Supplementary Information:

Organic base effects in NHC promoted *O*- to *C*carboxyl transfer; chemoselectivity profiles, mechanistic studies and domino catalysis

Craig D. Campbell, Christopher J. Collett, Jennifer E. Thomson, Alexandra M. Z. Slawin and Andrew D.

Smith*

^a EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.

e-mail: ads10@st-andrews.ac.uk

Table of Contents

I EXPERIMENTAL PROCEDURES	
I.1 General Information	
I.2 Known Substrates and Rearrangement Products	S3
II NMR DATA	S4
III REFERENCES	S28

I EXPERIMENTAL PROCEDURES

I.2 General information

¹H NMR Spectra were recorded using a Bruker Avance 400 spectrometer and Bruker Avance 300 spectrometer at 400 MHz and 300 MHz respectively, using residual protonated solvent as a reference for internal lock. The chemical shift information ($\delta_{\rm H}$) for each resonance signal are given in units of parts per million (ppm) relative to tetramethylsilane (TMS) where $\delta_{\rm H}$ TMS = 0.00 ppm, or to residual (protonated) solvent. The number of protons (*n*) for a reported resonance signal are indicated by *n*H from their integral value and their multiplicity is reported with their coupling constants (*J*) quoted in Hz. Coupling constants are determined by analysis using iNMR[®] and Topspin[®].

¹³C NMR Spectra were recorded using a Bruker Avance 300 and Bruker Avance 400 spectrometer using the PENDANT sequence at 75.5 MHz and 100 MHz respectively with internal deuterated solvent lock. The chemical shift information (δ_C) for each resonance signal is given in units of parts per million (ppm) relative to tetramethylsilane (TMS) where δ_C TMS = 0.00 ppm, or to the relevant solvent.

¹⁹**F** NMR Spectra were recorded using a Bruker Avance 400 spectrometer at 282 MHz. The chemical shift information (δ_F) for each resonance signal are given in units of parts per million (ppm) relative to trichlorofluoromethane (CFCl₃) where $\delta_F = 0.00$.

HPLC was performed on either a Varian ProStar or Gilson apparatus, using a CHIRALPAK OD-H, AD-H or AS-H silica column, 0.46 cm $\phi \times 25$ cm, using hexane and isopropanol as eluents.

I.2 Known Substrates and Rearrangement Products

Known azlactone precursors, carbonate substrates and their *C*-carboxyazlactone isomers were prepared following literature procedures with physical and spectroscopic data in agreement with the literature,¹⁻⁵ which can be found at the following references. Spectroscopic data of purified materials were used to identify product distributions in crossover experiments.

R	OR'	Carbonate	C-Carboxy azlactone	Reference
Bn	OPh	4	5	1
Bn	OMe	11	17	1
Bn	OBn	12	18	2
Bn	OCMe ₂ CCl ₃	13	19	2
Me	OPh	23	30	3
<i>n</i> -Bu	OPh	24	31	2,4
<i>i</i> -Bu	OPh	25	32	2
Ph	OPh	26	33	2
4-PhOCO ₂ C ₆ H ₄ CH ₂	OPh	27	34	3
CH ₂ CH ₂ SMe	OPh	28	35	2
<i>i</i> -Pr	OPh	29	36	2
Me	OMe	37	38	2
Me	OCMe ₂ CCl ₃	39	40	2

Literature procedures were used for the preparation of compounds $2^{1}_{,1} 6^{1}_{,1} 7^{1}_{,1} 9^{1}_{,1} 10^{1}_{,1} 47^{5}_{,1}$ and $48^{6}_{,6}_{,1}$ giving analytical and spectroscopic data in accordance with the literature.

Ph

N٠

0

3.942

ppm Ó

-20 -40

-60

-100

-120

-140

-180

-160

-220

-240

-30

-50 -40

-60

-90 -80

-120 -110

-100

-130

-140

-150

-160 -170 -190

-180

III REFERENCES

- ¹ Thomson, J. E.; Campbell, C. D.; Concellón, C.; Duguet, N.; Rix, K.; Slawin, A. M. Z.; Smith, A. D. *J. Org. Chem.* **2008**, *73*, 2784–2791.
- ² Joannesse, C.; Simal, C.; Concellón, C.; Thomson, J. E.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. *Org. Biomol. Chem.* **2008**, *6*, 2900–2907.
- ³ Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368–13369.
- ⁴ Campbell, C. D.; Duguet, N.; Gallagher, K. A.; Thomson, J. E.; Lindsay, A. G.; O'Donoghue,
- A. C.; Smith, A. D. Chem. Commun. 2008, 3528–3530.
- ⁵ Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. *Org. Biomol. Chem.* **2008**, *6*, 1108–1113.
- ⁶ Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298–10299.