## Electronic Supplementary Information (ESI)

# A rapid and facile method for the general synthesis of 3-aryl substituted 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyrazines and their ring fused analogues 

Chinmay Chowdhury,* Sanjukta Mukherjee, Biswajit Chakraborty and
Basudeb Achari
Chemistry Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick
Road, Kolkata-700032, India
E-mail: chinmay@iicb.res.in

1. General ..... 3
2. X-ray crystallographic information of product $\mathbf{2 " i}^{\mathbf{i}}$ and 3cj .....  .3
3. Preparation of starting materials (4a-d) ..... 6
4. Spectral data of starting materials (4a-d) .....  7
5. Optimization of reaction conditions (Screening Studies) ..... 8
6. Synthesis of fused analogues of 4,5,6,7-tetrahydro [1,2,3]triazolo ..... 10
[1,5- $a$ ]pyrazines 3.
7. Spectral data of the ( $\pm$ )-trans-fused products (3a-d). ..... 11
8. Detosylation of some of the products (3aa, 3ac, 3bc) synthesized. ..... 16
9. Spectral data of detosylated products of 3aa, 3ac, 3bc. ..... 17
10. Preparation of optically active $4,5,6,7$-Tetrahydro $[1,2,3]$ tria- ..... 18zolo[1,5-a]pyrazines $\mathbf{2}^{\prime}$ and $\mathbf{2}^{\prime \prime}$.
11. Spectral data of optically active products ( $\mathbf{2}^{\prime} \mathbf{a}-\mathbf{n}$ ) ..... 20
12. Synthesis of boc-deprotected products $\mathbf{2}^{\prime \prime}$ ..... 21
13. Spectral data of products ( $\mathbf{2}^{\prime \prime} \mathrm{a}-\mathrm{n}$ ) ..... 21
14. Spectral data of self-cyclosdduct of substrate $\mathbf{4 a} \&$ compound D ..... 22
15. References ..... 24
16. NMR spectra of above reported compounds ..... 25
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a}$ ..... 25
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}$ ..... 26
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 c}$ ..... 27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 d}$ ..... 28
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a a}$ ..... 29
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a b}$ ..... 30
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a c}$ ..... 31
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a d}$ ..... 32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a e}$ ..... 33
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3af ..... 34
${ }^{1}$ Hand ${ }^{13} \mathrm{C}$ NMR spectra of 3bc. ..... 35
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b g}$ ..... 36
Dept 90, 135 and NOESY NMR spectra of 3bg. ..... 37
HSQC and HMBC NMR spectra of 3bg ..... 38
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b h}$ ..... 39
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{b i}$ ..... 40
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 cd ..... 41
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 cg ..... 42
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c j}$ ..... 43
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3ck ..... 44
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c l}$. ..... 45
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3da ..... 46
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 d m}$ ..... 47
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Detosylated Product of 3aa ..... 48
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Detosylated Product of 3ae ..... 49
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Detosylated Product of 3bc ..... 50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 ..... 51
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of $\mathbf{2}^{\prime} \mathrm{a}$ ..... 52
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of $\mathbf{2}^{\prime} \mathbf{c}$ ..... 53
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathbf{i}$ ..... 54
Dept 135 and HMBC NMR spectra of 2'i ..... 55
HSQC NMR Spectraof $\mathbf{2}$ 'i ..... 56
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathbf{j}$ ..... 57
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathrm{m}$ ..... 58
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectraof $\mathbf{2}^{\prime} \mathbf{n}$ ..... 59
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathbf{a}$ ..... 60
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathbf{c}$ ..... 61
Dept 90, 135 and HSQC NMRspectra of $\mathbf{2}^{\prime \prime} \mathbf{c}$ ..... 62
HMBC NMR spectra of $\mathbf{2}^{\prime \prime} \mathbf{c}$ ..... 63
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathrm{i}$ ..... 64
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathbf{j}$ ..... 65
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{m}$ ..... 66
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathbf{n}$ ..... 67
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Self-cycloadduct of substrate $\mathbf{4 a}$ ..... 68
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{D}$. ..... 69

## 1. General:

All solvents were distilled prior to use. Petroleum ether refers to fraction boiling in the range $60-80{ }^{\circ} \mathrm{C}$. DMF and DCM were dried over $\mathrm{CaH}_{2}$, distilled and stored over $3 \mathrm{~A}^{\circ}$ molecular sieves in sealed container. All the reactions were carried out under argon atmosphere and anhydrous conditions unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on 25 TLC aluminium sheets $20 \times 20 \mathrm{~cm}$ Silica gel $60 \mathrm{~F}_{254}$. Visualization of the developed chromatogram was performed by UV absorbance or iodine. For purification, column chromatography was performed using 60120 or 100-200 mesh silica gel.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in 300 or 600 MHz spectrometer using tetramethylsilane (TMS) as internal standard. Chemical shifts ( $\delta$ ) were given from TMS ( $\delta=0.00$ ) in parts per million ( ppm ) with the residual protons of deuterated solvent used $\left[\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}\right.$ NMR $\delta=7.26 \mathrm{ppm}(\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left.\delta=77.0 \mathrm{ppm}(\mathrm{t})\right]$. Coupling constants $(J)$ were expressed in hertz $(\mathrm{Hz})$ and spin multiplicities were given as s (singlet), d (doublet), dd (double doublet), t (triplet), m (multiplet) and br (broad). All ${ }^{13} \mathrm{C}$ NMR spectra were obtained with complete proton decoupling. Mass spectra were performed using an ESITOF mass spectrometer. Infrared spectra were obtained as neat or KBr plate.

## 2. X-Ray crystallographic information of product $\mathbf{2 " i}^{\mathrm{i}}$ and $\mathbf{3 c j}$ :

Single crystal of product $\mathbf{2 " i}$ and $\mathbf{3 c j}$ was obtained through slow evaporation (at room temperature) of a solution of ethylacetate in petrolium ether. A single crystal of $\mathbf{2 "}^{\mathbf{2}}$ (or 3cj) was attached to a glass fiber with epoxy glue and transferred to X-ray diffractometer equipped with a graphite-monochromator. Diffraction data for 3-aryl substituted 4,5,6,7tetrahydro $[1,2,3]$ triazolo $[1,5-a]$ pyrazines ( $\mathbf{2} \mathbf{2} \mathbf{i}$ ) and their ring fused analogue ( $\mathbf{3 c j}$ ) were measured with $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$ ) at $296(2) \mathrm{K}$. The structures were solved by direct methods using the SHELXS-97 program. ${ }^{1}$ Refinements were carried out with a full matrix least squares method against $F^{2}$ using SHELXL-97. ${ }^{2}$ The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in geometric positions and given thermal parameters equivalent to 1.2 times those of the
atom to which they were attached. The important crystal data of product $\mathbf{2} \mathbf{2} \mathbf{i}$ and $\mathbf{3 c j}$ are given bellow.

