 4.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 166.0, 163.5, 134.5, 133.3, 129.6, 128.5, 125.8, 124.7, 88.7, 52.1, 36.1, 29.8, 27.4, 15.5, 14.1; MS (ESI) *m/z* 377 [M+H]⁺; EA Calcd for C₁₈H₂₀N₂O₅S C, 57.43; H, 5.36; N, 7.44; Found: C, 57.42; H, 5.34; N, 7.40.

3f, colourless crystal from acetone/petroleum ether; m.p. 133–135°C; ¹H NMR (300 MHz, CDCl₃) δ 8.12(dd, J = 7.8, 0.9 Hz, 1H), 7.74(dd, J = 7.8, 0.9 Hz, 1H), 7.67(dt, J = 7.5, 1.5 Hz, 1H), 7.54(dt, J = 7.5, 1.5 Hz, 1H), 7.18–7.16(m, 3H), 6.99–6.96(m, 2H), 6.33(s, 1H), 6.15(s, 1H), 4.24(d, J = 13.8 Hz, 1H), 3.72(s, 3H), 3.43(d, J = 14.1 Hz, 1H), 3.37(s, 3H), 1.86(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 171.4, 170.0, 164.4, 136.5, 135.1, 132.9, 129.7, 129.4, 128.3, 128.1, 128.0, 127.3, 127.1, 126.0, 79.8, 74.5, 53.6, 33.1, 27.8, 24.3; MS (ESI) *m/z* 411 [M+H]⁺; EA Calcd for C₂₂H₂₂N₂O₆ C, 64.38; H, 5.40; N, 6.83; Found: C, 64.31; H, 5.39; N, 6.88.

4f, colourless crystal from acetone/petroleum ether; m.p. 179–181°C; ¹H NMR (300 MHz, CDCl₃) δ 8.19(d, J = 7.5 Hz, 1H), 7.60–7.48(m, 2H), 7.26–7.17(m, 6H), 3.45(s, 3H), 3.01(s, 2H), 2.94(s, 3H), 2.38(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 168.6, 165.4, 163.7, 135.1, 134.9, 133.5, 130.5, 129.6, 128.5, 128.1, 127.1, 125.9, 124.6, 90.2, 88.3, 51.7, 42.2, 27.5, 14.2; MS (ESI) *m/z* 393 [M+H]⁺; **EA** Calcd for C₂₂H₂₀N₂O₅ C, 67.34; H, 5.14; N, 7.14; Found: C, 67.31; H, 5.09; N, 7.08.

Transformation of 2b to 4b and 4bi catalyzed by different acids:

To a solution of the spirooxetane **2b** in anhydrous acetonitrile (0.02M) was added corresponding amount of organic acid or Lewis acid. The mixture was stirred at room temperature and monitored by TLC. Upon complete conversion, the reaction mixture was poured into water (When 10eq. amount of Lewis acid was used, the mixture should be poured into saturated aqueous NaHCO₃ instead of water) and extracted with ethyl acetate. The combined organic layer was washed by brine and dried over MgSO₄. The solvent was removed under vacum, and the crude products were separated by flash column chromatography on 300-400 mesh silica gel (petroleum ether/ethyl acetate) to give the final products. Copies of ¹HNMR and ¹³CNMR spectra of all the new compounds and IR spectra of 2d 3d and 4d 1e-¹H NMR(CDCl₃):

1f-¹H NMR(CDCl₃):

2b-¹H NMR(CDCl₃):

2c-¹H NMR(CDCl₃):

2d-¹H NMR(CDCl₃):

2d-¹³C NMR(CDCl₃):

2d-IR (KBr pallet):

2e-¹H NMR(CDCl₃):

2e-¹³C NMR(CDCl₃):

2f-¹H NMR(CDCl₃):

2f-¹³C NMR(CDCl₃):

3b-¹H NMR(CDCl₃):

3b-¹³C NMR(CDCl₃):

4b-¹H NMR(CDCl₃):

4b-¹³C NMR(CDCl₃):

3d-¹³C NMR(CDCl₃):

4d-IR (KBr, pallet):

3e-¹H NMR(CDCl₃):

3e-¹³C NMR(CDCl₃):

4e-¹³C NMR(CDCl₃):

3f-¹H NMR(CDCl₃):

3f-¹³C NMR(CDCl₃):

4f-¹H NMR(CDCl₃):

4f-¹³C NMR(CDCl₃):

¹HNMR of crude products from different acids catalyzed transformation of 2b to 4b:

2b treated with 0.15eq. $BF_3 \cdot OEt_2$

Electronic Supplementary Material (ESI) for Organdic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Crystal structure of 3b:

Crystal structure of 4bi:

