Supporting Information

Base-free two-step synthesis of $\mathbf{1 , 3}$-diketones and β-ketoesteres from α-diazocarbonyl compunds, trialkylboranes, and aromatic aldehydes

Miguel A. Sanchez-Carmona, David A. Contreras-Cruz and Luis D. Miranda
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán México D. F. 04510, México.

Experimental Part	S2-S9
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra	S10-S30

Experimental Methods

General. All reagents and solvents were obtained from Aldrich and Fluka. Tetrahydrofuran was freshly distilled from sodium/benzophenone, Melting points were determined on a Fisher apparatus and are uncorrected. All reactions were performed under a dry Ar atmosphere unless otherwise specified. Reaction progress was monitored by analytical thinlayer chromatography using GF silica plates purchased from Merck. Visualization was achieved by short-wave UV light (254 nm). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on both a Varian Gemini-200 and JEOL Eclipse-300 model spectrometers using CDCl_{3} as solvent. Chemical shifts are reported as parts per million downfield from an internal tetramethylsilane standard ($\delta=0.0$ for ${ }^{1} \mathrm{H}$) or from solvent references. NMR coupling constants are reported in hertz (Hz). IR spectra were obtained with a Nicolet Magna 750 FT-IR spectrometer. Low- and high-resolution electron impact mass spectra were obtained on JEOL JMS-AX505HA spectrometer.

General procedure for the synthesis of aldols. (5a-k) To a stirred solution of aldehyde (1 eq), and trialkylborane or triphenylborane 1 M (3 eq.), in THF under argon, a solution of diazoketone(1 eq.) in THF was added dropwise. Then, the reaction mixture was stirred at room temperature until disappearance of diketone as evident by TLC analysis ($\sim 1 \mathrm{~h}$). The solvent was removed under reduced pressure and the crude oil obtained was purified by flash chromatography eluting with a hexane/ethyl acetate (9:1) solvent system.

General procedure for the oxidation of aldols to 1,3 diketones. To a stirred solution of the corresponding aldol $\mathbf{5 a - f}(1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and 1 g of molecular sieves $4 \AA$, PCC (5 eq.) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h , and then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and pass through a short celite plug. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography eluting with a hexane/ethyl acetate (9:1) solvent system.

2-Ethyl-1,3-Bisphenylpropane-1,3-dione (6a). 2-Diazo-1-phenyletanone 1a ($0.15 \mathrm{~g}, 1$ mmol) was reacted with triethylborane 1 M in THF 2a (3 mmol) and benzaldehyde $\mathbf{4 a}$ $(0.11 \mathrm{~g}, 1 \mathrm{mmol})$ according to the general procedure to provide $\mathbf{5 a}(0.1 \mathrm{~g}, 41 \%)$. Then, $\mathbf{5 a}$ was oxidized with PCC to afford $\mathbf{6 a}$ as a white solid ($0.06 \mathrm{~g}, 58 \%$) Mp: $81-85^{\circ} \mathrm{C}$.

Spectral data were identical with those reported previously: ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta=1.05(\mathrm{t}, 3 \mathrm{H}, J=7.4), 2.17(\mathrm{q}, 2 \mathrm{H}, J=7.4), 5.12(\mathrm{t}, 1 \mathrm{H}, J=6.5) 7.42-7.58(\mathrm{~m}$, $6 \mathrm{H}), 7.94-7.98(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=12.8,22.9,58.7,128.5,128.8$, 133.4, 136.1, 196.1.

2-Ethyl-1(4-methylphenyl), 3-Phenyl-propane-1,3-dione (6b). 2-Diazo-1-(4-methylphenyl)-etanone $\mathbf{1 b}(0.1 \mathrm{~g}, 0.625 \mathrm{mmol})$ was reacted with triethylborane 1 M in THF 2a (1.9 mmol) and benzaldehyde $\mathbf{4 a}(0.07 \mathrm{~g}, 0.625 \mathrm{mmol})$ according to the general procedure to afford $\mathbf{5 b}(0.095 \mathrm{~g}, 56 \%)$. Then, $\mathbf{5 b}$ was oxidized with PCC to afford $\mathbf{6 b}$ as a withe oil $(73 \%),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.04(\mathrm{t}, 3 \mathrm{H}, J=7.4), 2.15(\mathrm{q}, 2 \mathrm{H}, J$ $=7.4), 2.39(\mathrm{~s}, 3 \mathrm{H}), 5.08(\mathrm{t}, 1 \mathrm{H}, J=6.5), 7.25-7.23(\mathrm{~d}, 2 \mathrm{H}, J=8), 7.45-7.41(\mathrm{t}, 2 \mathrm{H}, J=$ $7.4,7.1), 7.56-7.52(\mathrm{t}, 1 \mathrm{H}, J=7.1), 7.88-7.86(\mathrm{~d}, 2 \mathrm{H}, J=8), 7.96-7.94(\mathrm{~d}, 2 \mathrm{H}, J=$ 7.4); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=12.8,21.6,22.9,58.7,128.5,128.7,128.8,129.5$, 133,3, 133.7, 136.3, 144.4, 195.8, 196.2; IR (film) 3370, 3060, 2969, 2931, 2876, 1694, 1668, 1604, $449 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} 267.1385$, found 267.1382.

2-Ethyl-1,3-bis(4-methylphenyl)propane-1,3-dione
 (6c). 2-Diazo-1-(4-

 methylphenyl)-etanone $\mathbf{1 b}(0.1 \mathrm{~g}, 0.625 \mathrm{mmol})$ was reacted with triethylborane 1 M in THF 2a (1.87 mmol) and tolualdehyde $\mathbf{4 b}(0.075 \mathrm{~g}, 0.625 \mathrm{mmol})$ according to the general procedure to afford $\mathbf{5 c}(0.17 \mathrm{~g}, 96 \%)$. Then, $\mathbf{5 c}$ was oxidized with PCC to obtain 6 c as a white solid $(0.1 \mathrm{~g}, 60 \%) \mathrm{Mp}: 75-78^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ 1.03 (t, 3H, $J=7.4$), 2.15 (quint, $2 \mathrm{H}, J=7.11$), 2.38 (s, 6 H), 5.0 (t, $1 \mathrm{H}, \mathrm{J}=7.3$), $7.24-$ $7.21(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8), 7.88-7.85(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=12.8,21.6$, 22.9, 58.3, 128.7, 129.5, 133.8, 144.2, 195.9; IR (KBr) 2971, 2930, 2859, 1689, 1661, 1604, $1449 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ 281.1542, found 281.1537 .2-Ethyl-1,3-bis(4-methoxyphenyl)propane-1,3-dione (6d). 2-Diazo-1-(4-methoxy-phenyl)-etanone $\mathbf{1 c}(0.1 \mathrm{~g}, 0.57 \mathrm{mmol})$ was reacted with tri- n - triethylborane 1 M in THF $\mathbf{2 a}(1.71 \mathrm{mmol})$ and anisaldehyde $\mathbf{4 c}(0.077 \mathrm{~g}, 0.57 \mathrm{mmol})$ according to the general procedure to provide $\mathbf{5 d}(0.18 \mathrm{~g}, 98 \%)$. Then, $\mathbf{5 d}$ was oxidized with PCC to obtain $\mathbf{6 d}$ like pale yellow oil ($0.1 \mathrm{~g}, 56 \%$). Spectral data were identical with those reported before: ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.03(\mathrm{t}, 3 \mathrm{H}, J=7.4), 2.15(\mathrm{q}, 2 \mathrm{H}, J=7.1), 3.84$

[^0](s, 6H), $4.94(\mathrm{t}, 1 \mathrm{H}, J=6.6), 6.87(2 \mathrm{H}, J=8.8,2.1), 7.94(2 \mathrm{H}, J=8.5,2.3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 75 \mathrm{MHz}\right) \delta=12.8,23.1,55.5,59.2,113.9,129.4,130.9,163.7,194.9$.

2-Propyl-1,3-bis(4-methoxyphenyl)propane-1,3-dione (6e). 2-Diazo-1-(4-

 methoxyphenyl)-etanone $\mathbf{1 c}(0.2 \mathrm{~g}, 1.136 \mathrm{mmol})$ was reacted with tri-n-propylborane 1M in THF 2b (3 mmol) and anisaldehyde $\mathbf{4 c}(0.154 \mathrm{~g}, 1.136 \mathrm{mmol})$ according to the general procedure to provide $\mathbf{5 e}(0.28 \mathrm{~g}, 75 \%)$. Then $\mathbf{5 e}$ was oxidized with PCC to obtain $6 \mathbf{e}$ as white oil (63%). Spectral data were identical with those reported before: ${ }^{1}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=0.95(\mathrm{t}, 3 \mathrm{H}, J=7.4), 1.36-1.47(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.11(\mathrm{~m}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 5.05(\mathrm{t}, 1 \mathrm{H}, J=6.7), 6.90(2 \mathrm{H}, J=9.0,2.5), 7.95(2 \mathrm{H}, J=9.0,2.5)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.1,21.5,31.7,55.4,57.3,113.9,129.2,130.9,163.6$, 194.8.2-Phenyl-1,3-bis(4-methylphenyl)propane-1,3-dione (6f). 2-Diazo-1-(4-methylphenyl)-etanone $\mathbf{1 b}(0.1 \mathrm{~g}, 0.645 \mathrm{mmol})$ was reacted with triphenylborane 1 M in THF 2c (3 mmol) and tolualdehyde $\mathbf{4 b}(0.078 \mathrm{~g}, 0.645 \mathrm{mmol})$ according to the general procedure to provide $\mathbf{5 f}(0.153 \mathrm{~g}, 72 \%)$. Then, $\mathbf{5 f}$ was oxidized with PCC to afford $\mathbf{6 f}$ as a yellow solid (65%) Mp: $115-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.37(\mathrm{~s}, 6 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.3,0.3), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.36(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ 7.1), $7.88-7.85(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8), ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=21.6,62.6,127.8$, 128.2, 128.8, 128.9, 129.4, 129.9, 133.4, 144.3, 193.5. IR ($\mathrm{Sol} \mathrm{CHCl}_{3}$) 3031, 2927, 2855, 1697, 1672, 1606, $1454 \mathrm{~cm}^{-1}$. HRMS (EI, M+) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$ 328.1463, found 328.1458.

Ethyl-2-Benzoyl-butanoate (6g)

Compound $\mathbf{6 g}$ was report by Li ${ }^{2,}$ Ethyl diazoacetate ($0.1 \mathrm{~g}, 0.88 \mathrm{mmol}$) was reacted with triethylborane 1 M in THF 2a (2.6 mmol) and benzaldehyde $\mathbf{4 a}(0.09 \mathrm{~g}, 0.88 \mathrm{mmol})$ according to the general procedure. The resulting dark yellow residue was purified by flash column chromatography to provide $\mathbf{5 g}(0.1 \mathrm{~g}, 51 \%)$, then it was oxidized with PCC to obtain $\mathbf{6 g}$ as a yellow oil $(0.035 \mathrm{~g}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.0$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.99-2.09(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$,

[^1]$4.21(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.44-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta=12.2,14.0,22.4,55.9,61.3,128.6,128.7,133.4,136.4,170.0,195.3$.

Ethyl-2-(4-methyl-Benzoyl)-butanoate (6h)

Ethyl diazoacetate ($0.1 \mathrm{~g}, 0.88 \mathrm{mmol}$) was reacted with triethylborane 1M in THF 2a (2.6 mmol) and p-tolualdehyde $\mathbf{4 b}(0.1 \mathrm{~g}, 0.88 \mathrm{mmol})$ according to the general procedure. The resulting dark yellow residue was purified by flash column chromatography to provide $\mathbf{5 h}(0.15 \mathrm{~g}, 75 \%)$, then it was oxidized with PCC to obtain 6h as a clear oil $(0.046 \mathrm{~g}, 30 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=0.99(\mathrm{t}, 3 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.98-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 4.1-4.2(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 7.25-7.28 (dd, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $7.87-7.90(\mathrm{dd}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=12.1,14.0,21.6,22.4,55.7,61.2,128.7,129.4,133.9$, 144.3, 170.1, 194.8; IR (film) 1738, $1683 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ 235.1334, found 235.1335 .