## Table 1: Important crystal data of product 2"i

| Empirical formula | $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{4}$ |
| :---: | :---: |
| Formula weight | 344.34 |
| Temperature | 296(2) K |
| Wavelength | 0.71073 |
| Crystal system | Monoclinic |
| Space group | P 21 |
| Unit cell dimensions | $\begin{array}{ll} \mathrm{a}=7.9258(4) \AA & \alpha=90.00^{\circ} \\ \mathrm{b}=16.4316(8) \AA & \beta=105.595(2)^{\circ} \\ \mathrm{c}=12.9933(6) \AA & \gamma=90.00^{\circ} \end{array}$ |
| Volume | $1629.87(14) \AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.403 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient (Mu) | $0.110 \mathrm{~mm}^{-1}$ |
| F(000) | 712.0 |
| Theta range for data collection | 1.63 to $31.00^{\circ}$ |
| Index ranges | $-11<=\mathrm{h}<=9,-23<=\mathrm{k}<=23,-18<=\mathrm{l}<=18$ |
| Reflection collected | 33684 |
| Independent reflections | $10061[\mathrm{R}(\mathrm{int})=0.0310]$ |
| Completeness to theta $=25.44^{\circ}$ | 97\% |
| Absorption correction | None |
| Max. and min. transmissi | 0.993 and 0.995 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 10061/0/452 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.109 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $\mathrm{R} 1=0.0783, \mathrm{wR} 2=0.2102$ |

R indices (all data)
Largest diff. peak and hole

$$
\mathrm{R} 1=0.1039, \mathrm{wR} 2=0.2271
$$

$0.804 \&-0.499$ e. $A^{-3}$

For more details please see the CIF file attached with supporting information. The crystal data of product $\mathbf{2}^{\prime \prime} \mathbf{i}$ has already been deposited at Cambridge Crystallographic data Centre. The CCDC reference number is 804692 .
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

Table 2: Important crystal data of product 3cj

| Empirical formula | $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}$ |
| :---: | :---: |
| Formula weight | 440.54 |
| Temperature | 296(2)K |
| Wavelength | $0.71073 \mathrm{~A}^{\text {o }}$ |
| Crystal System | Monoclinic |
| Space group | P 21/c |
| Unit cell dimension | $\begin{array}{ll} \mathrm{a}=11.4682(11) & \alpha=90.00^{\circ} \\ \mathrm{b}=19.7219(18) & \beta=103.607(5)^{\circ} \\ \mathrm{c}=9.6293(9) & \gamma=90.00^{\circ} \end{array}$ |
| Volume | 2116.8(3) |
| Z | 4 |
| Density (calculated) | $1.382 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient (Mu) | $0.190 \mathrm{~mm}^{-1}$ |
| F (000) | 928.0 |
| Crystal size | $0.30 \times 0.05 \times 0.05 \mathrm{~mm}^{-3}$ |
| Theta range for data collection | 1.83 to $24.99^{\circ}$ |
| Index ranges | $-13<=\mathrm{h}<=12,-22<=\mathrm{k}<=23,-11<=1<=11$ |
| Reflection collected | 20516 |
| Independent reflections | $3724[\mathrm{R}(\mathrm{int})=0.0536]$ |
| Completeness of theta $=31.55^{\circ}$ | 100\% |
| Absorption correction | None |
| Max. and min. transmission | 0.989 and 0.991 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |

Data/restraints/parameter
Goodness-of-fit on $\mathrm{F}^{2}$

Final R indices[I>2sigma(I)]

R indices (all data)
Largest diff. peak and hole

3724/0/282
1.012
$R 1=0.0511, W R 2=0.1436$
$\mathrm{R} 1=0.0423, \mathrm{wR} 2=0.1308$
$0.346 \&-0.304$ e. $A^{-3}$

For more details please see the corresponding CIF file attached with the supporting information. The crystal data of product 3cj has already been deposited at Cambridge Crystallographic Data Centre. The CCDC reference no is 804536 .
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

## 3. Preparation of the starting materials 4a-d:



Scheme 1: Synthesis of the starting materials 4a-d

Typical procedure of $\boldsymbol{N}$-propargylation leading to the synthesis of 4a: To a wellstirred solution of $( \pm)$-trans-2-azido- $N$-tosyl-cyclopentylamine ${ }^{3 i, 3 \mathrm{~m}}(1.00 \mathrm{~g}, 3.40 \mathrm{mmol})$, obtained from the corresponding aziridine compound ${ }^{3 \mathrm{f}, 3 \mathrm{n}}$ (Scheme 1), in dry DMF ( 10 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.40 \mathrm{~g}, 10.19 \mathrm{mmol})$ and the whole reaction mixture was allowed to stir at room temperature for 1 h . Propargyl bromide ( 0.36 mL , 4.08 mmol ) was then added at $0{ }^{\circ} \mathrm{C}$ and the reaction was allowed to stir at room temperature for another 2 h . After completion of the reaction (TLC), DMF was evaporated under reduced pressure. The resulting residue was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$, washed with water $(15 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ successively. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified through chromatography over silica gel (5\% ethyl acetate- petroleum ether, $\mathrm{v} / \mathrm{v}$ ) to obtain the product $4 \mathbf{4}$.

Similarly, compounds $\mathbf{4 b} \mathbf{b} \mathbf{d}$ were synthesized adopting the aforesaid procedure.

## 4. Spectral data of starting materials (4a-d):

( $\pm$ )-trans- $N$-(2-Azido-cyclopentyl)-4-methyl- $N$-prop-2-ynyl-benzenesulfonamide
(4a): Yield: $82 \%$; colorless liquid; IR (neat): $v_{\max } 3289,2964,2103,1597,1339,1158$,
 1093, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.61-1.88(\mathrm{~m}, 5 \mathrm{H}), 2.00-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.99$ (dd, $J=2.1,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=2.1,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 20.2,21.4,26.5,29.2$, 33.2, 62.8, 63.8, 73.1, 79.1, 127.4, 129.4, 137.0, 143.5; MS (ESI): m/z $341.21[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ : C, 56.58; H, 5.70; N, 17.60. Found: C, 56.53; H, 5.74; N, 17.62.

## ( $\pm$ )-trans- $\boldsymbol{N}$-(2-Azido-cyclohexyl)-4-methyl- $\boldsymbol{N}$-prop-2-ynyl-benzenesulfonamide (4b):

Yield: 87\%; colorless gum; IR (neat): $v_{\max } 3288,2938,2862,2099,1597,1449,1337$,
 1262, 1159, 1091, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.22-1.27(\mathrm{~m}$, $2 \mathrm{H}), 1.37-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.80(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.58(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=2.4,18.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{dd}, J=2.4,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 21.5,24.1,25.0,30.4,31.9,61.1,61.6,72.7,79.5,127.5$, 129.3, 137.7, 143.3; MS (ESI): m/z $333.15[\mathrm{M}+\mathrm{H}]^{+}, 355.12[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ : C, 57.81 ; H, 6.06; N, 16.85. Found: C, 57.83; H, 6.09; N, 16.81.

## ( $\pm$ )-trans- $\boldsymbol{N}$-(2-Azido-cycloheptyl)-4-methyl- $N$-prop-2-ynyl-benzenesulfonamide (4c):

 Yield: 94\%; white solid, m.p.: $69-71^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3266,2935,2861,2492,2098$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.40-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.84(\mathrm{~m}, 7 \mathrm{H}), 2.22$ $(\mathrm{s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=$ $19.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 21.4,21.9,25.7,27.8,30.2,31.0,33.9,64.2,64.7$,
72.8, 79.3, 127.4, 129.3, 137.5, 143.3; MS (EI): m/z $346.2[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 58.94 ; \mathrm{H}, 6.40 ; \mathrm{N}, 16.17$. Found: C, $58.97 ; \mathrm{H}, 6.43 ; \mathrm{N}, 16.12$.

## ( $\pm$ )-trans- $N$-(2-Azido-cyclooctyl)-4-methyl- $N$-prop-2-ynyl-benzenesulfonamide(4d):

Yield: $77 \%$; off-white solid, m.p.: $71-73{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3291,2932,2863,2098$, н $^{\text {н }} 1597,1447,1342,1294,1158,1094,1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 1.46-1.86(\mathrm{~m}, 10 \mathrm{H}), 1.91-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{dd}, J=2.4,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{br}, 2 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $2.4,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 21.4,21.9,24.7,26.3,27.4,27.5,31.0,61.3,63.2,72.6,79.4,127.5,129.2$, 137.5, 143.2; MS (FAB+): m/z $361[\mathrm{M}+\mathrm{H}]^{+}, 383[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 59.97 ; \mathrm{H}, 6.71 ; \mathrm{N}, 15.54$. Found: C, $59.99 ; \mathrm{H}, 6.73 ; \mathrm{N}, 15.51$.

