Self-assembling multivalency – Enhancing integrin binding through synthetically

straightforward non-covalent ligand organisation

Daniel J. Welsh and David K. Smith*

Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

10 SUPPLEMENTARY INFORMATION

Contents

5

1	Synthetic Reaction Schemes
2	Synthetic Methods and Characterisation Data
¹⁵ 3	Fluorescence Polarisation (FP) Assay
4	Nile Red Assay
5	TEM Images
6	References

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

2. Synthetic Methods and Characterisation Data

Materials and Methods. All reagents were commercially available and used as supplied without further purification. Human integrin $\alpha_{v}\beta_{3}$ Triton X-100 formulation purified protein was purchased ⁵ from Millipore and used without further purification. Column chromatography was performed on silica using silica gel 60 provided by Fluka Ltd. (35-70 µm) while TLC was performed on Merck aluminium-backed plates, coated with 0.25 mm silica gel 60. Spots were visualised either by UV, or by use of an appropriate stain (ninhydrin solution 0.2% (by mass) in ethanol, cerium molybdate stain: 180 ml H_2O_1 , 20 ml conc. H_2SO_4 , 24 g ammonium molybdate, 2 g cerium sulphate, or potassium ¹⁰ permanganate stain: 1.5 g KMnO₄, 10 g K₂CO₃, 1.25 ml 10% NaOH in 200 ml water). Preparative gel filtration chromatography was carried out using Sephadex LH-20 purchased from Sigma Aldrich. Proton and carbon NMR chemical shifts (δ) are reported in ppm using residual solvent as internal reference, as noted, and peak assignments were deduced with DEPT-135 as well as 2D NMR experiments such as COSY and HSOC. All spectra were recorded on either a JEOL ECX400 or a ¹⁵ JEOL ECS400 (¹H 400 MHz, ¹³C 100 MHz) spectrometers or a JEOL EX270 (¹H 270 MHz, ¹³C 68 MHz) spectrometer, as noted. ESI and HR ESI mass spectra were recorded on a Thermo-Finnigan LCQ, and a Bruker Daltonics Microtoff mass spectrometer respectively. Infrared spectra were recorded using a Shimadzu IRPrestige-21 FT-IR spectrometer. Melting points were measured on a Gallenkamp melting point apparatus and are uncorrected. Optical rotation was measured as $[\alpha]_D$ on a ²⁰ JASCO DIP-370 digital polarimeter. Nile Red fluorescence was measured on a Hitachi F-4500 spectrofluorimeter. Fluorescence polarisation data was collected on FluoroMax-3 and FluoroMax-4 spectrofluorimeters. The synthesis of compound 10 was adapted from liteature methods.^[1] Compound 13 has been previously reported.^[2]

²⁵ **Compound 1.** H₂N-Asp(O^tBu)-O^tBu.HCl (2.85 g, 10.1 mmol, 1 eq) and Fmoc-Gly-OH (3.01 g, 10.1 mmol, 1 eq) were dissolved in DCM (100 ml) upon addition of DIPEA (3.52 ml, 20.2 mmol, 2 eq) with stirring. The solution was cooled in an ice-water bath to 0°C and then T3P (50 wt.% in EtOAc, 7.25 ml, 12.3 mmol, 1.2 eq) was added dropwise over 20 min. The ice-water bath was removed and the reaction mixture was stirred for 24 h. The reaction was quenched with water (100 ml), and then the ³⁰ organic layer was washed with saturated NaHCO₃ (100 ml), 1.33 M NaHSO₄ (100 ml), saturated NaHCO₃ (100 ml), neutralising to pH 7 and finally water (100 ml). The organic layer was dried over MgSO₄ and filtered before removing the solvent *in vacuo* to produce the product **1** as a white foam (4.90 g, 93%). No further purification was required. *R*_f 0.64 (9:1 DCM/MeOH, UV and cerium stain).

 $[\alpha]_{D} = +22.9$ (c = 1.0, CHCl₃). M.p. 54.4-60.2°C. ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (d, CH aromatic, J = 8.0 Hz, 2H); 7.60 (d, CH aromatic, J = 8.0 Hz, 2H); 7.40 (t, CH aromatic, J = 8.0 Hz, 2H); 7.31 (t, CH aromatic, J = 8.0 Hz, 2H); 6.86 (d, NH amide, J = 8.0 Hz, 1H); 5.45 (br s, NH carbamate, 1H); 4.70 (dt, Asp α -H, J = 8.0 Hz and 4.0 Hz, 1H); 4.39 (d, Fmoc CH₂, J = 7.0 Hz, 2H); 4.24 (t, Fmoc CH, $_{5}J = 7.0$ Hz, 1H); 3.98 (dd, Gly CH^A, J = 17.0 Hz and 5.0 Hz, 1H); 3.92 (dd, Gly CH^B, J = 17.0 Hz and 5.0 Hz, 1H); 2.91 (dd, Asp CH^A , J = 17.0 Hz and 4.5 Hz, 1H); 2.72 (dd, Asp CH^B , J = 17.0 Hz and 4.5 Hz, 1H); 1.45 (s, C(CH₃)₃, 9H); 1.42 (s, C(CH₃)₃, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.30, 169.60, 168.69 (C(O)O^tBu \times 2, CONH amide); 156.53 (CONH carbamate); 143.92, 141.35 (C aromatic); 127.80, 127.19, 125.24, 120.06 (CH aromatic); 82.66, 81.82 (C(CH₃)₃ × 2); 67.36 (Fmoc CH₂); 49.19 ¹⁰ (Asp α -CH); 47.16 (Fmoc CH); 44.40 (Gly CH₂); 37.44 (Asp CH₂); 28.11, 27.97 (C(CH₃)₃ × 2). ν_{max} (cm⁻¹. solid): 3314w (N-H amide stretch); 3086w (C-H arene stretch); 2979w (C-H alkyl stretch); 1723s (C=O ester stretch): 1665s (C=O amide stretch): 1506br&s (N-H amide bend and C=C arene stretch); 1478w, 1450m, 1394w, 1367m (C-H alkyl bends); 1244s, 1224s, 1145s, 1045m, 1002w (C-O ester and C-N amide stretches, C-H arene bends); 948w, 845m, 759s, 739s (C-H arene bends). ESI-MS $_{15}$ (m/z): Calc. for C₂₉H₃₆N₂NaO₇ 547.2415; found: 547.2411 (100%, [M+Na]⁺); 491.1782 (15%, $[M+Na-C_4H_8]^+$; 435.1157 (79%, $[M+Na-2C_4H_8]^+$).

Compound 2. Compound 1 (4.58 g, 8.74 mmol) was stirred in a solution of 20% piperidine in DCM (30 ml). The solvent was removed *in vacuo* after stirring for 4 h to produce a pale yellow crude solid ²⁰ (6.62 g). The crude solid was purified by column chromatography (SiO₂, 9:1 DCM/MeOH) to yield **2** as a colourless oil (2.16 g, 82%). R_f 0.20 (9:1 DCM/MeOH, ninhydrin stain). [α]_D = +36.5 (c = 1.0, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (d, N*H* amide, 8.0 Hz, 1H); 4.71 (dt, Asp α -*H*, *J* = 8.5 Hz and 4.5 Hz, 1H); 3.37 (d, Gly CH₂, *J* = 1.0 Hz, 2H); 2.89 (dd, Asp CH^A, *J* = 17.0 Hz and 4.5 Hz, 1H); 2.70 (dd, Asp CH^B, *J* = 17.0 Hz and 4.5 Hz, 1H); 1.53 (br s, NH₂, 2H); 1.45 (s, C(CH₃)₃, 9H); 1.44 (s, ²⁵ C(CH₃)₃, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.61, 169.95, 169.79 (*C*(O)O'Bu × 2, CONH amide); 82.10, 81.43 (*C*(CH₃)₃ × 2); 48.58 (Asp α -CH); 44.68 (Gly CH₂); 37.71 (Asp CH₂); 27.99, 27.86 (C(CH₃)₃ × 2). v_{max} (cm⁻¹, oil): 3357*w* (N-H amine and amide stretches); 2978*w*, 2936*w* (C-H alkyl stretches); 1726*s* (C=O ester stretch); 1666*s* (C=O amide stretch); 1509*s* (N-H amide bend); 1480*w*, 1458*w*, 1394*w*, 1367*s*, 1350*m* (C-H alkyl bends); 1288*m*, 1249*m*, 1226*m*, 1145*s* (C-O ester and C-N ³⁰ stretches); 1079*w*; 1051*w*; 1032*w*; 845*m*; 752*w*; 732*w*. ESI-MS (m/z): Calc. for C₁₄H₂₆N₂NaO₅ 325.1734; found: 325.1739 (60%, [M+Na]⁺); 303.1953 (100%, [M+H]⁺); 247.129 (17%, [M+H–C₄H₈]⁺); 191.0659 (10%, [M+H–2C₄H₈]⁺).

Compound 3. Compound **2** (2.02 g, 6.68 mmol, 1 eq) and Fmoc-Arg(Pbf)-OH (4.33 g, 6.68 mmol, 1 eq) were dissolved in DCM (120 ml) upon addition of DIPEA (2.42 ml, 13.9 mmol, 2 eq) with stirring. The solution was cooled in an ice-water bath to 0°C and then T3P (50 wt. % in EtOAc, 5.00 ml, 8.49 mmol, 1.2 eq) was added dropwise over 20 min. The ice-water bath was removed and the reaction s mixture was stirred for 24 h. The reaction was quenched with water (100 ml), and then the organic layer was washed with saturated NaHCO₃ (100 ml), 1.33 M NaHSO₄ (100 ml), saturated NaHCO₃ (100 ml), neutralising to pH 7 and finally water (100 ml) upon which the organic phase became milky white. The organic layer was dried over $MgSO_4$ and filtered before removing the solvent *in vacuo* to produce the product 3 as a white foam (4.90 g, 79%). No further purification was required. $R_f 0.51$ (9:1 ¹⁰ DCM/MeOH, UV and cerium stain). $[\alpha]_D = +8.6$ (c = 1.0, CHCl₃). M.p: 114.0-120.0°C. ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 7.73 \text{ (d, } CH \text{ aromatic, } J = 7.5 \text{ Hz}, 2\text{H}); 7.70 \text{ (m, } NH \text{ amide (Arg-Gly), 1H)}; 7.58$ (m, CH aromatic, 2H); 7.36 (t, CH aromatic, J = 7.0 Hz, 2H); 7.26 (t, CH aromatic, J = 7.5 Hz, 2H); 7.11 (d, NH amide (Gly-Asp), J = 7.5 Hz, 1H); 6.33 (br s, NH₂ guanidine, 2H); 6.12 (br s, NH guanidine, 1H); 6.04 (d, NH carbamate, J = 7.5 Hz, 1H); 4.64 (dt, Asp α -H, J = 8.0 Hz and 5.0 Hz, ¹⁵ 1H); 4.39 (m, Arg α -H, 1H); 4.34 (d, Fmoc CH₂, J = 7.0 Hz, 2H); 4.16 (t, Fmoc CH, J = 7.0 Hz, 1H); 4.06 (dd, Gly CH^{A} , J = 16.5 Hz and 5.5 Hz, 1H); 3.91 (dd, Gly CH^{B} , J = 17.0 Hz and 5.0 Hz, 1H); 3.42-3.28 (m, Arg CH^ANH, 1H); 3.24-3.14 (m, Arg CH^BNH, 1H); 2.92 (s, Pbf CH₂, 2H); 2.82 (dd, Asp CH^{A} , J = 17.0 Hz and 5.0 Hz, 1H); 2.66 (dd, Asp CH^{B} , J = 17.0 Hz and 4.5 Hz, 1H); 2.59 (s, Pbf CH₃Ar, 3H); 2.51 (s, Pbf CH₃Ar, 3H); 2.07 (s, Pbf CH₃Ar, 3H); 2.01-1.89 (m, Arg CHCH^A, 1H); 1.76-²⁰ 1.66 (m, Arg CHCH^B, 1H); 1.65-1.50 (m, Arg CH₂CH₂NH, 2H); 1.43 (s, Pbf CH₃ × 2, 6H); 1.40 (s, $C(CH_3)_3 \times 2$, 18H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.07, 170.17, 169.82, 169.39 ($C(O)O^{t}Bu \times 2$, CONH amide \times 2); 158.79, 156.68, 156.56 (Pbf ArCO, C=N guanidine, CONH carbamate); 143.96, 143.84, 141.30, 141.28 (Fmoc aromatic C); 138.46, 132.86, 132.37 (Pbf aromatic C); 127.73, 127.15, 125.31 (Fmoc aromatic CH); 124.67 (Pbf aromatic C); 119.97 (Fmoc aromatic CH); 117.56 (Pbf 25 aromatic C); 86.42 (Pbf CH₂C(CH₃)₂O); 82.66, 81.73 (C(CH₃)₃ × 2); 67.14 (Fmoc CH₂); 54.33 (Arg α-CH); 49.45 (Asp α-CH); 47.14 (Fmoc CH); 43.28, 42.90, 40.20 (Pbf ArCH₂, Arg CH₂NH, Gly CH₂); 37.37 (Asp CH₂); 29.88 (Arg CHCH₂ or Arg CH₂CH₂NH); 28.65 (Pbf CH₂C(CH₃)₂O); 28.08, 27.92 $(C(CH_3)_3 \times 2)$, multiple overlapping peaks); 25.28 (Arg CHCH₂ or Arg CH₂CH₂NH); 19.43, 18.08, 12.57 (Pbf ArCH₃ × 3). v_{max} (cm⁻¹, solid): 3422w, 3321w (N-H amide stretches); 2974w, 2932w (C-H ³⁰ alkyl and arene stretches); 1724m (C=O ester stretch); 1667m, 1620m (C=O amide stretches); 1543br&s (N-H amide bend and C=C arene stretch); 1450m, 1408w, 1393w, 1366m (C-H alkyl bend and S=O stretch); 1281m, 1246s, 1150s, 1103s, 1088s (C-O ester and C-N amide stretches, C-H arene bends); 1034*m*; 991*m*; 849*m*, 818*w*, 756*w*, 737*m*, 660*m* (C-H arene bends); 640*m*; 617*m*; 598*m*. ESI-MS (m/z): Calc. for C₄₈H₆₅N₆O₁₁S 933.4427; found: 933.4426 (100%, [M+H]⁺).

Compound 4. Compound 3 (4.51 g, 4.84 mmol) was stirred in a solution of 20% piperidine in DCM 5 (30 ml). The solvent was removed in vacuo after stirring for 3 h to produce a pale yellow crude solid (7.5 g). The crude solid was purified by column chromatography (SiO₂, 9:1 DCM/MeOH) to yield 4 as a fluffy white solid (2.75 g, 80%). R_f 0.15 (9:1 DCM/MeOH, UV and ninhydrin stain). $[\alpha]_D = +18.2$ (c = 1.0, CHCl₃). M.p: 83.0-84.0°C. ¹H NMR (CDCl₃, 400 MHz) δ 7.98 (t, NH amide (Arg-Gly), J = 6.0 Hz, 1H); 7.10 (d, NH amide (Gly-Asp), J = 8.0 Hz, 1H); 6.32 (br s, NH₂ guanidine, 2H); 6.14 (br s, ¹⁰ NH guanidine, 1H); 4.64 (dt, Asp α -H, J = 8.0 Hz and 4.5 Hz, 1H); 4.02 (dd, Gly CH^A, J = 17.0 Hz and 5.5 Hz, 1H); 3.90 (dd, Gly CH^{B} , J = 17.0 Hz and 6.0 Hz, 1H); 3.49-3.46 (m, Arg α -H, 1H); 3.27-3.19 (m, Arg CH₂NH, 2H); 2.95 (s, Pbf CH₂, 2H); 2.86 (dd, Asp CH^A, J = 17.0 Hz and 5.0 Hz, 1H); 2.70 (dd, Asp CH^{B} , J = 17.0 Hz and 4.5 Hz, 1H); 2.57 (s, Pbf $CH_{3}Ar$, 3H); 2.50 (s, Pbf $CH_{3}Ar$, 3H); 2.08 (s, Pbf CH₃Ar, 3H); 1.82-1.74 (m, Arg CHCH^A, 1H); 1.70-1.58 (m, Arg CHCH^B and Arg ¹⁵ CH₂CH₂NH, 3H); 1.45 (s, Pbf CH₃ × 2, 6H); 1.42 (s, C(CH₃)₃ × 2, 18H). ¹³C NMR (CDCl₃, 100 MHz) δ 176.41, 170.32, 169.79, 169.34 (C(O)O^tBu × 2, CONH amide × 2); 158.69, 156.49 (Pbf ArCO, C=N guanidine); 138.30, 133.05, 132.23, 124.62, 117.48 (Pbf aromatic C); 86.42 (Pbf CH₂C(CH₃)₂O); 82.61, 81.76 ($C(CH_3)_3 \times 2$); 54.54 (Arg α -CH); 49.27 (Asp α -CH); 43.28, 42.76, 40.61 (Pbf ArCH₂, Arg CH₂NH, Gly CH₂); 37.38 (Asp CH₂); 32.08 (Arg CHCH₂ or Arg CH₂CH₂NH); 28.66 (Pbf $_{20}$ CH₂C(CH₃)₂O); 28.09, 27.93 (C(CH₃)₃ × 2, multiple overlapping peaks); 25.42 (Arg CHCH₂ or Arg CH₂CH₂NH); 19.36, 18.02, 12.55 (Pbf ArCH₃ \times 3). v_{max} (cm⁻¹, solid): 3320w (N-H amide stretch); 2972w (C-H alkyl stretch); 1735w (C=O ester stretch); 1647br&w (C=O amide stretch); 1540br&w (N-H amide bend, C-H alkyl bend, C=C arene stretch and S=O stretch); 1251w, 1145w (C-O ester and C-N amide stretches). ESI-MS (m/z): Calc. for C₃₃H₅₅N₆O₉S 711.3746; found: 711.3761 (93%, ²⁵ [M+H]⁺); 733.3608 (100%, [M+Na]⁺); 367.1796 (73%, [M+H+Na]²⁺).

Compound 5. 2-[2-(2-Methoxyethoxy)-ethoxy)acetic acid (93 mg, 0.52 mmol, 1 eq) and protected RGD peptide **4** (400 mg, 0.56 mmol, 1 eq) were suspended in DCM (10 ml) and DIPEA (200 μ L, 1.12 mmol, 2 eq) was added with stirring. The solution was cooled in an ice-water bath to 0°C and then T3P ³⁰ (50 wt.% in EtOAc, 400 μ L, 0.67 mmol, 1.2 eq) was added dropwise over 10 min. The ice-water bath was removed and the reaction mixture was stirred for 27 h. The solvent was removed *in vacuo* directly, without quenching with water or any prior acid/base workup, to leave a tacky, colourless crude solid (1