Ethyl-2-(4-methoxy-Benzoyl)-butanoate (6i)

Ethyl diazoacetate ($0.1 \mathrm{~g}, 0.88 \mathrm{mmol}$) was reacted with triethylborane 1 M in THF 2a (2.6 mmol) and p -anisaldehyde $4 \mathrm{c}(0.12 \mathrm{~g}, 0.88 \mathrm{mmol})$ according to the general procedure. The resulting dark yellow residue was purified by flash column chromatography to provide $\mathbf{5 i}(0.16 \mathrm{~g}, 74 \%$), then it was oxidized with PCC to obtain $\mathbf{6 i}$ as a clear oil ($0.057 \mathrm{~g}, 35 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=0.98(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.95-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.16(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.92-6.99$ (dd, $2 \mathrm{H}, J=9 \mathrm{~Hz}$), $7.95-8.0(\mathrm{dd}, 2 \mathrm{H}, J=9 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=$ $12.1,14.0,22.4,55.5,55.6,61.2,113.8,129.4,130.9,163.8,170.2,193.6$; IR (film) 1737, $1678 \mathrm{~cm}^{-1} ;$ HRMS (EI, M+) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} 251.128$, found 251.1283.

Ethyl-2-phenyl-3-oxo-2-phenylpropanoate (6j)

Compound d was report by Ibata^{3}, ethyl diazoacetate $(0.1 \mathrm{~g}, 0.88 \mathrm{mmol})$ was reacted with triphenylborane 1 M in THF 2c $(2.6 \mathrm{mmol})$ and benzaldehyde $4 \mathrm{a}(0.09 \mathrm{~g}, 0.88$ mmol) according to the general procedure. The resulting dark yellow residue was purified by flash column chromatography to provide $\mathbf{5 j}$ ($0.09 \mathrm{~g}, 38 \%$), then it was oxidized with PCC to obtain $\mathbf{6 j}$ as a clear oil $(0.036 \mathrm{~g}, 40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$

[^2]$\mathrm{MHz}) \delta=1.24(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.31(\mathrm{~m}$, $8 \mathrm{H}), 8.11-7.94(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.0,60.6,61.7,128.1$, 128.7, 128.8, 128.9, 129.6, 130.2, 133.4, 134.8, 168.7, 193.2.

Ethyl-2-(4-methylphenyl)-3-oxo-2-phenylpropanoate (6k)

Ethyl diazoacetate ($0.1 \mathrm{~g}, 0.88 \mathrm{mmol}$) was reacted with triphenylborane 1M in THF 2c (2.6 mmol) and p -tolualdehyde $\mathbf{4 b}(0.1 \mathrm{~g}, 0.88 \mathrm{mmol})$ according to the general procedure. The resulting dark yellow residue was purified by flash column chromatography to provide $\mathbf{5 k}(0.1 \mathrm{~g}, 40 \%)$, then it was oxidized with PCC to obtain $\mathbf{6 k}$ as a clear oil $(0.041 \mathrm{~g}, 41 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $2.38(\mathrm{~s}, 3 \mathrm{H}$), $4.23(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.24(\mathrm{dd}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 7.27-7.44 (m, 5H), 7.30-7.44 (m, 5H), 7.86-7.89 (dd, 2H, $J=8.4 \mathrm{~Hz}) ~ p p m ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.0,21.6,60.4,61.6,127.9,128.7,129.0,129.3,129.5,130.0$, 133.1, 144.4, 168.8, 192.8; IR (film) 1745, $1679 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} 283.1335$, found 283.1334 .

General procedure for pyrazole synthesis. Methode A: To a stirred solution of 1,3 diketone (1 eq) in 5 ml of MeCN was added the corresponding hidrazine (1.4 eq.) and CAN ($3 \mathrm{~mol} \%$). The mixture was heated under reflux for 3 h . Then the reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The organic phase was removed dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by a silica gel flash chromatography using EtOAc/hexanes as eluting solvent system. Method B: To a stirred solution of 1,3 diketone (1 eq) in 40 ml of a DMF/THF system (3:1), pmethoxyphenylhydrazine hydrochloride (3-5 eq.), was added. The mixture was brought to reflux and the reaction progress was monitored by TLC analysis (10-20 h). Then the reaction mixture was allowed to cool to room temperature and diluted with H 2 O (30 mL). The product was repeatedly extracted with EtOAc ($3 \times 25 \mathrm{~mL}$) and the combined organic layers was sequentially washed with a saturated LiCl solution (25 mL), saturated NaHSO3 (25 mL), and brine (25 mL). The organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure to afford a crude oil, which was purified by flash chromatography using EtOAc/hexanes as eluting solvent system.