## 5. Optimisation of reaction conditions (screening studies):

Initially, we studied the model reaction using trans-azido-alkyne 4a and p-methoxy iodide 5a as substrates. The results are summarized in Table-1 as shown below. Our initial attempt to effect the desired cycloaddition utilizing $\mathrm{Et}_{3} \mathrm{~N}$ (base) and Sonogashira's catalyst $\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} / \mathrm{CuI}\right]$, used usually in $\mathrm{C}-\mathrm{C}$ bond formations, ${ }^{4}$ afforded the trans-fused product 3aa (10\%) along with the self-cycloadduct (32\%) of $4 \mathbf{a}$ (entry 1, Table 1). Employing a stronger base, the yield of the targeted product 3aa improved marginally ( $16 \%$ ); the side product was still formed to the extent of $24 \%$ (entry 2, Table 1). Replacement of the palladium(II) catalyst by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ also failed to improve the reaction outcome satisfactorily (entries 3-4, Table 1). However, when we employed $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ as catalyst and CuI as cocatalyst along with $\mathrm{Et}_{3} \mathrm{~N}$ as base, the reaction was found to be complete within 5 h with moderate yield (39\%) of the desired product 3aa along with small amount ( $16 \%$ ) of self-cycloadduct of $\mathbf{4 a}$ (entry 5, Table 1). To our delight, replacement of $\mathrm{Et}_{3} \mathrm{~N}$ by a stronger base like $\mathrm{K}_{2} \mathrm{CO}_{3}$ provided the targeted product 3aa exclusively ( $68 \%$ yield) with complete suppression of side product formation (entry 6, Table 1). The copper free reaction was found to be extremely slow for the coupling of alkyne $\mathbf{4 a}$ with aryl iodide 5a, while omission of $\mathrm{PPh}_{3}$ did not allow the coupling significantly (see entries $7-8$, Table 1). Thus, the $\mathrm{CuI} / \mathrm{PPh}_{3}$ co-catalytic
combination appeared to be important along with $\mathrm{Pd}(\mathrm{OAc})_{2}$ as catalyst. It is noteworthy that immediate heating without stirring at room temperature for sometime $(1.25 \mathrm{~h})$ led

Table 1: Optimization of the reaction conditions for the synthesis of product 3aa ${ }^{\text {a }}$

to the formation of the undesired self cycloadduct predominantly. DMF was found to be the solvent of choice in these reactions. However, $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ appeared to be superior among the bases examined. The trans stereochemistry of the product 3aa was easily deduced from the coupling constants ( $\delta 2.84$, ddd, $J=9.8,11.6$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \delta$ 4.19 , ddd, $J=10.2,10.2$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ) of the ring juncture methine protons in the ${ }^{1} \mathrm{H}$ NMR.

## 6. Synthesis of fused analogues of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5a]pyrazines (3):


a) $\mathbf{3 a}, \mathbf{4 a}: n=1$; b) $\mathbf{3 b}, \mathbf{4 b}: n=2$; c) $\mathbf{3 c}, \mathbf{4 c}: n=3$; d) $\mathbf{3 d}$, $\mathbf{4 d}$ : $n=4$

Scheme 2: Synthesis of Products 3a-d

## General procedure for the synthesis of product 3a-d:

A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(9.6 \mathrm{mg}, 0.043 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(44.8 \mathrm{mg}, 0.171$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$ ) in dry DMF ( 1 mL ) was stirred at rt for 10 min under argon atmosphere. Iodo-compound 5 ( 0.855 mmol ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $235.9 \mathrm{mg}, 1.709 \mathrm{mmol}$ ) and tetrabutylammonium bromide ( $13.8 \mathrm{mg}, 0.043 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) were then added successively and the whole reaction mixture was allowed to stir at rt for another 10 min. A solution of azido-acetylene $4(0.940 \mathrm{mmol})$ in dry DMF ( 2 mL ) was added drop-wise followed by the addition of CuI ( $16.3 \mathrm{mg}, 0.085 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ). The resulting mixture was flushed with argon carefully and stirred for the specified time (as shown in Table 1 of the text) at rt. After disappearance of starting materials (monitored by TLC), the whole mixture was allowed to heat at $95^{\circ} \mathrm{C}$ for the requisite time period (as shown in Table 1 of the text). Upon completion of the reaction (TLC), the solvent was removed in vacuo; the residue was mixed with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine ( 10 mL ), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), filtered, and concentrated under reduced pressure. The resulting residue was purified through silica gel (100-200 mesh) column chromatography (ethyl acetate-petroleum ether).

## 7. Spectral data of the ( $\pm$ )-trans-fused products 3a-d:

( $\pm$ )-trans-(5a,8a)-3-Phenyl-5-(toluene-4-sulfonyl)-5,5a,6,7,8,8a-hexahydro-4H-cyclo-penta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3ab): Yield: 47\%; white solid, m.p.: 186-
 $188{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3431,2964,2880,2098,1599,1495,1448$, 1354, 1164, 1088, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.96-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.47(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.85$ (ddd, $J=6.4,10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (ddd, $J$ $=7.8,10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 19.6,21.5,23.9,27.4,45.1,62.3$, $62.5,126.1,126.3,127.6,128.1,128.9,130.1,130.5,133.2,142.2,144.6 ;$ ESI-MS: m/z $395.08[\mathrm{M}+\mathrm{H}]^{+}, 417.08[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 63.94 ; \mathrm{H}, 5.62$; N , 14.20. Found: C, 63.97; H, 5.63; N, 14.17.
( $\pm$ )-trans-(5a,8a)-3-Pyridin-3-yl-5-(toluene-4-sulfonyl)-5,5a,6,7,8,8a-hexahydro-4H-cyclopenta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3ac): Yield: 71\%; white solid, m.p.:

$186-188{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3426,2962,2098,1598,1452,1350$, 1163, 1089, 1032, $1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.9-$ $1.12(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.76(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.87 (m, 1H), 4.19-4.29 (m, 1H), $4.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{br}, 1 \mathrm{H}), 7.73$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14$ (d, $J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.68-8.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 19.7,21.5,24.0,27.3,45.2,62.4$, 62.6, 126.9, 127.7, 130.2, 132.8, 133.7, 139.2, 144.8, 147.0, 149.2; MS (ESI): m/z 396.11 $[\mathrm{M}+\mathrm{H}]^{+}, 418.07[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$396.1494, found 396.1522 .
( $\pm$ )-trans-(5a,8a)-3-(2,4-Dimethoxy-pyrimidin-5-yl)-5-(toluene-4-sulfonyl)-5,5a,6,7,8, 8a-hexahydro-4 $\boldsymbol{H}$-cyclopenta[e] $[1,2,3]$ triazolo $[1,5-\boldsymbol{a}][1,4]$ pyrazine (3ad): Yield: 50\%;
 brown solid, m.p.: $170-172{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3404,2924$, 2857, 1614, 1560, 1476, 1354, 1281, 1164, 1084, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.92-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.71$ (m, 1H), 2.87 (ddd, $J$ $=6.6,9.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 4.17(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.19(\mathrm{~m}, 1 \mathrm{H}), 5.04$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 19.7,21.6,24.0,27.4,45.5,54.0,55.2,62.4,62.6,106.0$, 127.7, 127.9, 130.1, 132.1, 133.2, 135.5, 144.7, 158.8, 165.3, 167.1; MS (ESI): m/z $456.98[\mathrm{M}+\mathrm{H}]^{+}, 478.97[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 55.25 ; \mathrm{H}, 5.30$; N, 18.41. Found: C, 55.22 ; H, 5.36; N, 18.45 .