g) which was purified by column chromatography (SiO₂, 9:1 DCM/MeOH) to produce compound 5 as a fluffy white foam (330 mg, 73%). $R_f 0.40$ (9:1 DCM/MeOH, UV and cerium stain). $[\alpha]_D$ +36.0 (c = 1.0, CHCl₃). M.p: 64.0-68.0°C. ¹H NMR (CDCl₃, 400 MHz) δ 7.69 (br s, NH amide (Arg-Gly), 1H); 7.48 (d, NH amide (PEG-Arg), J = 8.0 Hz, 1H); 7.04 (d, NH amide (Gly-Asp), J = 8.5 Hz, 1H), 6.28 $_{5}$ (br s, NH₂ guanidine, 2H); 6.12 (br s, NH guanidine, 1H); 4.66-4.61 (m, Asp α -H and Arg α -H, 2H); 4.02 (dd, Gly CH^{A} , J = 17.0 Hz and 5.5 Hz, 1H); 4.01 (s, $OCH_2C(O)NH$, 2H); 3.86 (dd, Gly CH^{B} , J =17.0 Hz and 5.5 Hz, 1H); 3.71-3.50 (m, CH₃OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂, 8H); 3.34 (s, CH₃O, 3H); 3.36-3.27 (m, Arg $CH^{A}NH$, 1H); 3.24-3.16 (m, Arg $CH^{B}NH$, 1H); 2.94 (s, Pbf CH_{2} , 2H); 2.83 (dd, Asp CH^{A} , J = 17.0 Hz ¹⁰ and 5.0 Hz, 1H); 2.67 (dd, Asp CH^{B} , J = 17.0 Hz and 4.5 Hz, 1H); 2.58 (s, Pbf $CH_{3}Ar$, 3H); 2.51 (s, Pbf CH₃Ar, 3H); 2.07 (s, Pbf CH₃Ar, 3H); 2.01-1.91 (m, Arg CHCH^A, 1H); 1.75-1.66 (m, Arg CHCH^B, 1H); 1.61-1.51 (m, Arg CH₂CH₂NH, 2H); 1.44 (s, Pbf CH₃ \times 2, 6H); 1.41, 1.40 (s \times 2, $C(CH_3)_3 \times 2, 18H)$. ¹³C NMR (CDCl₃, 100 MHz) δ 172.31, 170.54, 170.22, 169.78, 169.17 (C(O)O^tBu × 2, CONH amide × 3); 158.74, 156.62 (Pbf ArCO, C=N guanidine); 138.48, 133.04, 132.41, 124.62, $_{15}$ 117.51 (Pbf aromatic C); 86.41 (Pbf CH₂C(CH₃)₂O); 82.60, 81.74 (C(CH₃)₃ × 2); 71.84, 71.11, 70.59, 70.38, 70.32 (CH₂O's × 5); 59.00 (CH₃OCH₂); 51.99 (Arg α-CH); 49.37 (Asp α-CH); 43.34, 42.85 (Pbf ArCH₂, Gly CH₂); 40.11 (Arg CH₂NH); 37.41 (Asp CH₂); 29.79 (Arg CHCH₂); 28.70 (Pbf CH₂C(CH₃)₂O); 28.12, 27.95 (C(CH₃)₃×2); 25.41 (Arg CH₂CH₂NH); 19.41, 18.07, 12.58 (Pbf ArCH₃) \times 3). v_{max} (cm⁻¹, solid): 3322br&w (N-H amide stretch); 2976, 2930br&w (C-H alkyl stretches); 1730m ²⁰ (C=O ester stretch): 1655br&m (C=O amide stretch): 1543br&s (N-H amide bend and C=C arene stretch); 1452w, 1368w (C-H alkyl bend and S=O stretch); 1293w, 1278w, 1249m, 1202w, 1150s, 1094s (C-O ester and C-N amide stretches, C-H arene bends). ESI-MS (m/z): Calc. for $C_{40}H_{66}N_6NaO_{13}S$ 893.4301; found: 893.4318 (100%, [M+Na]⁺).

²⁵ **Compound 6 (PEG-RGD).** Compound **5** (56 mg, 0.064 mmol) was dissolved in a mixture of TFA, water and triisopropylsilane (TIPS) (500 μ L, 95:2.5:2.5) and shaken for 2 h, after which time TLC indicated that the deprotection reaction was complete. The volatile organics were removed *in vacuo*, then the residue was dissolved in 10% aqueous acetic acid (3 ml) and washed three times with a twofold excess of chloroform to extract the non-polar by-products. The aqueous acetic acid layer was ³⁰ evaporated *in vacuo* and the residue was dissolved in water (5 ml), shell frozen and lyophilised to yield **PEG-RGD** as a hygroscopic, fluffy white powder which turned to a tacky solid upon standing (22 mg, 55% as TFA salt). *R*_f 0.00 (9:1 DCM/MeOH, cerium stain). [α]_D +10.1 (c = 1.0, CH₃OH). ¹H NMR

15

(D₂O, 400 MHz) δ 4.75 (t, Asp α-*H*, *J* = 6.0 Hz, 1H); 4.37 (dd, Arg α-*H*, *J* = 8.5 Hz and 5.5 Hz, 1H); 4.12 (d, OCH^AC(O)NH, *J* = 15.5 Hz, 1H); 4.08 (d, OCH^BC(O)NH, *J* = 15.5 Hz, 1H); 3.92 (s, Gly CH₂, 2H); 3.72-3.57 (m, CH₃OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂OCH₂CH₂, CH₃OCH₂CH₂OCH₂CH₂, 8H); 3.33 (s, CH₃O, 3H); 3.18 (t, Arg CH₂NH, *J* = 7.0 Hz, 2H); 2.92 (d, Asp $^{\circ}$ CH₂, *J* = 5.5 Hz, 2H); 1.93-1.84 (m, Arg CHCH^A, 1H); 1.81-1.71 (m, Arg CHCH^B, 1H); 1.68-1.56 (m, Arg CH₂CH₂NH, 2H). ¹³C NMR (D₂O, 100 MHz) δ 175.07, 174.81, 174.75, 173.64, 171.65, 157.43 (*C*(O)OH × 2, CONH amide × 3, *C*=N guanidine); 71.16, 70.51, 69.70, 69.68, 69.58 (CH₂O's × 5, multiple overlapping peaks); 58.20 (CH₃OCH₂); 53.23 (Arg α-CH); 49.17 (Asp α-CH); 42.38 (Gly CH₂); 40.53 (Arg CH₂NH); 35.57 (Asp CH₂); 28.03 (Arg CHCH₂); 24.34 (Arg CH₂CH₂NH). v_{max} (cm⁻¹), tacky solid): 3285br&m, 3198br&m (O-H acid and N-H amide/guanidino stretches); 2927br&w (C-H alkyl stretch); 1724m (C=O acid stretch); 1651s (C=O amide stretch); 1536s (N-H amide bend); 1407w, 1340w (C-H alkyl bends); 1202br&m (C-O acid stretch); 1083s, 1049s (C-O ether and C-N amide stretches). ESI-MS (m/z): Calc. for C₁₉H₃₅N₆O₁₀ 507.2409; found: 507.2386 (100%, [M+H]⁺), 529.2197 (95%, [M+Na]⁺), 551.2022 (16%, [M+2Na-H]⁺).

Compound 7. Lauric acid (56 mg, 0.28 mmol, 1 eq) and protected RGD peptide 4 (200 mg, 0.28 mmol, 1 eq) were dissolved in DCM (10 ml), then DIPEA (100 µl, 0.56 mmol, 2 eq) was added and the reaction flask cooled over an ice-water bath. TBTU (90 mg, 0.28 mmol, 1 eq) was added as a solid and more DCM (2 ml) was used to wash out the vial and added to the reaction flask. The reaction was ₂₀ stirred at 0°C then rt for 3 days, then washed with hot 1M HCl (3×25 ml), hot 15% Na₂CO₃ (3×25 ml), and hot water (25 ml). The organic layer was dried over MgSO₄, filtered and the filtrate evaporated to yield compound 7 as a white solid (236 mg, 94%). Rf 0.42 (9:1 DCM/MeOH, UV and cerium stain). $[\alpha]_{D} = +5.2$ (c = 1.0, CHCl₃). M.p. 70.5-78.6°C. ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (br t, NH amide (Arg-Gly), 1H); 7.41 (d, NH amide (Gly-Asp), J = 8.0 Hz, 1H); 7.06 (br s, NH amide ²⁵ (C12-Arg), 1H), 6.38 (br s, NH₂ guanidine, 2H); 6.26 (br s, NH guanidine, 1H); 4.63-4.58 (m, Asp α-H, 1H); 4.50-4.45 (m, Arg α-H, 1H); 4.00-3.80 (br m, Gly CH₂, 2H); 3.28-3.08 (m, Arg CH₂NH, 2H); 2.89 (s, Pbf CH₂, 2H); 2.73 (dd, Asp CH^A, J = 17.0 Hz and 5.0 Hz, 1H); 2.64 (dd, Asp CH^B, J = 17.0Hz and 5.0 Hz, 1H); 2.51 (s, Pbf CH₃Ar, 3H); 2.44 (s, Pbf CH₃Ar, 3H); 2.15 (t, CH₂C(O)NH, J = 7.5Hz, 2H); 2.02 (s, Pbf CH₃Ar, 3H); 1.89-1.77 (m, Arg CHCH^A, 1H); 1.70-1.59 (m, Arg CHCH^B, 1H); $_{30}$ 1.57-1.45 (m, Arg CH₂CH₂NH and C12 CH₂ overlapping, 4H); 1.39 (s, Pbf CH₃ × 2, 6H); 1.35 (s, $C(CH_3)_3 \times 2$, 18H); 1.25-1.15 (m, C12 CH₂'s, 16H); 0.81 (t, C12 CH₃, J = 7.0 Hz, 3H). ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta 174.04, 172.92, 169.91, 169.74, 169.19 (C(O)O^{t}Bu \times 2, CONH amide \times 3);$ 158.60, 156.54 (Pbf ArCO, *C*=N guanidine); 138.23, 132.88, 132.15, 124.47, 117.34 (Pbf aromatic *C*); 86.25 (Pbf CH₂*C*(CH₃)₂O); 82.28, 81.36 (*C*(CH₃)₃ × 2); 52.71 (Arg α-CH); 49.33 (Asp α-CH); 43.18 (Pbf ArCH₂); 42.76 (Gly CH₂); 40.15 (Arg *C*H₂NH); 37.30 (Asp *C*H₂); 36.22 (C12 *C*H₂C(O)NH); 31.84, 29.61, 29.57, 29.51, 29.36, 29.32, 29.29 (C12 *C*H₂'s and either Arg CH*C*H₂ or Arg *c*H₂CH₂NH, multiple overlapping peaks); 28.54 (Pbf CH₂C(*C*H₃)₂O); 27.96, 27.80 (C(*C*H₃)₃ × 2, multiple overlapping peaks); 25.61, 25.33, 22.61 (C12 *C*H₂'s and either Arg CH*C*H₂ or Arg *C*H₂CH₂NH, multiple overlapping peaks); 19.27, 17.92 (Pbf ArCH₃ × 2); 14.07 (C12 *C*H₃); 12.42 (Pbf ArCH₃ × 1). v_{max} (cm⁻¹, solid): 3317*br&m* (N-H amide stretch); 2973*w*, 2926*m*, 2853*w* (C-H alkyl stretches); 1733*m* (C=O ester stretch); 1648*br&s* (C=O amide stretch); 1544*br&s* (N-H amide bend and C=C arene stretch); 1455*w*, 1408*w*, 1393*w*, 1368*m* (C-H alkyl bends and S=O stretch); 1293*w*, 1276*w*, 1249*m*, 1152*s*, 1106*s*, 1091*s* (C-O ester and C-N amide stretches). ESI-MS (m/z): Calc. for C₄₅H₇₇N₆O₁₀S 893.5416; found: 893.5424 (100%, [M+H]⁺).