4-Ethyl-1-(4-methoxyphenyl)-3-phenyl-5-(4-methylphenyl)-pyrazole (8a). Diketone $\mathbf{6 b}(0.1 \mathrm{~g}, 0.37 \mathrm{mmol})$ was reacted with p-methoxy phenylhydrazine chlorohydrate 7b $(0.19 \mathrm{~g}, 1.11 \mathrm{mmol})$ according to the general procedure (Method A) to provide the title product 8 a as a yellow oil $(0.081 \mathrm{~g}, 60 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=1.03(\mathrm{t}, 3 \mathrm{H}$, $J=1.9 \mathrm{~Hz}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{q}, 2 \mathrm{H}, J=1.9 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.78(\mathrm{dd}, 2 \mathrm{H}), 7.97-7.1$ $(\mathrm{m}, 9 \mathrm{H}), 7.67-7.80(\mathrm{dd}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=15.45,17.06,21.32$, 55.41, 113.88, 120.39, 127.46, 128.01, 128.52, 129.25, 129.91, 130.07, 137.79, 138.3, 141.85, 149.88, 150.75, 158.55; IR ($\mathrm{Sol} \mathrm{CHCl}_{3}$) 2966, 2932, 2870, 1607, 1514, 1460 $\mathrm{cm}^{-1} ;$ MS (EI, 70 eV) $368 \mathrm{~m} / \mathrm{z}(\mathrm{M}+$).

4-Ethyl-1-(4-methoxyphenyl)-3,5-bisphenyl-pyrazole (8b). Diketone 6a (0.038 g, $0.15 \mathrm{mmol})$ was reacted with p-methoxy phenylhydrazine chlorohydrate $7 \mathrm{~b}(0.13 \mathrm{~g}$, 0.75 mmol) according to the general procedure to provide the title product $\mathbf{8 b}$ as a yellow oil ($0.052 \mathrm{~g}, 98 \%$). Spectral data were identical with those reported previously: ${ }^{1}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.04(\mathrm{t}, 3 \mathrm{H}, J=7.5), 2.65(\mathrm{q}, 2 \mathrm{H}, J=7.5), 3.77(\mathrm{~s}, 1 \mathrm{H})$, 6.77 (, 2H, $J=1.0,2.2$), 7.19 (, 2H, $J=9.1,2.2$), 7.23-7.48 (m, 9H), 7.78 (, $2 \mathrm{H}, J=8.2$, 2.5); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=15.6,17.1,55.4,113.8,120.4,126.1,127.5$, 127.9, 128.1, 128.41, 128.45, 130.1, 130.9, 133.4, 134.2, 141.2, 150.4, 158.2.

4-Ethyl-1-phenyl-3,5-bis(4-methylphenyl)-pyrazole (8c) Diketone 6c (0.05 g, 0.178 mmol) was reacted with phenylhydrazine $7 \mathrm{a}(0.036 \mathrm{~g}, 0.25 \mathrm{mmol})$ according to the general procedure to provide the title product $\mathbf{8 c}$ as a yellow solid ($0.034 \mathrm{~g}, 54 \%) . \mathrm{Mp}$: $107-110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.03(\mathrm{t}, 3 \mathrm{H}, J=7.5), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{~s}$, $3 \mathrm{H}), 2.64(\mathrm{q}, 2 \mathrm{H}, J=7.5), 7.11-7.31(\mathrm{~m}, 11 \mathrm{H}), 7.66-7.69(\mathrm{~d}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta=15.5,17.1,21.3,21.34,120.7,124.7,126.6,127.8,127.9,128.5,129.1,129.2$, 129.9, 131.0, 137.3, 138.1, 140.0, 141.3, 150.7; IR ($\mathrm{Sol} \mathrm{CHCl}_{3}$) 3022, 2966, 2928, 1598, 1502, $1452 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} 353.2018$, found 353.2016.