## ( $\pm$ )-1,4-Bis((5a,8a-trans)-5-(toluene-4-sulfonyl)-5,5a,6,7,8,8a-hexahydro-4H-cyclo-

 penta[e][1,2,3]triazolo[1,5-a][1,4]pyrazin-3-yl)-benzene (3af): Yield 44\%; light brown solid, m.p.: $162-164{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3428$, 2963, 2102, 1598, 1348, 1160, 1091, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 3 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=6.0,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ ( $\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=19.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 19$. $7,20.5,21.6,24.0,27.0,27.4,29.3,29.7,34.2,45.2,62.4,63.2,64.1,125.9,126.5,127.7$, $128.5,128.5,129.5,130.2,131.9,132.1,133.2,137.4,144.8 ; \mathrm{MS}(\mathrm{FAB}+): \mathrm{m} / \mathrm{z} 711.3$ $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 711[\mathrm{M}+\mathrm{H}]^{+}, 732.91[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calcd. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 711.2536$, found 711.2535 .
( $\pm$ )-trans-(5a,9a)-3-Pyridin-3-yl-5-(toluene-4-sulfonyl)-4,5,5a,6,7,8,9,9a-octahydro-[1,2,3]triazolo[1,5-a]quinoxaline (3bc): Yield: 77\%; yellow solid, m.p.: 198-200 ${ }^{\circ} \mathrm{C}$; IR
 $(\mathrm{KBr}): v_{\max } 3428,3041,2945,2866,1595,1450,1349,1159,1092$, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.35-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.93-$ $2.07(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H})$, 3.24-3.31 (m, 1H), 3.98-4.05 (m, 1H), $4.72(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.50(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{br}, 1 \mathrm{H}), 8.85(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 21.5,23.6,25.2$, 29.9, 30.3, 43.7, 59.4, 62.4, 126.8, 127.4, 129.9, 136.8, 144.3; MS (ESI): m/z 410.13 $[\mathrm{M}+\mathrm{H}]^{+}, 432.13[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 410.1651$, found 410.1648.
( $\pm$ )-trans-(5a,9a)-3-Naphthalen-1-yl-5-(toluene-4-sulfonyl)-4,5,5a,6,7,8,9,9a-octahy-dro[1,2,3]triazolo[1,5-a]quinoxaline (3bg): Yield: 47\%; white solid, m.p.: $142-144{ }^{\circ} \mathrm{C}$;
 IR (KBr): $v_{\max } 3046,2936,2862,2097,1595,1449,1342,1158$, $1088,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.37-1.43(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.98(\mathrm{~m}, 2 \mathrm{H})$, 2.01-2.05 (m, 1H), 2.32 (s, 3H), 2.42-2.47 (m, 1H), 3.05-3.07 (m, $1 \mathrm{H}), 3.30$ (ddd, $J=3.0,11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (ddd, $J=4.0,10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 21.5,23.7,25.3,29.9,30.7,43.6,59.2,62.7,125.2,125.7,126.2$, $126.6,126.8,127.3,127.4,128.3,128.5,129.2,129.9,131.4,134.0,136.6,141.6,144.1 ;$ ESI-MS: m/z $459.14[\mathrm{M}+\mathrm{H}]^{+}, 481.11[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.10$; H, 5.71; N, 12.22. Found: C, 68.08; H, 5.74; N, .12.19.
( $\pm$ )-trans-(5a,10a)-3-(4-Fluoro-phenyl)-5-(toluene-4-sulfonyl)-5,5a,6,7,8,9,10,10a-octa -hydro-4H-cyclohepta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3cj): Yield: 51\%; white
 solid, m.p.: $214-216{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max } 3071,2929,2861,1595$, $1505,1454,1339,1221,1158,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 1.63-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.09(\mathrm{~m}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.44(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{ddd}, J=3.0,10.0,10.0$
$\mathrm{Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=3.4,10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 21.5,24.3,24.5,24.9,29.5,33.0,40.5,59.9,61.9,115.8,116.1$, 126.5, 126.7, 127.5, 127.9, 128.0, 129.6, 135.7, 141.4, 143.9, 160.9, 164.2; MS (EI): m/z $440\left[\mathrm{M}^{+}\right]$; HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 441.1760$, found 441.1773 .
( $\pm$ )-trans-(5a,10a)-3-Naphthalen-1-yl-5-(toluene-4-sulfonyl)-5,5a,6,7,8,9,10,10a-octa-hydro-4H-cyclohepta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3cg): Yield: 52\%; off-
 white solid, m.p.: $180-182{ }^{\circ} \mathrm{C}$; IR ( $\mathrm{KBr)}$ : $v_{\max } 3440,3047,2924$, 2862, 1594, 1450, 1345, 1159, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 1.70-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.14 (m, 1H), 2.33 (s, 3H), 2.42-2.46 (m, 1H), 3.20-3.24 (m, $1 \mathrm{H}), 3.82$ (ddd, $J=3.4,10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=3.2,9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (d, $J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{dd}, J=0.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.93-7.95(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{dd}, J=$ $1.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 21.5,24.3,24.7,25.0,29.7,32.9$, $40.90,60.2,62.2,125.3,125.7,126.2,126.6,127.1,127.3,128.5,129.2,129.4,129.8$, 131.2, 134.0, 136.0, 142.1, 143.8; MS (FAB+): m/z $473[\mathrm{M}+\mathrm{H}]^{+}, 495[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ : C, 68.62; H, 5.97; N, 11.85. Found: C, 68.59; H, 6.01; N, 11.91.
( $\pm$ )-trans-(5a,10a)-3-(2-Methyl-4-nitro-phenyl)-5-(toluene-4-sulfonyl)-5,5a,6,7,8,9,10, 10a-octahydro-4H-cyclohepta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3ck): Yield: 48\%;
 yellow solid, m.p.: $207-209{ }^{\circ} \mathrm{C}$; IR ( KBr ): $v_{\max } 3428,2932$, 2866, 1595, 1518, 1452, 1343, 1160, $1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.71-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.94-1.96(\mathrm{~m}, 1 \mathrm{H})$, 2.08-2.11 (m, 1H), 2.38 (br, 4H), 2.49 (s, 3H), 3.16-3.20 (m, 1H), 3.79 (ddd, $J=3.1, ~ 9.9$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddd, $J=3.3,9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 3 \mathrm{H}), 8.14(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 20.8,21.5,23.9,24.5,24.9,29.6,32.3,40.9$, $60.5,62.2,121.0,125.8,126.6,129.7,129.8,130.1,135.8,136.4,138.7,140.6,144.08$,
147.3; MS (FAB+): m/z 482 [M+H]; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 59.86 ; \mathrm{H}, 5.65$; N, 14.54. Found: C, 59.83; H, 5.67; N, 14.51.
( $\pm$ )-4,4'-Bis-((5a,10a-trans)-5-(toluene-4-sulfonyl)-5,5a,6,7,8,9,10,10a-octahydro-4H-cyclohepta[e][1,2,3]triazolo[1,5-a][1,4]pyrazin-3-yl)-biphenyl (3cl): Yield: 71\%; off-
 white solid, m.p.: $>300{ }^{\circ} \mathrm{C}$; IR ( KBr ): $\mathrm{v}_{\max }$ 3442, 2928, 2861, 1600, 1492, 1452, 1347, 1159, 1091, $1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}): \delta 1.68-1.81(\mathrm{~m}, 12 \mathrm{H}), 1.91-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H})$, 2.34-2.42 (m, 2H), 3.10-3.12 (m, 2H), 3.83 (ddd, $J=3.0,9.9,9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (ddd, $J=$ $3.0,9.6,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 21.4,24.3,24.5,24.8,29.5,29.6,33.1,40.5,59.9,61.8$, $126.5,126.8,127.5,127.9,129.5,129.6,135.5,140.0,142.0,144.0 ; \mathrm{MS}(\mathrm{FAB}+): \mathrm{m} / \mathrm{z}$ $843[\mathrm{M}+\mathrm{H}]^{+}$; HRMS Calcd. for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 843.3475$, found 843.3450.
( $\pm$ )-trans-(5a,11a)-3-(4-Methoxy-phenyl)-5-(toluene-4-sulfonyl)-4,5,5a,6,7,8,9,10,11, 11a-decahydrocycloocta[e][1,2,3]triazolo[1,5-a][1,4]pyrazine (3da): Yield: 46\%;
 white solid, m.p.: $158-160{ }^{\circ} \mathrm{C}$; IR ( KBr ): $v_{\max }$ 2927, 2097, 1616, 1508, 1450, 1345, $1297 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): ~ \delta 1.43-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.85(\mathrm{~m}, 8 \mathrm{H}), 2.03-2.11(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{ddd}, J=5.2,10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.36 (ddd, $J=5.2,10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 21.5,22.5,23.1,26.5,26.8,26.9,31.8$, $33.9,38.0,54.9,55.4,56.6,114.5,123.1,126.4,126.6,127.4,127.7,129.6,135.6,142.1$, 144.0, 159.6; MS (FAB+): m/z $467[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 64.35$; H , 6.48; N, 12.01. Found: C, 64.32; H, 6.51; N, 11.99.

