Supplementary Information

Yuji Tokunaga,* Masanori Kawabata, Naoki Matsubara

Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan

- **Figure S1**¹H NMR spectra of the [2]rotaxanes **2a–c**.
- **Figure S2** ¹H NMR spectra of the [2]rotaxane **2** in its three-state cycle.
- **Figure S3**. ¹H NMR spectra of the [2]rotaxane **3** in its three-state cycle.
- **Figure S4**. Absorption spectra of the [2]rotaxane **3** after sequential addition of ^tBuOK (process A), AcOH (process B), TfOH (process C), and Et₃N (process D).
- Figure S5. COSY spectrum of the [2]rotaxane 2a.
- Figure S6. NOESY spectrum of the [2]rotaxane 2a.
- Figure S7. COSY spectrum of the [2]rotaxane 2a in the presence of TfOH.
- Figure S8. NOESY spectrum of the [2]rotaxane 2a in the presence of TfOH.
- **Figure S9**. COSY spectrum of the [2]rotaxane **2a** in the presence of ^tBuONa.
- Figure S10. NOESY spectrum of the [2]rotaxane 2a in the presence of ^tBuONa.

Figure S1 ¹H NMR spectra (500 MHz, CD₃CN) of the [2]rotaxanes 2a–c. a) 2a (X = HCO_3^{-}); b) 2a + TfOH (0.31 eq); c) 2a + TfOH (0.63 eq); d) 2a + TfOH (1.25 eq); e) 2a + TfOH (2.5 eq); f) 2a + TfOH (5.0 eq). Capital letters represent the signals for 2a and 2b; lower-case letters for 2c.

Figure S2 ¹H NMR spectra (500 MHz, CD₃CN) of the [2]rotaxane **2** in its three-state cycle. a) **2a** (X = HCO_3^{-}); b) sample in a) after the addition of TfOH (5 eq); c) sample in b) after the addition of Et₃N (5 eq); d) sample in c) after the addition of ^{*t*}BuONa (7 eq); e) sample in d) after the addition of 4-chloro-2-nitrophenol (5 eq).

Figure S3. ¹H NMR spectra (500 MHz, CD₃CN) of the [2]rotaxane **3** in its three-state cycle. a) **3b** (X = PF_6^-); b) sample in a) after the addition of TfOH (5.0 eq); c) sample in b) after the addition of Et₃N (5.0 eq); d) sample in c) after the addition of ^tBuOK (2.0 eq); e) sample in d) after the addition of AcOH (3.0 eq).

Figure S4. Absorption spectra of the [2]rotaxane **3** (40 μ M) in CH₃CN/CH₃OH (9:1) at rt after sequential addition of ^tBuOK (process A), AcOH (process B), TfOH (process C), and Et₃N (process D).

Figure S5. COSY spectrum (500 MHz, CD₃CN) of the [2]rotaxane 2a.

Figure S6. NOESY spectrum (500 MHz, CD₃CN) of the [2]rotaxane 2a.

Figure S7. COSY spectrum (500 MHz, CD₃CN) of the [2]rotaxane **2a** in the presence of TfOH (5.0 eq). Lower-case letters: **2b**; capital letters: **2c**.

Figure S8. NOESY spectrum (500 MHz, CD₃CN) of the [2]rotaxane **2a** in the presence of TfOH (5.0 eq). Lower-case letters: **2b**; capital letters: **2c**.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Figure S9. COSY spectrum (500 MHz, CD₃CN) of the [2]rotaxane **2a** in the presence of ^tBuONa (1.2 eq).

Figure S10. NOESY spectrum (500 MHz, CD₃CN) of the [2]rotaxane **2a** in the presence of ^tBuONa (1.2 eq).