4-Ethyl-3,5-bis(4-methoxyphenyl)-1-phenyl-pyrazole (8d). Diketone 6d (0.05 g, 0.16 $\mathrm{mmol})$ was reacted with phenylhydrazine $7 \mathrm{a}(0.032 \mathrm{~g}, 0.22 \mathrm{mmol})$ according to the general procedure to provide the title product $\mathbf{8 d}$ as a pale yellow solid $(0.03 \mathrm{~g}, 49 \%)$. Spectral data were identical with those reported previously: ${ }^{1} \mathrm{Mp}: 120-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.04(\mathrm{t}, 3 \mathrm{H}, J=7.6), 2.63(\mathrm{q}, 2 \mathrm{H}, J=7.6), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 6.90(, 2 \mathrm{H}, J=8.8,2.4), 6.99$ (, 2H, $J=8.8,2.6), 7.17$ (, 2H, $J=8.8,2.4), 7.20(\mathrm{~m}$,
$2 \mathrm{H}), 7.24(\mathrm{~m}, 3 \mathrm{H}), 7.72(, 2 \mathrm{H}, J) 9.0,2.4) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=15.5,17.1$, $55.2,55.3,114.1,114.2,120.7,123.5,124.8,126.8,127.0,128.8,129.2,131.3,140.3$, 141.1, 150.5, 159.3, 159.5.

4-n-Propyl-1-(4-methoxyphenyl)-3,5-bis(4-methoxyphenyl)-pyrazole (8e). Diketone $6 \mathbf{e}(0.1 \mathrm{~g}, 0.35 \mathrm{mmol})$ and p-methoxy phenylhydrazine hydrochloride $\mathbf{7 b}$ ($140 \mathrm{mg}, 0.96$ $\mathrm{mmol})$ according to the general pyrazole procedure to afford $\mathbf{8 e}$ as a red oil $(0.109 \mathrm{~g}$, 74%); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=8.31(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.01(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.1 \mathrm{~Hz})$, $7.68(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}$, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 6$ $159.6,159.4,150.8,141.2,140.5,131.5,129.3,128.8,127.0,126.7,124.8,123.5$, $120.7,114.2,114.1,55.5,55.4,17.3,15.8$.

4-Phenyl-1-phenyl-3,5-bis(4-methylphenyl)-pyrazole (8f). Diketone $\mathbf{6 f}$ (0.024 g , $0.072 \mathrm{mmol})$ was reacted with phenylhydrazine $7 \mathrm{a}(0.011 \mathrm{~g}, 0.1 \mathrm{mmol})$ according to the general procedure to provide the title product $8 \mathbf{8 f}$ as a yellow oil $(0.025 \mathrm{~g}, 90 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.28(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 6.91-7.0(\mathrm{dd}, 4 \mathrm{H}), 7.06-7.12$ $(\mathrm{m}, 5 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.41(\mathrm{~d}, 4 \mathrm{H}, J=2.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta=21.25,21.28,125.34,126.51,127.08,128.12,128.24,128.7,128.88,128.96$, 130.21, 130.72, 133.33, 137.3, 137.91, 139.99, 141.4, 150.13; IR ($\mathrm{Sol} \mathrm{CHCl}_{3}$) 3057, 3024, 2922, 2856, 1596, 1496, $1433 \mathrm{~cm}^{-1}$. HRMS (EI, M+) calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2}$ 401.2018, found 401.2019.

4-Phenyl-1-(4-methoxyphenyl)-3,5-bis(4-methylphenyl)-pyrazole (8g). Diketone $\mathbf{6 f}$ $(0.04 \mathrm{~g}, 0.12 \mathrm{mmol})$ was reacted with p-methoxy phenylhydrazine hydrochloride $\mathbf{7 b}$ $(0.029 \mathrm{~g}, 0.17 \mathrm{mmol})$ according to the general procedure to provide the title product $\mathbf{8 g}$ as a yellow oil $(0.03 \mathrm{~g}, 64 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.28(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 3.79 (s, 3H), 6.81-6.84(d, $2 \mathrm{H}, J=9$), 6.9-6.93(d, 2H, $J=9$), 6.97-7.0 (d. $2 \mathrm{H}, J=8.1$), 7.06-7.12 (m, 5H), 7.14-7.26 (m, 5H), 7.36-7.41 (d, 2H), 7.85-7.88 (d, 2H, $J=8.1$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=21.25,21.28,55.45,113.93,126.51,126.8,128.13,128.29$, $128.89,128.94,129.52,129.93,130.24,130.74,133.23,133.47,137.25,137.82$, $141.48,144.34,149.7,158.62,193.61$; $\mathrm{IR}\left(\mathrm{Sol} \mathrm{CHCl}_{3}\right) 3042,3014,2928,1697,1606$, $1515,1461 \mathrm{~cm}^{-1}$; HRMS (EI, M+) calcd for $\mathrm{C}_{30} \mathrm{H}_{126} \mathrm{~N}_{2} \mathrm{O}_{2} 431.2123$, found 431.2109 .