Compound 8 (C12-RGD). Compound 7 (206 mg, 0.23 mmol) was dissolved in a mixture of TFA, 15 water and TIPS (2 ml, 95:2.5:2.5) and shaken for 3 h, after which time TLC indicated that the deprotection reaction was complete. The volatiles were removed in vacuo, then the residue was dissolved in the minimum amount of MeOH and recrystallised from Et₂O to yield C12-RGD as a white solid (116 mg, 78% as TFA salt). Sample then dissolved in water/^tBuOH, filtered over a PTFE membrane filter (0.2 μ m), shell frozen and lyophilised to yield C12-RGD as a fluffy white powder. $R_{\rm f}$ $_{20}$ 0.00 (9:1 DCM/MeOH, cerium stain). $[\alpha]_{D} = +4.8$ (c = 1.0, CH₃OH). M.p.: decomposed at 187.6°C. ¹H NMR (CD₃OD, 400 MHz) δ 4.74 (t, Asp α -H, J = 6.0 Hz, 1H); 4.29 (dd, Arg α -H, J = 8.0 and 5.5 Hz, 1H); 3.93 (d, Gly CH^A , J = 17.0 Hz, 1H); 3.86 (d, Gly CH^B , J = 17.0 Hz, 1H); 3.19 (t, Arg CH_2 NH, 3.19 (t, Arg CH_2 NH, 3.19 (t, Arg CH_2 N 6.5 Hz, 2H); 2.90-2.79 (m, Asp CH₂, 2H); 2.27 (t, CH₂C(O)NH, J = 7.5 Hz, 2H); 1.91-1.83 (m, Arg CHCH^A, 1H); 1.79-1.57 (m, Arg CHCH^B, Arg CH₂CH₂NH and C12 CH₂ overlapping, 5H); 1.35-1.20 $_{25}$ (m, C12 CH₂'s, 16H); 0.88 (t, C12 CH₃, J = 7.0 Hz, 3H). 13 C NMR (CD₃OD, 100 MHz) δ 176.86, 175.02, 174.06, 173.94, 171.46, 158.49 (COOH × 2, CONH amide × 3, C=N guanidine); 54.79 (Arg α-CH); 50.30 (Asp α-CH); 43.43 (Gly CH₂); 41.91 (Arg CH₂NH); 36.81, 36.73 (Asp CH₂, C12 CH₂C(O)NH); 33.06, 30.78, 30.75, 30.67, 30.53, 30.48, 30.43, 29.77, 26.82, 26.19, 23.73 (C12 CH₂'s, Arg CHCH₂ and Arg CH₂CH₂NH, multiple overlapping peaks); 14.51 (C12 CH₃). v_{max} (cm⁻¹, solid): ³⁰ 3287br&w (O-H acid and N-H amide/guanidino stretches); 2921w, 2853w (C-H alkyl stretches); 1728w (C=O acid stretch); 1648m (C=O amide stretch); 1539m (N-H amide bend); 1170br&m, 1045br&m (C-O acid and C-N amide stretches). ESI-MS (m/z) (positive ion mode): Calc. for $C_{24}H_{45}N_6O_7$ 529.3344; found: 529.3331 (100%, $[M+H]^+$). ESI-MS (m/z) (negative ion mode): Calc. for $C_{24}H_{43}N_6O_7$ 527.3199; found: 527.3197 (100%, $[M-H]^-$).

Protected G1-RGD₃ (see Scheme in main paper). First generation Z-protected 'Newkome-type' ⁵ dendritic scaffold (Z/Newkome-G1/OH, 96 mg, 0.2 mmol, 1 eq) and protected RGD tripepetdie H₂N-Arg(Pbf)-Gly-Asp(O^tBu)-O^tBu (0.52 g, 0.73 mmol, 3.6 eq) were suspended in dry DCM (10 ml), then DIPEA (0.22 ml, 1.22 mmol, 6 eq) was added and the reaction flask cooled over an ice-water bath. T3P (50 wt. % in EtOAc, 0.44 ml, 0.73 mmol, 3.6 eq) was added dropwise over 20 min. The ice-water bath was removed and the reaction mixture was stirred for 22 h at rt. The reaction mixture was diluted ¹⁰ with DCM (100 ml), guenched with water (50 ml), and then the organic layer was washed with saturated NaHCO₃ (100 ml), 1.33 M NaHSO₄ (100 ml), and finally water (100 ml). The organic layer was dried over MgSO₄ and filtered before removing the solvent in vacuo to produce Protected G1-RGD₃ as a crude white solid/oil (~0.5 g, ~96% crude yield) which was purified by column chromatography (SiO₂, 9:1 DCM/MeOH) to produce the product as a white solid (0.4 g, 77%). R_f 0.36 $_{15}$ (9:1 DCM/MeOH, UV and cerium stain). [α]_D -2.0 (c = 0.25, CHCl₃). M.p: 131.7-137.0°C. ¹H NMR (CDCl₃, 400 MHz) δ 7.70-7.68 (br m, NH amide \times 3, 3H); 7.33-7.28 (m, NH amide \times 6 and CH aromatic \times 5, 11H); 6.35 (br s, NH₂ guanidine \times 3, 6H); 6.22 (br s, NH guanidine \times 3, 3H); 5.50 (br s, NH carbamate, 1H); 5.01 (s, CH₂ benzylic, 2H); 4.65 (dt, Asp α -H × 3, J = 8.0 Hz and 5.0 Hz, 3H); 4.54 (m, Arg α -*H* × 3, 3H); 4.00 (dd, Gly CH^A × 3, J = 17.0 Hz and 5.5 Hz, 3H); 3.85 (dd, Gly CH^B × $_{20}$ 3, J = 17.0 Hz and 5.5 Hz, 3H); 3.68-3.57 (m, CCH₂O × 3, OCH₂CH₂ × 3, 12H); 3.30-3.15 (m, Arg $CH_2NH \times 3$, 6H); 2.93 (s, Pbf $CH_2 \times 3$, 6H); 2.78 (dd, Asp $CH^A \times 3$, J = 17.0 Hz and 5.0 Hz, 3H); 2.68 (dd, Asp $CH^{B} \times 3$, J = 17.0 Hz and 5.0 Hz, 3H); 2.56 (s, Pbf $CH_{3} \times 3$, 9H); 2.49 (s, Pbf $CH_{3} \times 3$, 9H); 2.47-2.40 (m, CH₂CH₂C(O) \times 3, 6H); 2.07 (s, Pbf CH₃ \times 3, 9H); 1.91-1.83 (m, Arg CHCH^A \times 3, 3H); 1.76-1.67 (m, Arg CHC $H^{B} \times 3$, 3H); 1.63-1.56 (m, Arg CH₂CH₂CH₂×3, 6H); 1.44 (s, [(Pbf CH₃×2)] $_{25} \times 3$, 18H); 1.41, 1.40 (s, [(^tBu CH₃ × 6)] × 3, 54H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.08, 172.47, 170.16, 169.99, 169.43 (C(O)O^tBu \times 2, CONH amide \times 3); 158.72, 156.59 (Pbf ArCO, C=N guanidine); 138.35 (Pbf aromatic *C*); 136.67 (Benzyl aromatic *C*); 132.96, 132.27 (Pbf aromatic *C*); 128.55, 128.09 (Benzyl aromatic CH); 124.63, 117.50 (Pbf aromatic C); 86.42 (Pbf CH₂C(CH₃)₂O); 82.56, 81.64 ($C(CH_3)_3 \times 2$); 69.38 (CCH_2O); 67.53 (OCH_2CH_2); 66.28 (CH_2 benzylic); 59.11 ³⁰ (CCH₂O); 53.15 (Arg α-CH); 49.44 (Asp α-CH); 43.28, 42.73, 40.33 (Pbf ArCH₂, Arg CH₂NH, Gly CH₂); 37.44 (Asp CH₂); 36.63 (CH₂CH₂C(O)); 29.28 (Arg CHCH₂ or CH₂CH₂NH); 28.66 (Pbf $CH_2C(CH_3)_2O$; 28.08, 27.92 ($C(CH_3)_3 \times 2$); 25.43 (Arg CHCH₂ or CH₂CH₂NH); 19.38, 18.03, 12.55 (Pbf Ar*C*H₃ × 3). v_{max} (cm⁻¹) (solid): 3306*br*&*w* (N-H amide stretch); 2975*w* (C-H alkyl and arene stretches); 1727*m* (C=O ester stretch); 1648*br*&*m* (C=O amide stretch); 1543*br*&*s* (N-H amide bend and C=C arene stretch); 1453*w*, 1367*w* (C-H alkyl bend and S=O stretch); 1243*br*&*m*, 1151*s*, 1094*s* (C-O ether, C-O ester and C-N amide stretches, C-H arene bends). ESI-MS (m/z): Calc. for ${}^{5}C_{120}H_{185}N_{19}Na_{2}O_{35}S_{3}$ 1297.1114; found: 1297.1096 (100%, [M+2Na]²⁺), 2572.2 (11%, [M+Na]⁺).