## 8. Detosylation of some of the products (3aa, 3ae, 3bc) synthesized:



Table-2. Detosylation of Some of the Products $4^{\text {a,b }}$
Entry Tosylated compound

General procedure for detosylation ${ }^{5 \mathrm{a}-\mathrm{b}}$ : Sodium ( $112.6 \mathrm{mg}, 4.89 \mathrm{mmol}$ ) was added to a solution of naphthalene ( $689.3 \mathrm{mg}, 5.38 \mathrm{mmol}$ ) in dry THF ( 5 mL ). After stirring for 2 h at room temperature, a green solution was appeared. In another flask, to a well-stired solution of tosylated compound (3aa/3ae/3bc) ( 0.244 mmol ) in dry THF ( 3 mL ) was added the aforesaid green solution dropwise at $-78^{\circ} \mathrm{C}$. The whole reaction mixture was then allowed to stir at $-78^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$. After consumption of the starting materials (TLC), the reaction mixture was quenched with 2-3 drops of water and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The organic extracts were evaporated and the resulting residue was purified through silica gel (100-200 mesh) column chromatography (70-75\% ethyl acetate in petroleum ether) to afford the detosylated product.

## 9. Spectral data of the detosylated products:

Detosylated product of 3aa: Yield: $61 \%$; off-white solid, m.p.: $179-181^{\circ} \mathrm{C}$; IR ( KBr ): $v_{\max } 3307,2958,1612,1553,1501,1458,1374,1299,1248,1183,1034,1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$


NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.56-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.97(\mathrm{~m}$, $1 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.71(\mathrm{~m}, 1 \mathrm{H})$, 2.95-3.00 (m, 1H), 3.75-3.80 (m, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 19.3,25.4,26.4,43.9,55.3,62.4,63.1,114.2$, 124.1, 127.4, 141.6, 159.1; MS (EI): m/z $270\left[\mathrm{M}^{+}\right]$; HRMS Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 271.1559$, found 271.1602.

Detosylated product of 3ae: Yield: 70\%; off-white solid, m.p.: $145-147{ }^{\circ} \mathrm{C}$; IR ( KBr ): $v_{\max } 3307,2958,2871,1640,1500,1460,1375,1304,1232,1139,1055,1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$
 NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.96-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.67-$ 2.72 (m, 1H), 2.97 (ddd, $J=6.7,10.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.79$ (m, 1H), 4.36 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 19.3,21.2,25.3,26.3,43.9$, 62.4, 63.1, 126.0, 127.9, 128.6, 129.5, 137.4, 141.7; MS (EI): m/z 254 [ $\left.\mathrm{M}^{+}\right]$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4}$ : C, 70.84; H, 7.13; N, 22.03. Found: C, 70.79; H, 7.18; N, 22.09.

Detosylated product of 3bc: Yield: 71\%; off-white solid, m.p.: $168-170{ }^{\circ} \mathrm{C}$; IR ( KBr ): $v_{\max } 3422,3307,2938,2858,1638,1473,1312,1125,1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$
 MHz): $\delta 1.43-1.49$ (m, 2H), 1.50-1.64 (m, 2H), 1.90-1.93 (m, 1H), $1.99-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=3.6,10.0,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=3.4,10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=4.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ : $\delta 24.2,24.5,28.8,31.2,42.5,58.5,63.3,123.8,127.7,129.1,133.5,138.5,146.9$,
148.6; ESI-MS: m/z $256.10[\mathrm{M}+\mathrm{H}]^{+}, 278.07[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 256.1562$, found 256.1557 .

## 10. Preparation of optically active 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5a]pyrazines $2^{\prime}$ and $2^{\prime \prime}$ :



Scheme-4

Synthesis of the alcohol 6 was performed according to the literature procedure ${ }^{6 \mathrm{a}}$, starting from commercially available $(R)$-styrene oxide. The requisite azido-acetylene 7 was obtained from alcohol 6 using three-step protocol ${ }^{6 \mathrm{a}-\mathrm{b}}$ as depicted in Scheme 4. The targeted compounds $\mathbf{2}$ 'was synthesised easily using the optimized reaction conditions. The BOC-group was then deprotected by the treatment TFA leading to the formation of amine $\mathbf{2}^{\prime \prime}$.

Typical procedure of $\boldsymbol{N}$-propargylation leading to the synthesis of substrate 7: To a suspension of sodium hydride ( $0.114 \mathrm{~g}, 2.86 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in dry DMF ( 2 mL ) under ice-cooled conditions was added a solution of the Boc protected azido-amine ( $0.50 \mathrm{~g}, 1.90 \mathrm{mmol}$ ) in dry DMF ( 3 mL ) dropwise and stirring was continued for 30 min . Propargyl bromide $(0.22 \mathrm{~mL}, 2.48 \mathrm{mmol})$ was then added to the reaction mixture drop-wise at $0{ }^{\circ} \mathrm{C}$ and allowed to reach to rt over 30 min . After completion of the reaction (TLC), it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. Combined organic extracts were washed with water ( 10 mL ), brine $(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was
removed and resulting residue was purified through silica gel (100-200 mesh) column chromatography ( $1 \%$ ethyl acetate-pet ether, $\mathrm{v} / \mathrm{v}$ ) to afford the compound 7 ( $82 \%$ ).
(S)-tert-Butyl-2-azido-1-phenyl-ethyl(prop-2-ynyl)carbamate (7): Yield: 82\%; colorless gum; IR (neat): $v_{\max } 3298,2977,2930,2102,1696,1449,1366,1252,1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ ${ }^{\mathrm{Boc}_{\text {. }} \approx} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.49(\mathrm{~m}, 9 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, 1 H ), 3.89 (dd, $J=6.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.99-4.09 (m, 2H), 5.32 (br, 1H), 7.30$7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 28.3,33.8,51.3,58.1,71.1,80.5,81.2$, 127.5, 128.1, 128.2, 128.7, 136.9, 154.8; MS (FAB+): m/z $301[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 63.98; H, 6.71; N, 18.65. Found: C, 64.01; H, 6.73; N, 18.62.