1,3,5-Tris(4-hydroxyphenyl)-4-propyl-pyrazole (9).

To a stirred solution of $\mathbf{8 e}(0.2 \mathrm{~g}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ a 1 M BBr 3 solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3-5 equiv), was added dropwise. Upon complete addition of BBr_{3}, the reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then allowed to reach room temperature and stir for an additional 16 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and carefully quenched with $\mathrm{H}_{2} \mathrm{O}(15-25 \mathrm{~mL})$. The product was then repeatedly extracted with EtOAc and the organic layers dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Upon solvent removal the crude phenolic products were purified by flash chromatography and/or recrystallization from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixtures to afford the title compound 9 ($0.125 \mathrm{~g}, 68 \%$): mp $229-231^{\circ} \mathrm{C}$ (ref. m.p. 230 ${ }^{\circ} \mathrm{C}$); ${ }^{16}$ Spectral data were identical with those reported previously: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (MeOD$d 4,400 \mathrm{MHz}) \delta=0.76(\mathrm{t}, 3 \mathrm{H}, J=7.2), 1.33(\mathrm{sext}, 2 \mathrm{H}, J=7.6), 2.54(\mathrm{t}, 2 \mathrm{H}, J=8), 6.70$ (d, 2H, $J=8.8,2.4), 6.76$ (d, 2H, $J=6.8,2.0), 6.87(2,2 H, J=8.8,2.4), 7.02(2,2 \mathrm{H}, J$ $=8.8,2.4$), $7.05(\mathrm{~d}, 2 \mathrm{H}, J=9.2,2.4), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.8,2.0) ;{ }^{13} \mathrm{C}$ NMR (MeOD- $d 4$, $100 \mathrm{MHz}) \delta=25.8,36.4,38.4,127.0,128.0,128.5,130.5,134.3,137.9,138.9,140.3$, 141.3, 142.8, 143.3, 144.1,144.7, 155.3, 163.6, 169.5, 170.3.

4-Ethyl-3-phenyl-5-(4-methylphenyl)-1H-pyrazole (10a). Diketone 6b (0.074 g, 0.28 $\mathrm{mmol})$ was reacted with tosyl hydrazine $(0.071 \mathrm{~g}, 0.38 \mathrm{mmol})$ according to the general procedure to provide the title product $\mathbf{1 0 a}$ as a yellow solid ($0.022 \mathrm{~g}, 35 \%$). Mp: 86$96^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.4(\mathrm{~s}, 6 \mathrm{H}), 2.75(\mathrm{q}, 2 \mathrm{H}$, $J=2.5), 7.22-7.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.31-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.58-7.61(\mathrm{~d}, 2 \mathrm{H}, J=2,5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=15.43,16.76,21.26,117.55,126.37,127.69,127.84$, 127.97, 128.61, 128.9, 129.38, 129.98, 132.24, 137.93; IR ($\mathrm{Sol} \mathrm{CHCl}_{3}$) 3450, 3229, 3015, 2970, 2931, 1721, 1509, $1463 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m/z $262(\mathrm{M}+$).

4-Ethyl-3,5-bis(4-methylphenyl)-1H-pyrazole (10b). Diketone $\mathbf{6 c}(0.16 \mathrm{~g}, 0.57 \mathrm{mmol})$ was reacted with tosylhydrazine $(0.15 \mathrm{~g}, 0.8 \mathrm{mmol})$ according to the general procedure to provide the title product $\mathbf{1 0 b}$ as a yellow solid $(0.061 \mathrm{~g}, 39 \%) . \mathrm{Mp}: 89-98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.406(\mathrm{~s} 6 \mathrm{H}), 2.75(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2$ Hz), $7.25\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}\right.$), $7.48(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=$ $15.48,16.79,21.28,29.69,127.68,129.38,137.85$; IR (film) 3188, 3024, 2963, 2925, 2856, 1723, 1509, $1447 \mathrm{~cm}^{-1}$. MS (EI, 70 eV) $m / z 276.38(\mathrm{M}+$).

