Electronic Supplementary Information

DPO and POPOP Carboxylate-Analogs Sensors by Sequential Palladium-Catalysed Direct Arylation of Oxazole-4-Carboxylates

Cécile Verrier, Catherine Fiol-Petit, Christophe Hoarau^{*} and Francis Marsais

Institut de Chimie Organique Fine (IRCOF) associé au CNRS (UMR 6014, COBRA), INSA et Université de Rouen, BP08 76131 Mont Saint Aignan, France

Contents

• General & experimental procedures with all spectral data

General Informations

Dioxane was distilled from benzophenone/Na and toluene was distilled from calcium hydride. Melting points are uncorrected. Column chromatography was performed using silica gel (mesh size 60-80 mesh). ¹H NMR and ¹³C NMR spectra were recorded at 300 MHz. Chemical shifts (δ) are given as ppm relative to the residual solvent peak. Microanalyses were carried out at the analytical laboratory of our Department (IRCOF). Commercially available halogenoaromatics, 2-(dicyclohexylphosphino)biphenyl (Cy-JohnPhos Buchwald's ligand), and 1,3-bis-(mesitylimidazolyl)carbene (IMes) were used without further purification.

UV-visible and fluorescence spectroscopy

UV-visible spectra were obtained on a Varian Cary 50 scan spectrophotometer, in a quartz Suprasil cell (Hellma, 100-QS, 10 x 10 mm, 3500 μ l). A Cary Eclipse fluorescence spectrophotometer Varian was used to measure the absorption spectra. A 80 Hz xenon flash lamp was used as the excitation source and two Czerny-Turner monochromators; the slit width was 5 nm (10 nm band-pass). Its excitation and emission wavelength range is of 200-

900 nm. Scan rate was 120 nm/min. The excitation light was focused on the sample cell (Hellma, 104F-QS, $10 \times 4 \text{ mm}$, 1400μ l).

All measurements were made at 25 °C temperature with peltier thermostated cell holder.

The fluorescence quantum yield of the analogs was measured relative to sodium fluorescein in 0.1 M NaOH and distilled water ($\phi_f = 0.90$) at $\lambda_{exc} = 450$ nm, relative to harmane in a 0.1 M sulfuric acid and distilled water ($\phi_f = 0.83$) at $\lambda_{exc} = 360$ nm, relative to Rhodamin 6G in distilled water ($\phi_f = 0.76$) at $\lambda_{exc} = 488$ nm.

The reproductibility of fluorescence quantum yield was typically \pm 10% as described in the literature.

General procedure A for synthesis of 5-aryl oxazole-4-carboxylates:

The 5-aryl oxazole-4-carboxylates were prepared following the Schröder's procedure:¹ A solution of ethyl isocyanoacetate (1.5 g, 13 mmol) in dry THF (8 ml) was added dropwise to a stirred ice-cooled solution of potassium *tert*-butoxyde (1.5 g, 13 mmol) in dry THF (15 ml) under argon. A solution of acyl chloride (13 mmol) in THF (6 ml) was then added dropwise by maintaining the temperature below 0 °C. The resulting mixture was stirred at room temperature during 1 h. An aqueous solution of acetic acid (0.4 ml, 6.5 mmol) was added and the mixture was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), concentrated in *vacuo* and the crude product was purified by flash chromatography to afford 5-aryloxazole-4-carboxylates **1a-e**.

Ethyl 5-phenyloxazole-4-carboxylate (1a):

According to the general procedure A using benzoyl chloride (1.5 ml, 13 mmol). Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.35) afforded <u>**1a**</u> (82%) as a white solid (mp < 50 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.39 (t, 3H, *J* = 7.2 Hz), 4.41 (q, 2H, *J* = 7.2 Hz), 7.45-7.47 (m, 3H), 7.90 (s, 1H), 8.04-8.07 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 61.5, 126.7, 128.5, 128.6, 130.1, 130.6, 149.1, 155.6, 162.0; IR (KBr) v 3109, 2977, 1719, 1583, 1495, 1370, 1226, 1189, 1066, 762, 686, 643 cm⁻¹; Anal. Calcd for C₁₂H₁₁NO₃ (217.2): C, 66.35; H, 5.10; N, 6.45. Found: C, 66.27; H, 5.04; N, 6.58. Spectral data were in agreement with those previously reported.²

¹ R. Schröder, U. Schöllkopf, E. Blume, I. Hoppe, Liebigs Ann. Chem., 1975, 533-546.