- G1-RGD₃ (see Scheme in main paper). Protected G1-RGD₃ (100 mg, 39 µmol) was dissolved in a mixture of TFA, water and triisopropylsilane (TIS) (500 µL, 95:2.5:2.5) and shaken for 2.5 h, after which time TLC indicated that the deprotection reaction was complete. The volatile organics were ¹⁰ removed *in vacuo*, then the residue was dissolved in 10% aqueous acetic acid (2 ml) and washed three times with a twofold excess of chloroform to extract the non-polar by-products. The aqueous acetic acid layer was evaporated in vacuo and the residue was redissolved in water, shell frozen and lyophilised to yield G1-RGD₃ as a fluffy white solid (72 mg, quantitative yield as TFA salt). $R_{\rm f}$ 0.00 (9:1 DCM/MeOH, cerium stain). $[\alpha]_{D}$ -10.8 (c = 0.5, D₂O). M.p: 80.9-88.9°C. ¹H NMR (D₂O, 400 ¹⁵ MHz) δ 7.26-7.18 (m, CH aromatic, 5H); 4.89 (s, CH₂ benzylic, 2H); 4.61 (t, Asp α -H \times 3, J = 6.0 Hz, 3H); 4.14 (dd, Arg α -H × 3, J = 8.5 Hz and 6.0 Hz, 3H); 3.77 (s, Gly CH₂ × 3, 6H); 3.59-3.39 (m, $CCH_2O \times 3$, $OCH_2CH_2 \times 3$, 12H); 2.99 (t, Arg $CH_2NH \times 3$, J = 7.0 Hz, 6H); 2.78 (d, Asp $CH_2 \times 3$, J =5.5 Hz, 6H); 2.45-2.31 (m, CH₂CH₂C(O) \times 3, 6H); 1.75-1.39 (m, Arg CHCH₂ \times 3, CH₂CH₂CH₂ \times 3, 12H). ¹³C NMR (D₂O, 100 MHz) δ 174.70, 174.64, 174.54, 174.34, 171.16, 157.05 (C(O)OH \times 2, $_{20}$ CONH amide \times 3, OC(O)NH carbamate \times 1): 137.50 (Benzyl aromatic C): 129.13, 128.72, 127.94 (Benzyl aromatic *C*H); 69.20, 67.76 (C*C*H₂O, O*C*H₂CH₂, *C*H₂ benzylic, multiple overlapping peaks); 59.44 (CCH₂O); 53.89 (Arg α-CH); 49.44 (Asp α-CH); 42.60, 40.87 (Arg CH₂NH, Gly CH₂); 36.17, 35.93 (Asp CH₂, CH₂CH₂C(O)); 28.59, 24.80 (Arg CHCH₂, CH₂CH₂NH). v_{max} (cm⁻¹) (solid): 3690br&w (O-H acid and N-H amide/guanidino stretches); 3019br&w (C-H alkyl and arene stretches); 25 1735w (C=O acid stretch); 1656m (C=O amide stretch); 1543m (N-H amide bend and C=C arene stretch); 1475w, 1420w (C-H alkyl bends); 1181m, 1137m, 1110m, 1048m (C-O acid, C-O ether and C-N amide stretches, C-H arene bends). ESI-MS (m/z): Calc. for C₅₇H₉₁N₁₉O₂₆ 728.8186; found: 728.8169 (100%, [M+2H]²⁺), 1456.4682 (2%, [M+H]⁺).
- ³⁰ *Protected* **G2-RGD**₉ (see structure in main paper). Z/Newkome-G2/OH (110 mg, 77 μmol, 1.0 eq) and protected RGD peptide **4** (0.98 g, 1.39 mmol, 18.0 eq) were suspended in dry DCM (10 ml), then DIPEA (0.24 ml, 1.39 mmol, 18.0 eq) was added and the reaction flask cooled over an ice-water bath.

T3P (50 wt. % in EtOAc, 0.82 ml, 1.39 mmol, 18.0 eq) was added dropwise over 10 min. The icewater bath was removed and the reaction mixture was stirred for 2 days at rt. The reaction mixture was diluted with DCM (100 ml), quenched with water (100 ml), and then the organic layer was washed with saturated NaHCO₃ (100 ml), 1.33 M NaHSO₄ (100 ml), saturated NaHCO₃ (100 ml), 1.33 M ⁵ NaHSO₄ (100 ml), and finally water (100 ml). The organic layer was dried over MgSO₄ and filtered before removing the solvent *in vacuo* to produce *Protected* **G2-RGD**₉ as a crude white solid (~1.2 g) which was purified by column chromatography (SiO₂, 95:5 DCM/MeOH to 9:1 DCM/MeOH) to produce the product as a white solid (0.45 g, 76%). R_f 0.29 (9:1 DCM/MeOH, UV and cerium stain). ¹H NMR (CDCl₃, 400 MHz) δ 7.79 (br s, NH amide \times 9, 9H); 7.54 (br s, NH amide \times 9, 9H); 7.38 (d, ¹⁰ NH amide \times 9, 9H); 7.30-7.28 (m, CH aromatic \times 5, 5H); 6.75 (br s, NH amide of branching \times 3, 3H); 6.38 (br s, NH₂ guanidine \times 9, 18H); 6.29 (br s, NH guanidine \times 9, 9H); 5.81 (br s, NH carbamate, 1H); 5.02 (s, CH₂ benzylic, 2H); 4.65 (dt, Asp α -H × 9, J = 8.0 Hz and 5.0 Hz, 9H); 4.55 (m, Arg α -H × 9, 9H); 4.03 (dd, Gly CH^{A} × 9, J = 17.0 Hz and 5.0 Hz, 9H); 3.89 (dd, Gly CH^{B} × 9, J = 17.0 Hz and 5.0 Hz, 9H); 3.71-3.63 (m, CCH₂O \times 3 gen. 1, CCH₂O \times 9 gen. 2, OCH₂CH₂ \times 3 gen. 1, OCH₂CH₂ \times 9 ¹⁵ gen. 2, 48H); 3.30-3.15 (m, Arg CH₂NH × 9, 18H); 2.93 (s, Pbf CH₂ × 9, 18H); 2.76 (dd, Asp CH^A × 9, J = 17.0 Hz and 5.5 Hz, 9H); 2.68 (dd, Asp $CH^{B} \times 9$, J = 17.0 Hz and 5.5 Hz, 9H); 2.56 (s, Pbf CH_{3} \times 9, 27H); 2.49 (s, Pbf CH₃ \times 9, 27H); 2.47-2.40 (m, CH₂CH₂C(O) \times 3 gen.1, CH₂CH₂C(O) \times 9 gen. 2, 24H); 2.07 (s, Pbf CH₃ × 9, 27H); 1.94-1.84 (m, Arg CHCH^A × 9, 9H); 1.79-1.69 (m, Arg CHCH^B × 9, 9H); 1.66-1.54 (m, Arg CH₂CH₂CH₂ × 9, 18H); 1.44 (s, [(Pbf CH₃ × 2)] × 9, 54H); 1.40 (s, [(^tBu CH₃) $_{20} \times 6$] $\times 9$, 162H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.15, 172.55, 172.43, 170.14, 170.00, 169.45 $(C(O)O^{t}Bu \times 2, CONH \text{ amide } \times 4)$; 158.68, 156.60 (Pbf ArCO, C=N guanidine); 138.31, 133.01, 132.25 (Pbf aromatic C); 128.55, 127.96 (Benzyl aromatic CH); 124.60, 117.45 (Pbf aromatic C); 86.39 (Pbf CH₂C(CH₃)₂O); 82.49, 81.57 (C(CH₃)₃ \times 2); 69.38 (CCH₂O, gen. 1 and 2, multiple overlapping peaks); 67.56 (OCH₂CH₂, gen. 1 and 2, multiple overlapping peaks); 60.21 (CCH₂O gen. $_{25}$ 1 and 2, multiple overlapping peaks); 53.23 (Arg α -CH, multiple overlapping peaks); 49.45 (Asp α -CH, multiple overlapping peaks); 43.28, 42.72, 40.45 (Pbf ArCH₂, Arg CH₂NH, Gly CH₂, multiple overlapping peaks); 37.45 (Asp CH₂, multiple overlapping peaks); 36.46 (CH₂CH₂C(O), gen. 1 and 2, multiple overlapping peaks); 29.38 (Arg CHCH₂ or CH₂CH₂NH, multiple overlapping peaks); 28.66 (Pbf CH₂C(CH₃)₂O); 28.07, 27.91 (C(CH₃)₃ \times 2); 25.56 (Arg CHCH₂ or CH₂CH₂NH, multiple ³⁰ overlapping peaks); 19.38, 18.04, 12.54 (Pbf ArCH₃ × 3). ESI-MS (m/z): Calc. for C₃₅₇H₅₆₃N₅₈O₁₀₇S₉ 2555.9; found: 2555.9 (26%, [M+3H]³⁺), 1916.9 (91%, [M+4H]⁴⁺), 1534.0 (100%, [M+5H]⁵⁺).

G2-RGD₉ (see structure in main paper). *Protected* **G2-RGD**₉ (116 mg, 15 µmol) was dissolved in a mixture of TFA, water and triisopropylsilane (TIS) (500 µL, 95:2.5:2.5) and shaken for 4 h, after which time TLC indicated that the deprotection reaction was complete. The volatile organics were removed *in vacuo*, then the residue was dissolved in 10% aqueous acetic acid (2 ml) and washed three ⁵ times with a twofold excess of chloroform to extract the non-polar by-products. The aqueous acetic acid layer was evaporated *in vacuo* and the residue was redissolved in water, shell frozen and lyophilised to yield **G2-RGD**₉ as a fluffy white solid (73 mg, 89% as TFA salt). *R*_f 0.00 (9:1 DCM/MeOH, cerium stain). ¹H NMR (D₂O, 400 MHz) δ 7.17-7.09 (m, CH aromatic, 5H); 4.87 (s, CH₂ benzylic, 2H); 4.54 (t, Asp α -H × 9, *J* = 6.0 Hz, 9H); 4.08 (dd, Arg α -H × 9, *J* = 8.5 Hz and 6.0 ¹⁰ Hz, 9H); 3.72 (s, Gly CH₂ × 9, 18H); 3.55-3.35 (m, CCH₂O × 12, OCH₂CH₂ × 12, 48H); 2.95 (t, Arg CH₂NH × 9, *J* = 7.0 Hz, 18H); 2.71 (d, Asp CH₂ × 9, *J* = 5.5 Hz, 18H); 2.40-2.20 (m, CH₂CH₂C(O) × 12, 24H); 1.66-1.57 (m, Arg CHCH^A × 9, 9H); 1.56-1.48 (m, Arg CHCH^B × 9, 9H); 1.47-1.32 (m, CH₂CH₂CH₂ × 9, 18H). ESI-MS (m/z): Calc. for C₁₆₈H₂₇₈N₅₈O₈₀ 731.3239; found: 627.3 (48%, [M+7H]⁷⁺), 731.4926 (100%, [M+6H]⁶⁺), 877.8 (48%, [M+5H]⁵⁺), 1097.0 (36%, [M+4H]⁴⁺), 1462.3 ¹⁵ (7%, [M+3H]³⁺).