2-Ethyl-1,3-Bisphenylpropane-1,3-dione (6a)

2－Ethyl－1（4－methylphenyl），3－Phenyl－propane－1，3－dione（6b）

$\sqrt{\text { 部䯘 }}$
(
噱

Enatituto de guition mNM, (sgC)
Enatituto de guition mNM, (sgC)
\,L:D.Na-andn /N
\,L:D.Na-andn /N
\,
\,

2-Ethyl-1,3-bis(4-methylphenyl)propane-1,3-dione (6c)

2-Ethyl-1,3-bis(4-methoxyphenyl)propane-1,3-dione (6d)

2-Propyl-1,3-bis(4-methoxyphenyl)propane-1,3-dione (6e)

2-Phenyl-1,3-bis(4-methylphenyl)propane-1,3-dione (6f)

Ethyl-2-Benzoyl-butanoate (6g)

(

Ethyl-2-(4-methyl-Benzoyl)-butanoate (6h)

Ethyl-2-(4-methoxy-Benzoyl)-butanoate (6i)

Ethyl-2-phenyl-3-oxo-2-phenylpropanoate (6j)

ppm (t1)

MSC-54-147-1

Ethyl-2-(4-methylphenyl)-3-oxo-2-phenylpropanoate (6k)

4-Ethyl-1-(4-methoxyphenyl)-3-phenyl-5-(4-methylphenyl)-pyrazole (8a)
D.a.k.k. Matituto de Quimion
Dr. L. D. Mirmaña/ s. Mngal

OLeolventercDC13


```
    *lave:wsc-54-53-1
    *)
    Na,ing vitey 7, mme (3)
    9-06-10
```



```
clave:vsc-54-53-1
arian Unity 73 mins
9-06-10
```

\qquad

4-Ethyl-1-(4-methoxyphenyl)-3,5-bisphenyl-pyrazole (8b)


```
NSTITUTO DE QUIMICA UNAM/ E Huerta
    Dr.L.D Mirandai Miguel A. &
    Clave:MSC-54-54-2
    Disolvente: CD
    Carbono-13
    No.-05-10
```


4-Ethyl-1-phenyl-3,5-bis(4-methylphenyl)-pyrazole (8c)

4-Ethyl-3,5-bis(4-methoxyphenyl)-1-phenyl-pyrazole (8d)


```
N.A.R.E marizuto de puisiea zer
    9r. L.E ktranda/Ma. Eanob
    clavermac-54-67-2
    Axvivetuwrepe13
    l
    %o. ©m reginem ves
    mo. An regiatre esz
```


4-nPropyl-1-(4-methoxyphenyl)-3,5-bis(4-methoxyphenyl)-pyrazole (8e).

4-Phenyl-1-phenyl-3,5-bis(4-methylphenyl)-pyrazole (8f)

4-Phenyl-1-(4-methoxyphenyl)-3,5-bis(4-methylphenyl)-pyrazole (8g)

1,3,5-Tris(4-hydroxyphenyl)-4-propyl-pyrazole (9).

4-Ethyl-3-phenyl-5-(4-methylphenyl)- 1H-pyrazole (10a)

4-Ethyl-3,5-bis(4-methylphenyl)-1H-pyrazole (10b)


```
munn_ Inctituto do, ouimion TMA
M,
```



```
co.de Rogistro 1716
```


[^0]: ${ }^{1}$ S. R. Stauffer, C. J. Coletta, R. Tedesco, G. Nishigushi, K. E. Carlson, J. Sun, B. S. Katzenellenbogen and J. A. Katzenellenbogen, Med. Chem., 2000, 43, 4934-4947.

[^1]: ${ }^{2}$ He Z., Li H. and Li Z. J. Org. Chem., 2010, 754636.

[^2]: ${ }^{3}$ H. Nakano, T. Ibata Bull. Chem. Soc. Jpn., 1993, 66, 284.

