Ligand-free Palladium-catalyzed Intramolecular Heck Reaction of Secondary Benzylic Bromides

Wei Zhou, Guanghui An, Guangqian Zhang, Jianlin Han*

and Yi Pan*

School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China.

E-mail: hanjl@nju.edu.cn, yipan@nju.edu.cn

Supporting information

Table of contents

1. General Information	······S2
2. Typical procedure for the intramolecular Heck reaction	S2
3. The ORTEP diagram drawing of 2a	S2
4. Spectral data for products 2, 3, 4	S3
5. ¹ H and ¹³ C NMR spectra for products 2, 3, 4	·····S9

1. General Information. Solvents were dried and distilled prior to use. Melting points were uncorrected. IR spectra were collected on Bruker Vector 22 in KBr pellets. ¹H and ¹³C NMR (TMS used as internal standard) spectra were collected in CDCl₃ with a Bruker ARX 300 spectrometer. High resolution mass spectra for all the new compounds were done by a Micromass Q-Tof instrument (ESI). Thin layer chromatography was carried out on Silica Gel 60 F-254 TLC plates. 20 cm × 20 cm Gel 60 F-254 TLC plates were used for Isolation. Flash chromatography was performed on silica gel 60 (200-300 mesh).

2. Typical procedure for the intramolecular Heck reaction. Into a dry vial was added substrate 1 (0.5 mmol), freshly dried K_2CO_3 (138 mg, 1 mmol), Pd(OAc)₂ (1.1 mg, 1 mol%) and freshly distilled DMF (1.0 mL) under a nitrogen atmosphere. The mixture was stirred at 60 °C for 24 h. After cooling, the reaction was quenched with water (10 mL). The aqueous phase was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, concentrated and purified by column (EtOAc/petroleum ether, 1:20 v/v) to give the product.

3. The ORTEP diagram drawing of 2a.

4. Spectral data for 2, 3, 4.

4-methyl-3-phenyl-1-tosyl-2,3-dihydro-*1***H-pyrrole** (2a) White solid, m.p. 64–66 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.67–7.71 (m, 2H), 7.34–7.38 (m, 2H), 7.14–7.17 (m, 3H), 6.74–6.77 (m, 2H), 6.26–6.27 (m, 1H), 3.94 (t, *J* = 10.7 Hz, 1H), 3.71–3.77 (m, 1H), 3.38 (dd, *J* = 6.1, 10.8 Hz, 1H), 2.48 (s, 3H), 1.43 (t, *J* = 1.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 143.52, 141.44, 131.99, 129.42, 128.24, 127.58, 126.98, 126.61, 125.26, 124.72, 55.68, 51.71, 21.17, 11.50 ppm; IR (KBr): v = 3094, 2947, 1662, 1597, 1493 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₈H₁₉NO₂SNa: 336.1029, Found: 336.1019.

3-(4-chlorophenyl)-4-methyl-1-tosyl-2,3-dihydro-1H-pyrrole

(2b) Colorless oil; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67-7.69$ (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.10–7.15 (m, 2H), 6.67–6.72 (m, 2H), 6.25–6.26 (m, 1H), 3.92 (t, J = 11.0 Hz, 1H), 3.74–3.68 (m, 1H), 3.34 (dd, J = 6.0, 10.9 Hz, 1H), 2.49 (s, 3H), 1.42 (t, J = 1.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 143.93$, 140.36, 132.82, 132.46, 129.77, 128.80, 128.72, 127.98, 126.04, 124.45, 55.88, 51.57, 21.62, 11.85 ppm; IR (KBr): v = 2921, 1489 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₈H₁₈ClNO₂SNa: 370.0639, Found: 370.0629.

3-(3-chlorophenyl)-4-methyl-1-tosyl-2,3-dihydro-*1*H-pyrrole (2c)

White solid, m.p. 86–88 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.68 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.07–7.17 (m, 2H), 6.70–6.72 (m, 1H), 6.61–6.62 (m, 1 H), 6.26–6.27 (m, 1H), 3.95 (t, J = 11.0 Hz, 1H), 3.73-3.69 (m, 1H), 3.33 (dd, J = 6.0,

11.0 Hz, 1H), 2.48 (s, 3H), 1.43 (t, J = 1.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 144.18, 144.00, 134.62, 132.14, 129.89, 129.85, 127.94, 127.35, 127.28, 126.25,$ 125.83, 124.17, 55.75, 51.88, 21.75, 11.92 ppm; IR (KBr): $v = 2979, 1650, 1476 \text{ cm}^{-1}$; MS (HRMS/[M+Na]⁺) Calcd for C₁₈H₁₈ClNO₂SNa: 370.0639, Found: 370.0646.