Compound 9. Fmoc-Gly-OH (1.06 g, 3.57 mmol, 2 eq) and DIPEA (0.62 ml, 3.57 mmol, 2 eq) in dry DCM (25 ml) were added to 2-chlorotrityl chloride resin (1.19 g, 1.00-1.50 mmol/g, 1.19-1.79 mmol) and stirred for 2.25 h. DIPEA (0.4 ml) and MeOH (2 ml) were then added and shaken for 45 minutes ²⁰ to cap the unreacted sites on the resin. The resin was then filtered and washed with DMF (50 ml), DCM (50 ml), MeOH (50 ml), and finally Et₂O (50 ml) before drying in vacuo. A loading of 0.91 mmol of Fmoc-Gly was calculated from the resultant mass of the Resin-O-Gly-Fmoc (1.46 g). To remove the Fmoc-protecting group, a 20% solution of piperidine in DMF was twice added to the resin (50 ml in total) and shaken for 10 minutes each. Filtration of the resin, followed by washing with DMF 25 (100 ml) then DCM (100 ml) until ninhydrin stain of the filtrate showed no visible spot for any residual piperidine or Fmoc-piperidine by-products, yielded Resin-O-Gly-NH₂ (1.22 g) after drying in vacuo. Fmoc-Gly-OH (0.68 g, 2.28 mmol, 2.5 eq with respect to the initial Fmoc-Gly loading), HOBt (0.31 g, 2.28 mmol, 2.5 eq), TBTU (0.73 g, 2.28 mmol, 2.5 eq), and DIPEA (1.1 ml, 6.3 mmol, 7 eq) were dissolved in dry DMF (25 ml) and added to a suspension of the resin in dry DMF (50 ml) and ³⁰ shaken overnight. Filtration of the resin, followed by washing with DMF (100 ml) then DCM (100 ml) before drying in vacuo, yielded Resin-O-Gly-Gly-Fmoc (1.59 g). The Fmoc-protecting group was removed as described above to yield Resin-O-Gly-Gly-NH₂. Fmoc-Gly-OH was coupled to the Fmoc deprotected resin as described above to yield Resin-O-Gly-Gly-Gly-Fmoc (1.58 g). The Fmoc-

protecting group was removed as described above to yield Resin-O-Gly-Gly-Gly-NH₂ (1.32 g). 2-[2-(2-methoxyethoxy)-ethoxy)acetic acid (0.41 g, 2.28 mmol, 2.5 eq with respect to the initial Fmoc-Gly loading), HOBt (0.31 g, 2.28 mmol, 2.5 eq), TBTU (0.73 g, 2.28 mmol, 2.5 eq), and DIPEA (1.1 ml, 6.3 mmol, 7 eq) were dissolved in dry DMF (25 ml) and added to a suspension of the resin in dry DMF 5 (50 ml) and shaken overnight. A Kaiser Test performed on a small sample of beads taken from the reaction, to monitor the coupling, indicated that some free amines were still present on the beads. 2-[2-(2-methoxyethoxy)-ethoxy)acetic acid (0.41 g, 2.28 mmol, 2.5 eq with respect to the initial Fmoc-Gly loading), HOBt (0.31 g, 2.28 mmol, 2.5 eq), TBTU (0.73 g, 2.28 mmol, 2.5 eq), and DIPEA (1.1 ml, 6.3 mmol, 7 eq) were again dissolved in dry DMF (25 ml) and added to the reaction mixture and ¹⁰ shaken for 6 days to try and drive the reaction to completion. Subsequently, a Kaiser Test was negative for free amines on the beads. Filtration of the resin, followed by washing with DMF (100 ml) then DCM (100 ml) before drying in vacuo, yielded Resin-O-Gly-Gly-Gly-PEG (1.50 g). The resin (1.50 g) was treated twice with TFA/water (95:5, v/v) (40 ml in total) for 10 minutes each to cleave the peptide from the resin. The resin was further shaken with DCM (3×20 ml) for 10 min each, then 15 washed with DCM (100 ml) and all fractions were subsequently collected together and the solvent removed in vacuo. The crude peptide was obtained as a brown oil (~400 mg). Silica column purification (90:10, to 80:20, to 50:50 DCM/MeOH yielded a pale brown hygroscopic foam (320 mg, 0.9 mmol, near quantitative yield based on the initial Fmoc-Gly loading). The product was then dissolved in a 'BuOH/water mixture, filtered over a 0.2 µm PTFE membrane filter, shell-frozen and $_{20}$ lyophilised to yield a pale yellow foam. $R_{\rm f} = 0.17$ (50:50 DCM/MeOH, KMnO₄ stain). ¹H NMR $(CD_3OD, 400 \text{ MHz})$ 4.08, 3.98, 3.93, 3.86 $(4 \times s, 3 \times Gly CH_2 \text{ and } 1 \times OCH_2C(O), 4 \times 2H)$; 3.75-3.72 (m, PEG CH₂, 2H); 3.70-3.64 (m, $2 \times PEG CH_2$, 4H); 3.57-3.55 (m, PEG CH₂, 2H); 3.36 (s, CH₃O, 3H). ESI-MS (m/z) (positive ion mode): Calc. for C₁₃H₂₄N₃O₈ 350.1558; found: 350.1555 (97%, [M+H]⁺); 372.1368 (100%, [M+Na]⁺). ESI-MS (m/z) (negative ion mode): Calc. for 348.1412; found: 25 348.1418 (100%, [M-H]⁻).

Compound 10. Fmoc-Gly-OH (1.08 g, 3.62 mmol, 2 eq) and DIPEA (0.63 ml, 3.62 mmol, 2 eq) in dry DCM (20 ml) were added to 2-chlorotrityl chloride resin (1.17 g, 1.55 mmol g⁻¹, 1.81 mmol) and stirred for 2.5 h. DIPEA (2 ml) and MeOH (10 ml) were then added and stirred for 30 minutes to cap ³⁰ the unreacted sites on the resin. The resin was then filtered and washed with DMF (50 ml), DCM (50 ml), MeOH (50 ml), and finally Et₂O (50 ml) before drying in vacuo. A loading of 1.75 mmol of Fmoc-Gly was calculated from the resultant mass of the Resin-O-Gly-Fmoc (1.69 g). To remove the Fmoc-protecting group, a 20 % solution of piperidine in DMF was twice added to the resin (25 ml in

total) and stirred for 20 minutes each. Filtration of the resin, followed by washing with DMF (200 ml) then DCM (200 ml) until ninhydrin stain of the filtrate showed no visible spot for any residual piperidine or Fmoc-piperidine by-products, yielded Resin-O-Gly-NH₂ (1.48 g). Fmoc-Arg(Pbf)-OH (2.27 g, 3.5 mmol, 2 eq wrt the initial Fmoc-Gly loading), HOBt (0.47 g, 3.5 mmol, 2 eq), TBTU (1.12 s g, 3.5 mmol, 2 eq), and DIPEA (1.85 ml, 10.5 mmol, 6 eq) were added to the resin in dry DMF (25 ml) and stirred for 1.5 h. Filtration of the resin, followed by washing with DMF (200 ml) then DCM (200 ml) before drying in vacuo, yielded Resin-O-Gly-Arg(Pbf)-Fmoc (2.19 g). The Fmoc-protecting group was removed as described above to yield Resin-O-Gly-Arg(Pbf)-NH₂ (2.16 g). Fmoc-Lys(Z)-OH (1.76 g, 3.5 mmol, 2 eq wrt the initial Fmoc-Gly loading), HOBt (0.47 g, 3.5 mmol, 2 eq), TBTU 10 (1.12 g, 3.5 mmol, 2 eq), and DIPEA (1.85 ml, 10.5 mmol, 6 eq) were added to the resin in dry DMF (25 ml) and stirred for 1.5 h. Filtration of the resin, followed by washing with DMF (200 ml) then DCM (200 ml) before drying in vacuo, yielded Resin-O-Gly-Arg(Pbf)-Lys(Z)-Fmoc (2.47 g). The Fmoc-protecting group was removed as described above to yield Resin-O-Gly-Arg(Pbf)-Lys(Z)-NH₂ (2.28 g). Fmoc-D-Phe-OH (1.36 g, 3.5 mmol, 2 eq wrt the initial Fmoc-Gly loading), HOBt (0.47 g, 15 3.5 mmol, 2 eq), TBTU (1.12 g, 3.5 mmol, 2 eq), and DIPEA (1.85 ml, 10.5 mmol, 6 eq) were added to the resin in dry DMF (25 ml) and stirred for 1.5 h. Filtration of the resin, followed by washing with DMF (200 ml) then DCM (200 ml) before drying in vacuo, yielded Resin-O-Gly-Arg(Pbf)-Lys(Z)-D-Phe-Fmoc (2.68 g). The Fmoc-protecting group was removed as described above to yield Resin-O-Gly-Arg(Pbf)-Lys(Z)-D-Phe-NH₂ (2.45 g). Fmoc-Asp(OtBu)-OH (1.44 g, 3.5 mmol, 2 eq wrt the ²⁰ initial Fmoc-Gly loading), HOBt (0.47 g, 3.5 mmol, 2 eq), TBTU (1.12 g, 3.5 mmol, 2 eq), and DIPEA (1.85 ml, 10.5 mmol, 6 eq) were added to the resin in dry DMF (25 ml) and stirred for 1.5 h. Filtration of the resin, followed by washing with DMF (200 ml) then DCM (200 ml) before drying in vacuo, yielded Resin-O-Gly-Arg(Pbf)-Lys(Z)-D-Phe-Asp(OtBu)-Fmoc (2.88 g). The Fmoc-protecting group was removed as described above to yield Resin-O-Gly-Arg(Pbf)-Lys(Z)-D-Phe-Asp(OtBu)-NH₂ (2.65 ²⁵ g). The resin (2.65 g) was treated twice with HFIP (1,1,1,3,3,3-hexafluoro-2-propanol)/DCM (1:4, v/v) (75 ml in total) for 30 minutes each to cleave the protected peptide from the resin. The resin was further washed with DCM (3×20 ml) for 10 min each and all fractions were subsequently collected together and the solvent removed in vacuo. The crude protected linear peptide was obtained as a brown solid (1.61 g, 86% crude yield as calculated from the initial Fmoc-Gly loading). Cyclisation of this ³⁰ compound was carried out without further purification of the protected linear peptide. The crude linear protected peptide (1.61 g, 1.51 mmol) dissolved in dry DCM (20 ml) was slowly added over 1 h to a solution of T_3P (50% w/w in EtOAc, 4.5 ml, 7.55 mmol, 5 eq), TEA (4.2 ml, 30.2 mmol, 20 eq) and DMAP (20 mg, 0.15 mmol, 0.1 eq) in dry DCM (500 ml), cooled to 0°C in an ice-water bath. The