General procedure for preparation of optically active 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyrazines $2^{\prime}$ :

A mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(26.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 20$ $\mathrm{mol} \%$ ) in dry DMF ( 3 mL ) was stirred at rt for 10 min under argon atmosphere. Iodocompound $5(0.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ and tetrabutylammonium bromide $(8.06 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were then added successively. The whole reaction mixture was allowed to stir at rt for another 10 minutes under argon atmosphere. A solution of azido-acetylene $7(165.2 \mathrm{mg}, 0.55 \mathrm{mmol})$ in dry DMF ( 2 mL ) was added dropwise, followed by addition of $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$. The resulting mixture was flushed with argon carefully and stirred at room temperature for specified time (See Table 2 of the text). After disappearance of starting materials (TLC), the whole mixture was allowed to heat at $95^{\circ} \mathrm{C}$ for requisite time (see Table 2 of the text). Upon completion of the reaction (TLC), the solvent was removed in vacuo; the residue was mixed with water $(10 \mathrm{~mL})$ and then extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting residue was purified through silica gel (100-200 mesh) column chromatography (ethyl acetate-pet ether) to afford the desired product.

## 11. Spectral data of the optically active products 2 'a-n:

(6S)-tert-Butyl-3-(4-methoxy-phenyl)-6-phenyl-6,7-dihydro-4H-[1,2,3]triazolo[1,5-a] pyrazine-5-carboxylate (2'a): Yield: $43 \%$; white solid, m.p.: $204-206{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+15.84$
 (c $0.1, \mathrm{CHCl}_{3}$ ); IR (KBr): $\mathrm{v}_{\max } 2978,2837,1692,1514,1452,1403$, 1302, 1247, 1170, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.55(\mathrm{~s}$, $9 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=4.5,13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (br, 1H), 6.94 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{br}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 28.3,37.9,47.9,51.0,55.3,82.0,114.3,123.3$, $125.5,126.4,127.3,128.3,129.07,129.1,136.1,141.6,154.3,159.3 ;$ ESI-MS: m/z $407.07[\mathrm{M}+\mathrm{H}]^{+}, 429.05[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 67.96; H, 6.45; N , 13.78. Found: C, 67.93; H, 6.49; N, 13.75.

## (6S)-tert-Butyl-6-phenyl-3-pyridin-3-yl-6,7-dihydro-4H-[1,2,3]triazolo[1,5-a]pyra-

 zine-5-carbo-xylate ( $\mathbf{2}^{\prime} \mathbf{c}$ ): Yield: $74 \%$; off-white solid, m.p.: $144-146{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+7.54$ (c $0.15, \mathrm{CHCl}_{3}$ ); IR (KBr): $\mathrm{v}_{\max } 2980,1698,1454,1398,1302,1245$, $1164,1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.56(\mathrm{~s}, 9 \mathrm{H}), 3.22(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=3.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36$ (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (br, 1H), 7.11 (br, 2H), 7.29-7.56 (m, 4H), 7.97 (d, $J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 28.3,37.7$, $47.9,51.0,82.2,123.7,126.2,128.3,128.5,129.1,131.6,133.0,133.2,135.7,138.7$, 146.8, 148.8 154.1; MS (ESI): m/z $378.08[\mathrm{M}+\mathrm{H}]^{+}, 400.05[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 378.1930$, found 378.1933.
(6S)-tert-Butyl-3-(4-bromo-phenyl)-6-phenyl-6,7-dihydro-4H-[1,2,3]triazolo[1,5-a]-pyrazine-5-carboxylate ( $\mathbf{2}^{\prime} \mathbf{n}$ ): Yield: $50 \%$; white solid, m.p.: $200-201{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+11.28$
 (c 0.1, $\mathrm{CHCl}_{3}$ ); IR (KBr): $v_{\max } 2977,1698,1503,1455,1402,1370$, 1299, 1244, 1164, 1095, $1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $1.56(\mathrm{~s}, 9 \mathrm{H}), 4.16(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=4.6,13.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.23 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (br, 1H), 7.10
(d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{br}, 3 \mathrm{H}), 7.54(\mathrm{br}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 28.3$, 37.8, 47.9, 51.0, 82.1, 121.8, 126.3, 126.4, 127.4, 128.3, 129.1, 129.6, 131.9, 135.8, 140.6, 154.1; MS (FAB+): m/z 455 and $457\left[\mathrm{M}+\mathrm{H}^{+} ;\right.$HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 477.0902$, found 477.0919.

## 12. Synthesis of Boc-deprotected products 2":

## General procedure for Boc-deprotection:

To a solution of Boc-protected product $\mathbf{2}^{\prime}(0.135 \mathrm{mmol})$ in dry DCM ( 2 mL ) was added trifluoroacetic acid ( $0.1 \mathrm{~mL}, 1.35 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$ under argon gas atmosphere. The whole reaction mixture was allowed to reach to rt during 1-1.5 h . After completion of the reaction (TLC), the solvent was evaporated to dryness; residue was treated with saturated $\mathrm{NaHCO}_{3}$ followed by extraction with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic extracts were washed with water ( 10 mL ), brine ( 10 mL ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified through silica gel (100-200 mesh) column chromatography (20-30\% ethyl acetate-pet ether) to afford the product $\mathbf{2}^{\prime \prime}$.

## 13. Spectral data of products 2 "a-n:

(6S)-6-Phenyl-3-pyridin-3-yl-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyrazine (2"c): Yield: $89 \%$; light yellow solid, m.p.: $165-167{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+124.64$ (c $0.1, \mathrm{CHCl}_{3}$ ); IR
 (KBr): $v_{\text {max }} 3302,3031,2933,2808,1685,1566,1458,1410,1324$, $1199,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (pyridine-d $\mathrm{d}, 600 \mathrm{MHz}$ ): $\delta 4.21$ (dd, $J=3.9$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 42.4,52.8,57.1,123.9,126.8,127.5,128.6,128.9,129.1,133.5$, 138.5, 138.5, 146.9, 148.8; MS (FAB+): m/z $278\left[\mathrm{M}+\mathrm{H}^{+}, 300[\mathrm{M}+\mathrm{Na}]^{+}\right.$; HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5}\left[\mathrm{M}^{+}\right] 277.1327$, found 277.1293.
(6S)-6-Phenyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a] pyrazine ( $2^{\prime \prime} \mathrm{i}$ ): Yield: $81 \%$; off-white solid, m.p.: $190-191^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+117.64$ (c 0.1 ,
 $\mathrm{CHCl}_{3}$ ); IR (KBr): $\mathrm{v}_{\max } 3301,3236,3067,2941,1681,1617,1451$, 1329, 1242, 1167, 1125, $1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (pyridine- $\mathrm{d}_{5}, 600 \mathrm{MHz}$ ): $\delta 4.23$ (dd, $J=3.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=3.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 42.5,52.8,57.0$, $123.2,125.0,125.8,125.8,125.8,126.1,126.8,128.8,128.9,129.1,129.3,138.5,140.1$; MS (FAB+): m/z $345[\mathrm{M}+\mathrm{H}]^{+}, 367[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{4}\left[\mathrm{M}^{+}\right]$ 344.1249, found 344.1248.