3-(2-chlorophenyl)-4-methyl-1-tosyl-2,3-dihydro-1H-pyrrole (2d)

White solid, m.p. 122–124 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.66 (d, J = 8.3 Hz, 2H), 7.26–7.32 (m, 3H), 7.11–713 (m, 1H), 7.01–7.08 (m, 1H), 6.63–6.64 (m, 1H), 6.31–6.32 (m, 1H), 4.26–4.31 (m, 1H), 3.92 (t, J = 10.8 Hz, 1H), 3.38 (dd, J = 5.2, 11.0 Hz, 1H), 2.46 (s, 3H), 1.52 (t, J = 1.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 143.83, 139.11, 133.56, 132.57, 129.71, 129.41, 128.20, 128.08, 127.90, 127.24, 126.86, 123.84, 55.25, 47.77, 21.61, 12.09 ppm; IR (KBr): v = 2975, 1469 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₈H₁₈ClNO₂SNa: 370.0639, Found: 370.0650.

4-methyl-3-p-tolyl-1-tosyl-2,3-dihydro-*1*H-pyrrole (2e)

White solid, m.p. 46–48 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.69 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 7.9 Hz, 2H), 6.23–6.24 (m, 1H), 3.92 (t, *J* = 10.7 Hz, 1H), 3.68–3.74 (m, 1H), 3.34 (dd, *J* = 6.2, 10.8 Hz, 1H), 2.49 (s, 3H), 2.28 (s, 3H), 1.43–1.41 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 143.76, 138.79, 136.64, 132.44, 129.71, 129.31, 128.02, 127.31, 125.48, 125.16, 56.10, 51.83, 21.66, 21.06, 11.92 ppm; IR (KBr): *v* = 2925, 2855, 1463 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₉H₂₁NO₂SNa: 350.1185, Found: 350.1194.

4-(4-methyl-1-tosyl-2,3-dihydro-1H-pyrrol-3-yl)phenyl

acetate (2f) Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.69-7.65 (m, 2H), 7.34 (d, J = 7.7 Hz, 2H), 6.90-6.85 (m, 2H), 6.77-6.73 (m, 2H), 6.25-6.24 (t, J = 1.6 Hz, 1H), 3.91 (t, J = 10.8 Hz, 1H), 3.77-3.71 (m, 1H), 3.34 (dd, J = 6.0, 10.8 Hz, 1H), 2.46 (s, 3H), 2.27 (s, 3H), 1.42 (t, J = 1.4 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 169.42, 149.60, 143.90, 139.29, 132.38, 129.79, 128.36, 127.98, 125.85, 124.75, 121.71, 55.96, 51.60, 21.61, 21.14, 11.94 ppm; IR (KBr): v = 2923, 1758, 1597, 1503 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₂₀H₂₁NO₄SNa: 394.1084, Found: 394.1080.

3-(4-tert-butylphenyl)-4-methyl-1-tosyl-2,3-dihydro-1H-pyr

role (2g) White solid, m.p. 104-106 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.73-7.68 (m, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.20-7.16 (m, 2H), 6.71-6.66 (m, 2H), 6.26-6.25 (m, 1H), 3.93 (t, *J* = 10.6 Hz, 1H), 3.76-3.70 (m, 1H), 3.38 (dd, *J* = 6.2, 10.7 Hz, 1H), 2.50 (s, 3H), 1.44 (t, *J* = 1.4 Hz, 3H), 1.29 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.85, 143.75, 138.66, 132.56, 129.77, 128.04, 127.05, 125.49, 125.46, 125.26, 56.05, 51.74, 34.41, 31.36, 21.66, 12.03 ppm; IR (KBr): *v* = 2960, 2868, 1596, 1509 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₂₂H₂₇NO₂SNa: 392.1655, Found: 392.1666.

4-(4-methyl-1-tosyl-2,3-dihydro-1H-pyrrol-3-yl)benzonitril

e (2h) White solid, m.p. 144–146 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.65–7.69 (m, 2H), 7.43–7.47 (m, 2H), 7.35 (d, J = 7.8 Hz, 2H), 6.90–6.87 (m, 2H), 6.29–6.30 (m, 1H), 3.91 (t, J = 10.8 Hz, 1H), 3.75–3.80 (m, 1H), 3.35–3.40 (dd, J = 5.2, 10.9 Hz, 1H), 2.49 (s, 3H), 1.42 (t, J = 1.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ =

147.32, 144.16, 132.54, 132.23, 129.87, 128.19, 127.98, 126.71, 123.75, 118.66, 111.04, 55.55, 52.09, 21.68, 11.93 ppm; IR (KBr): v = 2924, 2882, 2223, 1601 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₉H₁₈N₂O₂SNa: 361.0981, Found: 361.0973.

4-(4-methyl-1-tosyl-2,5-dihydro-1H-pyrrol-3-yl)benzonitrile

(**3h**) White solid, m.p. 168–170 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.78-7.73 (m, 2H), 7.64-7.60 (m, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.30-7.27 (m, 2H), 4.39-4.44 (m, 2H), 4.20-4.22 (m, 2H), 2.43 (s, 3H), 1.81 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 143.82, 138.41, 133.82, 132.81, 132.33, 129.95, 128.67, 128.07, 127.57, 118.62, 111.13, 60.07, 57.18, 21.61, 13.05 ppm; IR (KBr): *v* = 2921, 2853, 2226, 1602 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₉H₁₈N₂O₂SNa: 361.0981, Found: 361.0987.