highly diluted solution subsequently turned from pale yellow to bright orange. The reaction was allowed to warm to room temperature and stirred for 2 days. Solvent was removed *in vacuo* to yield a crude, dark brown oil (6 g). Silica column chromatography (1:10, MeOH/EtOAc) was attempted on the crude material but the compound aggregated/crystallised out at the top of the column. The column s was flushed with 100% MeOH and 3 g of the crude material was recovered. ESI-MS showed the molecular ion peaks at 1046.5 m/z [M+H]⁺ and 1068.5 m/z [M+Na]⁺ but also a peak at 660 m/z which was reasoned to be a short, linear oligopeptide impurity. Purification by gel filtration chromatography (Sephadex LH-20, DMF) was carried out to remove the impurity and this was evidenced by the reduced significance, or even disappearance on some attempts, of the peak at 660 m/z in the ESI MS. ¹⁰ Compound **10** was recovered as a pale yellow solid (0.74 g, 40% yield based on the initial Fmoc-Gly loading). $R_f 0.64$ (1:10 MeOH/EtOAc, UV and cerium stain). $[\alpha]_D = -9.8$ (c = 0.5, 1:1 CHCl₃/CH₃OH). M.p: decomposes at 198.7°C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.33 (br s, NH amide, 1H); 8.04 (d, NH amide, J = 7.0 Hz, 1H); 7.95 (d, NH amide, J = 8.5 Hz, 1H); 7.91 (d, NH amide, J = 9.0 Hz, 1H); 7.50 (d, NH amide, J = 8.0 Hz, 1H); 7.38-7.28 (m, CH aromatic \times 5, 5H); 7.26-7.15 (m, CH aromatic $_{15} \times 5$, 5H); 7.08 (br s, NH carbamate, 1H); 6.70 (br s, NH guanidine, 1H); 6.46 (br s, NH₂ guanidine, 2H); 5.02 (s, CH₂ benzylic, 2H); 4.66-4.60 (m, α -H, 1H); 4.52-4.46 (m, α -H, 1H); 4.15-4.10 (m, α -H, 1H); 4.08-4.02 (m, Gly CH^{A} , 1H); 3.96-3.91 (m, α -H, 1H); 3.23-3.20 (Gly CH^{B} , 1H, and Arg $CH_{2}NH$, 2H, obscured by the water peak); 3.05-3.01 (m, Lys CH₂NH, 2H); 2.95 (s, Pbf CH₂, 2H); 2.93, 2.82 $(dd \times 2, Phe CH_2, J = 13.0 Hz and 6.5 Hz, 2H); 2.64, 2.36 (dd \times 2, Asp CH_2, J = 15.5 Hz and 8.5 Hz, 2H); 2.64, 2.36 (dd \times 2, Asp CH_2, J = 15.5 Hz and 8.5 Hz, 2H); 2.64, 2.36 (dd \times 2, Asp CH_2, J = 15.5 Hz and 8.5 Hz, 2H); 2.64, 2.36 (dd \times 2, Asp CH_2, J = 15.5 Hz and 8.5 Hz, 2H); 2.64, 2.36 (dd \times 2, Asp CH_2, J = 15.5 Hz and 8.5 Hz, 2H); 2.64, 2.6$ $_{20}$ 2H); 2.48 (s, Pbf CH₃, 3H); 2.42 (s, Pbf CH₃, 3H); 2.01 (s, Pbf CH₃, 3H); 1.74-1.65, 1.60-1.52 (m × 2, Arg CHCH₂, 2H); 1.49-1.26 (m, Lys CHCH₂CH₂CH₂CH₂CH₂NH, Lys CHCH₂CH₂CH₂CH₂NH, 4H); 1.41 (s, Pbf CH₃ × 2, 6H); 1.37 (s, ^tBu CH₃ × 3, 9H); 1.09-0.96 (m, Lys CHCH₂CH₂CH₂CH₂CH₂NH, 2H). ¹³C NMR (CDCl₃/CD₃OD, 100 MHz) δ 174.03, 173.31, 172.99, 171.93, 171.40, 170.62, 159.35, 158.19, 157.23 ($C(O)O^{t}Bu$, CONH amide \times 5, CONH carbamate, Pbf ArCO, C=N guanidine); 138.93, 137.46, ²⁵ 137.03, 133.56, 132.91, 125.37, 118.09 (aromatic quaternary C's for: Pbf × 5, Z group, phenylalanine); 129.75, 129.15, 129.02, 128.56, 128.35, 127.53 (aromatic CH's for: phenylalanine \times 3, Z group \times 3); 87.13 (Pbf CH₂C(CH₃)₂O); 82.12 (C(CH₃)₃); 67.07 (CH₂ benzyl Z group); 55.95, 55.68, 53.27, 50.33 $(\alpha$ -CH × 4); 44.41, 43.69, 40.84, 37.75, 37.09, (Gly CH₂, Pbf CH₂, benzyl CH₂ (phenylalanine), Arg CH₂NH, Lys CH₂NH, Asp CH₂, multiple overlapping peaks); 31.35, 29.60, 28.58, 26.38, 23.55 (Arg ³⁰ CHCH₂, Arg CH₂CH₂NH, Lys CHCH₂, Lys CH₂CH₂CH₂NH, Lys CH₂CH₂CH₂NH); 28.75 (Pbf CH₂C(CH₃)₂O); 28.20 (C(CH₃)₃ × 2); 19.55, 18.29, 12.62 (Pbf ArCH₃ × 3). v_{max} (cm⁻¹, solid): 3303br&w (N-H stretch); 2973br&w, 2932br&w (C-H alkyl and arene stretches); 1721w, 1678m,

1633*s* (C=O ester and C=O amide stretches); 1542*br&m* (N-H amide bends and C=C arene stretches); 1455*br&m*, 1368*w* (C-H alkyl bends and S=O stretches); 1244*br&m*, 1154*m*, 1091*br&m* (C-O ester and C-N amide stretches, C-H arene bends). ESI-MS (m/z): Calc. for $C_{52}H_{72}N_9O_{12}S$ 1046.5016; found: 1046.5018 (100%, [M+H]⁺); 1068.5 (19%, [M+Na]⁺).

Compound 11. Compound **10** (200 mg, 0.19 mmol) was dissolved in DMF followed by the addition of Pd/C (40 mg, 20%). The flask was evacuated from air, purged with H₂ and stirred for 24 h. The catalyst was filtered off over celite and carefully washed with DMF. The filtrate, still black in appearance, was passed through a syringe filter (0.45 μ m, PTFE membrane) to try and remove the ¹⁰ residual catalyst. The solvent was removed *in vacuo* to yield the product **11** as a black solid as some catalyst still remained due to the fine dispersion of Pd/C in DMF (160 mg, ~92%). Rf 0.00 (9:1 DCM/MeOH, UV and cerium stain). ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.42-8.39 (m, NH amide, 1H); 8.11-8.03 (m, NH amide, 3H); 7.72 (d, NH amide, J = 7.5 Hz, 1H); 7.27-7.15 (m, CH aromatic \times 5, 5H); 6.73 (br s, NH guanidine, 1H); 6.39 (br s, NH₂ guanidine, 2H); 4.65-4.59 (m, α-H, 1H); 4.50-4.44 $_{15}$ (m, α -H, 1H); 4.16-4.10 (m, α -H, 1H); 4.07-4.01 (m, Gly CH^A, 1H); 3.98-3.93 (m, α -H, 1H); 3.45-3.21 (Gly CH^B, 1H, and Arg CH₂NH, 2H, obscured by the water peak); 3.05-3.29 (m, Lys CH₂NH, 2H); 2.96 (s, Pbf CH₂, 2H); 2.94, 2.79 (dd \times 2, Phe CH₂, J = 13.0 Hz and 6.5 Hz, 2H); 2.63, 2.34 (dd \times 2, Asp CH₂, J = 15.5 Hz and 8.5 Hz, 2H); 2.46 (s, Pbf CH₃, 3H); 2.41 (s, Pbf CH₃, 3H); 2.00 (s, Pbf CH₃, 3H); 1.74-1.63, 1.59-1.48 (m × 2, Arg CHCH₂, 2H); 1.47-1.19 (m, Lys CHCH₂CH₂CH₂CH₂CH₂NH, Lys ²⁰ CHCH₂CH₂CH₂CH₂NH, 4H); 1.40 (s, Pbf CH₃ \times 2, 6H); 1.35 (s, ^tBu CH₃ \times 3, 9H); 1.09-0.95 (m, Lys CHCH₂CH₂CH₂CH₂NH, 2H). ESI-MS (m/z): Calc. for C₄₄H₆₅N₉NaO₁₀S 934.4467; found: 934.4468 $(100\%, [M+Na]^{+}); 912.46 (68\%, [M+H]^{+}).$