## (6S)-3-(4-Fluoro-phenyl)-6-phenyl-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyrazine

 (2"j): Yield: $88 \%$; white solid, m.p.: $169-171{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+118.16$ (c $0.1, \mathrm{CHCl}_{3}$ ); IR $(\mathrm{KBr}): v_{\max } 3275,3066,2889,1608,1560,1502,1326,1232,1159$, 1098, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (pyridine- $\mathrm{d}_{5}, 600 \mathrm{MHz}$ ): $\delta 4.19(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=1.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36-7.39 (m, 1H), 7.44 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$ ): $\delta 42.4,52.8,57.1,115.8,115.9,126.8,127.5,127.5$, 127,7, 127.7, 127.8, 128.8, 129.1, 138.7, 140.6, 161.5, 163.1; MS (FAB+): m/z 295 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{4}\left[\mathrm{M}^{+}\right] 294.1281$, found 294.1304.

## 14. Spectral data of self-cycloadduct of substrate 4 a and intermediate internal alkyne D:

Self-cycloadduct of Substrate 4a: White solid, m.p.: 181-183 ${ }^{\circ} \mathrm{C}$; IR ( $\mathrm{KBr)}$ ) $v_{\max } 3613$, 3273, 3141, 2964, 2882, 1597, 1451, 1344, 1160, 1094, $1039 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 1.86-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=6.6,10.2,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}): ~ \delta 19.6,21.5,23.9,27.3,44.3,62.2,62.6,127.0,127.7,129.5,129.7,130.1,132.9$, 143.5, 144.6; MS (ESI): m/z $319.08[\mathrm{M}+\mathrm{H}]^{+}, 341.06[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 56.58 ; \mathrm{H}, 5.70 ; \mathrm{N}, 17.60$. Found: C, $56.55 ; \mathrm{H}, 5.74 ; \mathrm{N}, 17.54$.

## (土)-trans- N -(2-Azido-cyclopentyl)- N -[3-(4-methoxy-phenyl)-prop-2-ynyl]-4-methyl-

 benzenesulfonamide (D): Yield: 65\%; colorless liquid; IR (neat): $v_{\max }$ 2924, 2101, 1606, $1506,1446,1342,1251,1159,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$$\begin{aligned} & 1.63-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.81 \\ & (\mathrm{~s}, 3 \mathrm{H}), 4.06-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=18.9 \mathrm{~Hz},\end{aligned}$
$\begin{aligned} & 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 447.19[\mathrm{M}+\mathrm{Na}]^{+}, 463.17\end{aligned}$ $[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.24$; H, 5.70; N, 13.20. Found: C, 62.20; H, 5.74; N, 13.26.

## 15. References:

(1) G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
(2) G. M. Sheldrick, SHELX - 97, Program for Crystallography Refinement, University of Gottingen: Gottingen, Germany, 1997.
(3) (a) B. D. Heuss, M. F. Mayer, S. Dennis, M. M. Hossain, Inorg. chem. Acta, 2003, 342, 301; (b) Y. Yamada, T. Yamamoto, M. Okawara, Chem. Lett., 1975, 361; (c) G. Besenyei, S. Nemeth, L. I. Simandi, Tetrahedron Lett., 1993, 34, 6105; (d) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Org. Chem., 1991, 56, 6744; (e) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc., 1994, 116, 2742; (f) S. J. Hedley, W. J. Moran, D. A. Price, J. P. A. Harrity, J. Org. Chem., 2003, 68, 4286; (g) F. Mohr, S. A. Binfield, J. C. Fettinger, A. N. Vedernikov, J. Org. Chem., 2005, 70, 4833; (h) S. T. Handy, A. Ivanow, M. Czopp, Tetrahedron Lett., 2006, 47, 1821; (i) A. Bisai, G. Pandey, M. K. Pandey, V. K. Singh, Tetrahedron Lett., 2003, 44, 5839; (j) G. Sabitha, R. S. Babu, M. S. K. Reddy, J. S. Yadav, Synthesis, 2002, 15, 2254; (k) A. E. Nadany, J. E. Mckendrick, Synlett, 2006, 13, 2139; (l) X. Yang, H. Zhai, Z. Li, Org. Lett., 2008, 10, 2457; (m) S. Matsukawa, K. Tsukamoto, Org. Biomol. Chem., 2009, 7, 3792; (n) A. N. Vedernikov, K. G. Caulton, Org. Lett., 2003, 5, 2591.
(4) See review articles: (a) G. Zeni, R. C. Larock, Chem. Rev., 2006, 106, 4644; (b) R. Chinchila, C. Najera, Chem. Rev., 2007, 107, 874.
(5) (a) S. C. Bergmeier, P. P. Seth, Tetrahedron Lett., 1999, 40, 6181-6184; (b) S. Ji, L. B. Gortler, A. Waring, A. Battisti, S. Bank, W. D. Closson, D. Wriede, J. Am. Chem. Soc., 1967, 89, 5311.
(6) (a) R. Li, D. J. Jansen, A. Datta, Org. Biomol. Chem., 2009, 7, 1921; (b) D. Wannaporn, T. Ishikawa, Molecular Diversity, 2005, 9, 321.

## 16. NMR spectra of above reported compounds:

## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}(\mathbf{3 0 0} \mathbf{~ M H z})$ :


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a}(\mathbf{3 0 0} \mathbf{M H z})$ :

13 C in CDCl 3

|  |
| :---: |
|  |  |



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}(\mathbf{6 0 0} \mathbf{~ M H z})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}(\mathbf{6 0 0} \mathbf{M H z})$ :



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 c}(\mathbf{3 0 0} \mathbf{~ M H z})$ :

1 H in CDC13




## ${ }^{13}$ C NMR spectra of $\mathbf{4 c}(\mathbf{3 0 0} \mathbf{~ M H z})$ :

$13 C$ in $\operatorname{CDCl} 3$





## ${ }^{1} \mathrm{H}$ NMR spectra of $\left.\mathbf{4 d} \mathbf{( 3 0 0} \mathbf{~ M H z}\right):$





## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 d}(\mathbf{3 0 0} \mathbf{M H z})$ :

13 C in CDCl 3
$\underset{\sim}{\text { N }} \stackrel{\sim}{\sim}$





## ${ }^{1} \mathrm{H}$ NMR spectra of 3aa $(600 \mathrm{MHz})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of 3aa ( $\mathbf{3 0 0} \mathbf{M H z}$ ):

$13 C$ in $\operatorname{CDCl} 3$



## ${ }^{1} \mathrm{H}$ NMR spectra of 3ab ( 600 MHz ):


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a b}(\mathbf{3 0 0} \mathbf{M H z})$ :
$13 C$ in $\operatorname{CDCl} 3$


## ${ }^{1} \mathrm{H}$ NMR spectra of 3ac ( $\mathbf{3 0 0} \mathbf{~ M H z ) : ~}$


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a c}(\mathbf{3 0 0} \mathbf{~ M H z})$ :
$13 C$ in CDCl

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a d}(600 \mathrm{MHz})$ :

${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathrm{ad}(600 \mathrm{MHz})$ :


## ${ }^{1} \mathrm{H}$ NMR spectra of 3ae ( 600 MHz ):



## ${ }^{13} \mathrm{C}$ NMR spectra of 3ae ( $\mathbf{3 0 0} \mathbf{~ M H z )}$ :

13 C in CDC13


## ${ }^{1} \mathrm{H}$ NMR spectra of 3af ( 600 MHz ):



## ${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathrm{af}(600 \mathrm{MHz})$ :


${ }^{1} \mathrm{H}$ NMR spectra of 3bc ( $\mathbf{3 0 0} \mathbf{~ M H z}$ ):