4-methyl-3-phenyl-1-(phenylsulfonyl)-2,3-dihydro-1H-py

rrole (2i) White solid, m.p. 143-145 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.85-7.80 (m, 2H), 7.67-7.64 (m, 1H), 7.60-7.55 (m, 2H), 7.18-7.15 (m, 3H), 6.76-6.72 (m, 2H), 6.28-6.27 (m, 1H), 3.97 (t, *J* = 10.8 Hz, 1H), 3.78-3.72 (m, 1H), 3.38 (dd, *J* = 6.3, 10.8 Hz, 1H), 1.43 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 141.70, 135.43, 132.99, 129.16, 128.71, 128.24, 127.96, 127.37, 127.08, 125.51, 56.07, 52.20, 11.93 ppm; IR (KBr): v = 3064, 2878, 1581 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₇H₁₇NO₂SNa: 322.0872, Found: 322.0870.

3-(4-tert-butylphenyl)-4-methyl-1-(phenylsulfonyl)-2

,3-dihydro-1H-pyrrole (2j) White solid, m.p. 92-94 °C. ¹H NMR (300 MHz, CDCl₃):

 δ = 7.85-7.81 (m, 2H), 7.68-7.64 (m, 1H), 7.60-7.57 (m, 2H), 7.20-7.16 (m, 2H), 6.70-6.67 (m, 2H), 6.28-6.27 (m, 1H), 3.95 (t, *J* = 10.8 Hz, 1H), 3.77-3.71 (m, 1H), 3.38 (dd, *J* = 6.4, 10.8 Hz, 1H), 1.44 (t, *J* = 1.1 Hz, 3H), 1.28 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.90, 138.52, 132.98, 129.16, 127.97, 127.80, 127.03, 125.58, 125.38, 125.31, 56.10, 51.69, 34.45, 31.36, 12.04 ppm; IR (KBr): *v* = 3061, 2961, 2870, 1510, 1468 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₂₁H₂₅NO₂SNa: 378.1498, Found: 378.1486.

3-(4-tert-butylphenyl)-4-methylene-1-(phenylsulfony

I)pyrrolidine (4j) White solid, m.p. 115-117 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.87-7.84 (m, 2H), 7.65-7.62 (m, 1H), 7.60-7.56 (m, 2H), 7.32-7.28 (m, 2H), 7.06-7.02 (m, 2H), 5.03 (d, *J* = 2.0 Hz, 1H), 4.69 (d, *J* = 2.2 Hz, 1H), 4.16-4.09 (m, 1H), 3.96-3.90 (m, 1H), 3.83-3.75 (m, 2H), 3.24-3.15 (m, 1H), 1.30 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 148.04, 136.39, 132.99, 129.18, 127.97, 127.87, 127.79, 127.02, 125.61, 109.23, 55.52, 52.49, 48.92, 34.44, 31.35 ppm; IR (KBr): *v* = 3061, 2960, 2868, 1510, 1470 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₂₁H₂₅NO₂SNa: 378.1498, Found: 378.1503.

3-methyl-1-tosyl-1,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole (2k) White solid, m.p. 148–150 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.71–7.75 (m, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.16–7.1624 (m, 4H), 6.03 (s, 1H), 4.54–4.61 (m, 1H), 4.00–4.04 (m, 1H), 3.41–3.55 (m, 2H), 2.46 (s, 3H), 1.76–1.75 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 143.76, 141.20, 140.89, 133.75, 129.84, 129.73, 127.70, 127.50, 126.73, 125.12, 124.14, 124.05, 64.28, 57.71, 41.22, 21.68, 12.28 ppm; IR (KBr): v = 2975, 2922, 1452 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₉H₁₉NO₂SNa: 348.1029, Found: 348.1016.

3-methylene-1-tosyl-1,2,3,3a,8,8a-hexahydroindeno[2,1-b]pyrrole

(4k) White solid, m.p. 157–159 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.75 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 7.20–7.24 (m, 4H), 5.12–5.14 (m, 1H), 4.95 – 4.97 (m, 1H), 4.41–4.44 (m, 1H), 4.04–4.07 (m, 1H), 3.92 (s, 2H), 3.52 (dd, *J* = 2.1, 17.4 Hz, 1H), 3.29 (dd, *J* = 6.3, 17.4 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 145.92, 143.66, 141.31, 134.37, 129.83, 129.78, 127.80, 127.70, 126.93, 125.15, 123.97, 107.79, 65.09, 55.25, 53.29, 40.15, 21.62 ppm; IR (KBr): *v* = 2914, 2857, 1666, 1595 cm⁻¹; MS (HRMS/[M+Na]⁺) Calcd for C₁₉H₁₉NO₂SNa: 348.1029, Found: 348.1022.

5. ¹H and ¹³C NMR spectra for products 2, 3, 4