² A. P. Kozikowski, A. Ames, *Tetrahedron*, 1985, **41**, 4821-4834.

Ethyl 5-(4-cyanophenyl)oxazole-4-carboxylate (1b):

According to the general procedure A using 4-cyanobenzoyl chloride (2.1 g, 13 mmol). Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.23) afforded <u>1b</u> (80%) as a white solid (mp = 147-148 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41 (t, 3H, *J* = 7.2 Hz), 4.43 (q, 2H, *J* = 7.2 Hz), 7.75 (d, 2H, *J* = 8.7 Hz), 7.98 (s, 1H), 8.25 (d, 2H, *J* = 8.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 62.0, 113.8, 118.3, 128.7, 128.9, 130.8, 132.3, 149.9, 153.2, 161.7; IR (KBr) v 3136, 2987, 2226, 1719, 1591, 1500, 1076, 1027, 989, 842, 787, 643, 559 cm⁻¹; Anal. Calcd for C₁₃H₁₀N₂O₃ (242.2): C, 64.46; H, 4.16; N, 11.56. Found: C, 64.35; H, 4.26; N, 11.85. Spectral data were in agreement with those previously reported.³

Ethyl 5-(4-methoxyphenyl)oxazole-4-carboxylate (1c):

According to the general procedure A using *p*-anisoyl chloride (1.8 ml, 13 mmol). Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.31) afforded <u>**1c**</u> (71%) as a white solid (mp = 70-71 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41 (t, 3H, *J* = 7.2 Hz), 3.86 (s, 3H), 4.41 (q, 2H, *J* = 7.2 Hz), 7.00 (d, 2H, *J* = 9.0 Hz), 7.85 (s, 1H), 8.07 (d, 2H, *J* = 9.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 55.5, 61.4, 113.9, 119.3, 125.4, 130.3, 148.5, 155.9, 161.3, 162.3; IR (KBr) v 3139, 2975, 1694, 1608, 1504, 1182, 1077, 847, 790, 643, 617, 547 cm⁻¹; Anal. Calcd for C₁₃H₁₃NO₄ (247.2): C, 63.15; H, 5.30; N, 5.67. Found: C, 62.84; H, 5.61; N, 6.02.

Ethyl 5-(4-(dimethylamino)phenyl)oxazole-4-carboxylate (1d):

According to the general procedure A using 4-dimethylaminobenzoyl chloride (2.4 g, 13 mmol). Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.29) afforded <u>1d</u> (75%) as a white solid (mp = 83-84 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41 (t, 3H, *J* = 7.2 Hz), 3.03 (s, 6H), 4.41 (q, 2H, *J* = 7.2 Hz), 6.74 (d, 2H, *J* = 9.0 Hz), 7.79 (s, 1H), 8.03 (d, 2H, *J* = 9.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 39.9, 60.9, 111.1, 113.8,

³ M. Baumann, I. R. Baxendale, S. V. Ley, C. D. Smith, G. K. Tranmer, Org. Lett. 2006, 8, 5231-5234.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

123.6, 129.6, 147.6, 151.3, 156.7, 162.3; IR (KBr) v 3125, 2899, 1705, 1608, 1516, 1371, 1181, 1070, 1029, 944, 785, 641 cm⁻¹; Anal. Calcd for $C_{14}H_{16}N_2O_3$ (260.3): C, 64.60; H, 6.20; N, 10.76. Found: C, 64.82; H, 6.34; N, 10.84.

Ethyl 5-(pyridin-4-yl)oxazole-4-carboxylate (1e)