1H in CDCl3


## ${ }^{13} \mathrm{C}$ NMR spectra of 3bc ( $\mathbf{3 0 0} \mathbf{~ M H z )}$ :

13 C in CDC13


## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b g}(600 \mathrm{MHz})$ :


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b g}(\mathbf{3 0 0} \mathbf{~ M H z})$ :


## DEPT of 3bg ( $\mathbf{3 0 0} \mathbf{~ M H z ) : ~}$



NOESY of 3bg ( 600 MHz ):


## HSQC of $3 \mathrm{bg}(600 \mathrm{MHz}):$



## HMBC of $3 \mathrm{bg}(\mathbf{6 0 0} \mathbf{~ M H z})$ :



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b h}(600 \mathrm{MHz})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b h}(\mathbf{3 0 0} \mathbf{~ M H z})$ :

$13 C$ in CDCl3


## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b i}(\mathbf{3 0 0} \mathbf{~ M H z}):$

## 1H in CDCl3





## ${ }^{13}$ C NMR spectra of $\left.\mathbf{3 b i} \mathbf{( 3 0 0} \mathbf{~ M H z}\right)$ :

13 C in CDCl3


## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c d}(\mathbf{6 0 0} \mathbf{~ M H z})$ :


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c d}(600 \mathrm{MHz})$ :


## ${ }^{1} \mathrm{H}$ NMR spectra of $3 \mathrm{cg}(600 \mathrm{MHz})$ :



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c j}(600 \mathrm{MHz})$ :


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c j}(\mathbf{3 0 0} \mathbf{~ M H z})$ :



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c k}(\mathbf{3 0 0} \mathrm{MHz}):$

1H in CDCl3


${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathrm{ck}(\mathbf{3 0 0} \mathbf{M H z})$ :
$13 C$ in CDCl3


IIIVV V||


## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c l}(600 \mathrm{MHz})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c l}(\mathbf{6 0 0} \mathrm{MHz}):$

13C-NMR in CDCl 3






## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 d a}(\mathbf{6 0 0} \mathbf{~ M H z})$ :



## ${ }^{13}$ C NMR spectra of $\mathbf{3 d a}(\mathbf{6 0 0} \mathbf{~ M H z})$ :



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 d m}(600 \mathrm{MHz})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathrm{dm}(600 \mathrm{MHz})$ :


${ }^{1} \mathrm{H}$ NMR spectra of detosylated product of $3 \mathrm{aa}(600 \mathrm{MHz})$ :




## ${ }^{13} \mathrm{C}$ NMR spectra of detosylated product of 3aa ( 600 MHz ):

13C-NMR in CDC13



${ }^{1} \mathrm{H}$ NMR spectra of detosylated product of $3 \mathrm{ae}(600 \mathrm{MHz})$ :


## ${ }^{13} \mathrm{C}$ NMR spectra of detosylated product of $3 \mathrm{ae}(600 \mathrm{MHz})$ :


${ }^{1} \mathrm{H}$ NMR spectra of detosylated product of $3 \mathrm{bc}(600 \mathrm{MHz})$ :

${ }^{13} \mathrm{C}$ NMR spectra of detosylated product of $3 \mathrm{bc}(600 \mathrm{MHz})$ :

${ }^{1} \mathrm{H}$ NMR spectra of $7(600 \mathrm{MHz})$ :

${ }^{13}$ C NMR spectra of $7(75 \mathrm{MHz})$ :

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2} \mathbf{\prime} \mathbf{a}(\mathbf{3 0 0} \mathbf{M H z})$ :

1H in CDCl3


## ${ }^{13} \mathrm{C}$ NMR spectra of 2 'a ( 75 MHz ):



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2} \mathbf{c} \mathbf{c}(\mathbf{3 0 0} \mathbf{M H z})$ :



## ${ }^{13} \mathrm{C}$ NMR spectra of 2 'c ( 75 MHz ):


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 ' i}(\mathbf{3 0 0} \mathbf{~ M H z}):$


## ${ }^{13}$ C NMR spectra of 2 ' $\mathbf{i}(\mathbf{7 5} \mathbf{~ M H z})$ :

13 C in CDCl3


## DEPT of 2'i ( $75 \mathbf{M H z}$ ):



## HMBC of 3'i:



## HSQC of 2'i:



## ${ }^{1} \mathrm{H}$ NMR spectra of $\left.\mathbf{2} \mathbf{~} \mathbf{j} \mathbf{( 3 0 0} \mathbf{~ M H z}\right):$


${ }^{13} \mathbf{C}$ NMR spectra of $\mathbf{2} \mathbf{\prime} \mathbf{j}$ ( $75 \mathbf{M H z}$ ):
$13 C$ in CDCl3

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{\prime} \mathrm{m}(\mathbf{3 0 0} \mathbf{M H z})$ :

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime} \mathrm{m}(75 \mathrm{MHz})$ :
13 C in CDCl 3



## ${ }^{1} \mathrm{H}$ NMR spectra of 2 ' $\mathrm{n}(\mathbf{3 0 0} \mathbf{M H z})$ :



## ${ }^{13}$ C NMR spectra of 2 'n ( 75 MHz ):

$13 C$ in CDCl3

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{a}(\mathbf{6 0 0} \mathbf{M H z})$ :

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{a}(75 \mathrm{MHz})$ :


## ${ }^{1} \mathrm{H}$ NMR spectra of $2^{\prime \prime} \mathrm{c}(\mathbf{6 0 0} \mathbf{M H z})$ :


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{c}(150 \mathrm{MHz})$ :
13C-NMR in CDCl3


## DEPT of 2'c ( $\mathbf{1 5 0} \mathbf{~ M H z ) : ~}$



## HSQC of 2"c ( $\mathbf{1 5 0} \mathbf{~ M H z ) : ~}$



## HMBC of 2'c ( $\mathbf{1 5 0} \mathbf{~ M H z ) : ~}$


${ }^{1} \mathrm{H}$ NMR spectra of $2{ }^{2} \mathrm{i}(\mathbf{( 6 0 0} \mathbf{M H z}):$


## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 \prime \prime} \mathbf{i}(\mathbf{1 5 0} \mathbf{~ M H z}):$



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}{ }^{2} \mathbf{j} \mathbf{j}(600 \mathrm{MHz}):$


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{j}(\mathbf{1 5 0} \mathbf{~ M H z})$ :

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{m}(\mathbf{6 0 0} \mathbf{~ M H z}):$

1H-NMR in $\mathrm{Py}-\mathrm{d} 5$

${ }^{13} \mathrm{C}$ NMR spectra of $2^{\prime \prime} \mathrm{m}(75 \mathrm{MHz})$ :

${ }^{1} \mathrm{H}$ NMR spectra of $2^{\prime \prime} \mathrm{n}(\mathbf{6 0 0} \mathbf{M H z})$ :


## ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}^{\prime \prime} \mathrm{n}(\mathbf{1 5 0} \mathbf{M H z})$ :

13C-NMR in CDC13


## ${ }^{1} H$ NMR spectra of self－cycloadduct of substrate $\mathbf{4 a}(600 \mathrm{MHz})$ ：


${ }^{13} \mathrm{C}$ NMR spectra of self－cycloadduct substrate of $\mathbf{4 a}(75 \mathrm{MHz})$ ：

| 13C in | CDC13 |
| :---: | :---: |
| N゙\％ | ダロボすだす |
| ず̇ |  |
| $11$ | WW／1 |



## ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{D}(\mathbf{3 0 0} \mathbf{~ M H z})$ :

| 1H in CDCl3 |  |
| :---: | :---: |
| $\stackrel{\text { ¢ }}{\infty}$ |  |
|  | $\underbrace{\text { NTN }}$ |