Compound 12. Compound **11** (20 mg, 22 µmol, 1.2 eq) was dissolved in dry DMF (400 µl), then TEA ²⁵ (25 µl, 0.18 mmol, 10 eq) followed by 5(6)-carboxyfluorescein *N*-hydroxysuccinimide ester (9 mg, 18 µmol) were added. Additional dry DMF (600 µl) was used to wash the neck of the flask. The reaction was stirred at room temperature for 18 h. Solvent was removed *in vacuo* yielding a crude tacky black oil/solid with a yellow/green pigmentation. This residue was readily soluble in methanol and seemingly crashed out a black solid which was deemed to be the residual Pd/C catalyst from the ³⁰ previous hydrogenation step, with possible recrystallisation of the excess c[R(Pbf)GD(O^tBu)fK] starting material also, which was known to be insoluble in methanol from previous reactions. The solution was filtered over cotton wool and the filtrate evaporated to yield a yellow/orange solid (~28 mg). Purification by gel filtration chromatography (Sephadex LH-20, DMF) yielded **12** as a yellow solid (20 mg, 83%). One spot by TLC: $R_f 0.67$ (8:2 DCM/MeOH, UV and cerium stain). ESI-MS (m/z) (positive ion mode): Calc. for $C_{65}H_{77}N_9O_{16}S$ 635.7599; found: 635.7643 (100%, $[M+2H]^{2+}$); 1270.3665 (1%, $[M+H]^+$). ESI-MS (m/z) (negative ion mode): 1268.5 (82%, $[M-H]^-$), 1314.5 (100%, $[M-H+HCO_2H]^-$).

Compound 13. Compound **12** (16 mg, 12.6 µmol) was dissolved in a mixture of TFA, water and TIS (500 µl, 95:2.5:2.5) and shaken for 4 h, after which time TLC indicated that the deprotection reaction was complete. The volatiles were removed *in vacuo*, then the residue was dissolved in the minimum amount of methanol and recrystallised from cold Et₂O. The yellow solid was filtered over a cotton wool plug, washed with the minimum amount of cold Et₂O then flushed through the cotton wool plug using methanol to re-dissolve. The solvent was removed *in vacuo* to yield the product **13** as a yellow solid (10 mg, 83%). One spot by TLC: $R_f 0.00$ (9:1 DCM/MeOH, UV and cerium stain). ESI-MS (m/z) (positive ion mode): Calc. for C₄₈H₅₂N₉O₁₃ 962.3679; found: 962.3663 (100%, [M+H]⁺). ESI-MS (m/z) (negative ion mode): 960.4 (100%, [M-H]⁻); 982.3 (15%, [M-2H+Na]⁻).

15

20

25

5

3. Fluorescence Polarisation (FP) Assay

The FP competition experiment was adapted from the method in reference [2]. To demonstrate that the probe **13** could bind integrin and produce a FP response, 10 nM of the probe was assayed as a function ⁵ of increasing concentration of integrin. When no integrin was present the FP signal was around 35 mP (milli polarisation units). This is the background signal from intrinsic polarisation of the probe. This increased to over 100 mP when the concentration of integrin was more than 400 nM. This was envisaged as more integrin is available for binding to the probe and hence more [probe:protein] complex is formed. The calibration curve provides evidence that **13** binds to integrin $\alpha_v\beta_3$. The binding ¹⁰ was found to be fast; incubating the mixed samples for longer than 5 min did not have any significant effect on the FP signal (data not shown).

Fig. S1. Normalisation of FP Assay.

¹⁵ For the competition assay, a solution of 187 μ M **5(6)-FL-c[RGDfK]** in PBS buffer (0.01 M phosphate, pH 7.4, 0.138 M NaCl, 0.0027 M KCl) was diluted with Tris buffer (50 mM TRIS, pH 7.4, 1 mM CaCl₂, 10 μ M MnCl₂, 1 mM MgCl₂, 100 mM NaCl) to give a 100 nM stock. The assay mixture (200 μ l in a 100 μ l volume microcuvette) was composed of 280 nM integrin $\alpha_v\beta_3$ (13.25 μ g) and 10 nM **13** in TRIS buffer. The cuvette was incubated at 29°C for 5 min and then the single-point fluorescence ²⁰ polarisation was obtained using $\lambda_{ex} = 485$ nm, $\lambda_{em} = 510$ nm. **5(6)-FL-c[RGDfK]** alone (10 nM) served as control and all subsequent data with the protein present was normalised to 100 mP units using this value. All data points (Fig. S1) are presented as mean values ± standard deviations from at least 5 independent scans.Competition experiments were performed with the synthetic ligands **G1-RGD₃**, **G2-RGD₉**, **PEG-RGD** and **C12-RGD**, with **PEG-GGG** and **SDS** serving as negative controls. ²⁵ Stocks of these compounds were made in PBS and diluted in the TRIS assay buffer to the desired concentration in the final stock titrant (100 μ l) which also contained 280 nM integrin $\alpha_v\beta_3$ (6.625 μ g) and 10 nM **5(6)-FL-c[RGDfK]**, then incubated at 29°C in a water bath for at least 5 min before carrying out the titration experiment. The titrant was added to the assay mixture in microlitre aliquots, the cuvette shaken and incubated at 29°C for at least 5 min, and then the single-point FP value recorded, while incubation of the stock titrant was resumed at 29°C in between titrations. The mP values were plotted against ligand concentration in Excel and the effective concentration at which 50% displacement of the probe **5(6)-FL-c[RGDfK]**'s binding to integrin $\alpha_v\beta_3$ was achieved (EC₅₀) was extrapolated at 50 mP units from the normalised data. As stated in the Results and Discussion, this methodology is robust for the direct comparison of structurally related ligands, and avoids the use of radiolabel assays.

10

4. Nile Red Assay

The Nile Red encapsulation experiment was adapted from the methods in reference [3]. A 2.5 mM ¹⁵ Nile Red (technical grade, Sigma) stock solution was made in EtOH and diluted 1000-fold in the surfactant system (i.e. 1 μ L added to a 1 ml surfactant assay volume). A 1 mM **C12-RGD** stock solution was made in PBS buffer. Aliquots of the stock were taken and diluted to the desired concentration to make up a 1 ml assay volume in PBS buffer. Nile Red (1 μ L) was added with swirling and the fluorescence emission measured immediately after mixing. Nile Red fluorescence was ²⁰ measured at room temperature using an excitation wavelength of 550 nm. Fluorescence emission was monitored from 550 to 700 nm at 1 nm intervals. Data are presented as mean values from 3 independent experiments (Fig. 2A). The critical aggregation concentration (CAC) was calculated from plotting the absorption of Nile Red at 635 nm against the log of the surfactant concentration (Fig. 2B), setting the equations from the two trendlines as equal to one another and solving for *x* at the turning ²⁵ point. As *x* is log concentration, 10^x yields the CAC in mol dm⁻³. The same assay was applied to **G1**-

RGD₃, **G2-RGD₉** and **PEG-RGD**, but these compounds did not exhibit any aggregation behavior at concentrations <1 mM.

5. TEM Images

Samples were deposited onto a standard copper grid with Formvar and a carbon support film, allowed to equilibrate for several minutes before excess liquid was wicked off with filter paper. The grids were ⁵ then washed with a few drops of deionized water to wash off residual salt crystals in the buffers, excess liquid was wicked off with filter paper, the grids were stained with uranyl acetate (1% in water, pH 4.5) before excess stain was wicked off with filter paper (N.B. no stain used for image in Fig. 6), then allowed to dry for 10 minutes. Imaging was performed immediately afterwards.

10 Images of Assemblies formed by C12-RGD

TEM images of assemblies formed by **C12-RGD** in TRIS buffer at: A) 1 mM, scale bar = 50 nm, and B) 400 μ M, scale bar = 2 μ m.

Imaging of C12-RGD with Triton/Integrin

15

TEM images of: A, integrin-triton aggregates, and B, integrin-triton assemblies in the presence of C12-RGD.Scale bar = 500 nm

5

Imaging of SDS Interactions with Triton/Integrin

SDS causes disruption of the assemblies of integrin, as is evident from image C – however, there is no binding between SDS and integrin itself, as shown in the FD assay data in the main paper.

TEM images of A) 1mM sodiumdodecylsulfate (SDS) in PBS buffer, scale bar = 200 nm; B) integrintriton aggregates at assay concentration (66.25 ng/ μ l) in TRIS buffer, scale bar = 500 nm; C) integrin-¹⁰ triton in the presence of SDS at the end point of the FP assay, scale bar = 2 μ m.

6. References

- (a) X. Dai, Z. Su and J. O. Liu, *Tetrahedron Lett.*, 2000, 41, 6295-6298 (for the on-bead synthesis and solution phase cyclisation). (b) I. Dijkgraaf, A. Y. Rijnders, A. Soede, A. C.
 ⁵ Dechesne, G. W. v. Esse, A. J. Brouwer, F. H. M. Corstens, O. C. Boerman, D. T. S. Rijkers and
- R. M. J. Liskamp, *Org. Biomol. Chem.*, 2007, **5**, 935-944 (see supplementary information for the cleavage conditions from the resin).
- 2 W. Wang, Q. Wu, M. Pasuelo, J. S. McMurray and C. Li, *Bioconjugate Chem.*, 2005, **16**, 729-734.
- ¹⁰ 3 (*a*) Y.-b. Lim, E. Lee and M. Lee, *Angew. Chem. Int. Ed.*, 2007, **46**, 9011-9014. (*b*) M. C. A. Stuart, J. C. van de Pas and J. B. F. N. Engberts, *J. Phys. Org. Chem.*, 2005, **18**, 929-934.