A solution of ethyl isocyanoacetate (6.7 ml, 61.7 mmol) and triethylamine (17.2 ml, 121.3 mmol) was added dropwise to a stirred ice-cooled solution of isonicotinoyl chloride hydrochloride (2.3 g, 13 mmol) in dry THF (40 ml) under argon and the resulting mixture was stirred for 1 h. The solution was refluxed for 24 h, and concentrated *in vacuo*. Then, water (50 ml) was added and the aqueous layer was further extracted with ethyl acetate (3 × 30 ml). The combined organic layers were dried over MgSO₄, filtered and solvent was evaporated. The crude product was purified on silica gel (EtOAc/PE 3/7, Rf = 0.22) afforded <u>1e</u> (66%) as a white solid (mp = 47-48 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.40 (t, 3H, *J* = 7.1 Hz), 4.42 (q, 2H, *J* = 7.1 Hz), 7.98-8.00 (m, 3H), 8.73 (d, 2H, *J* = 6.3 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.2, 61.9, 121.7, 129.4, 133.8, 150.0, 150.4, 152.5, 161.5; IR (KBr) v 3094, 2993, 1721, 1584, 1518, 1203, 1103, 824, 788, 693, 624, 515 cm⁻¹; Anal. Calcd for C₁₁H₁₀N₂O₃ (218.2): C, 60.55; H, 4.62; N, 12.84. Found: C, 60.31; H, 4.59; N, 12.64.

General procedure B for preparation of DPO and POPOP mono(di)carboxylate-analogs:

The direct (hetero)arylation reactions were carried out in a sealed tube at 110 °C for 18 h under argon. A solution of ethyl 5-aryl oxazole-4-carboxylate derivative **1** (0.35 mmol) was allowed to react with arylhalide (0.35-0.7 mmol) with palladium acetate (0.017-0.034 mmol), cesium carbonate (231 mg, 0.7 mmol) and ligand (0.035-0.07 mmol).in the appropriate solvent (1 mL). After filtration on Celite and concentration under *vacuo*, the crude product was purified by flash column chromatography on silica gel using a mixture of ethyl acetate (EtOAc) and petroleum Ether (PE) as eluent to give the DPO (**2-7**) and POPOP (**8**) mono(di)carboxylate-analogs. The following detailed procedures are given using optimized experimental conditions.

Ethyl 2,5-diphenyl-4-oxazolecarboxylate (2)

According to the general procedure B using <u>1a</u> (76 mg, 0.35 mmol) with 4-iodobenzene (40 µL, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 2/8, Rf = 0.42) afforded <u>2</u> (100%) as a white solid (mp = 86-87 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.0 Hz), 4.47 (q, 2H, *J* = 7.0 Hz), 7.48-7.50 (m, 6H), 8.10-8.17 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 61.6, 126.4, 127.0, 127.2, 128.3, 128.5, 128.6, 128.9, 130.4, 131.2, 155.2, 159.9, 162.4; IR (KBr) v 1585, 1716, 2926, 2950, 2975 cm⁻¹; Anal. Calcd for C₁₈H₁₅NO₃ (293.32): C, 73.71; H, 5.15; N, 4.78. Found: C, 73.85; H, 5.11; N, 4.52. Spectral data were in agreement with those previously reported.⁴

Ethyl [5-(4-cyanophenyl)-2-(4-methoxyphenyl)]oxazole-4-carboxylate (3a):

According to the general procedure B using <u>1b</u> (86 mg, 0.35 mmol) with 4-iodoanisole (82 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.42) afforded <u>3a</u> (83%) as a white solid (mp = 193-194 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41 (t, 3H, *J* = 7.2 Hz), 3.83 (s, 3H), 4.43 (q, 2H, *J* = 7.2 Hz), 6.95 (d, 2H, *J* = 8.7 Hz), 7.72 (d, 2H, *J* = 8.5 Hz), 8.03 (d, 2H, *J* = 8.7 Hz), 8.24 (d, 2H, *J* = 8.5 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.2, 55.4, 61.8, 113.0, 114.3, 118.4, 128.6, 128.8, 130.2, 131.2, 132.1, 151.9, 160.7, 162.0, 162.2; IR (KBr) v 2222, 1708, 1610, 1500, 1370, 1096, 1025, 829, 740 cm⁻¹; Anal. Calcd for C₂₀H₁₆N₂O₄ (348.4): C, 68.96; H, 4.63; N, 8.04. Found: C, 69.11; H, 4.56; N, 8.19.

Ethyl [5- (4-cyanophenyl)-2-(4-dimethylaminophenyl)]oxazole-4-carboxylate (3b)

According to the general procedure B using <u>**1b**</u> (86 mg, 0.35 mmol) with 4-bromo-*N*,*N*-dimethylaniline (71 mg, 0.35 mmol), $Pd(OAc)_2/Cy$ -JohnPhos (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6,

⁴ C. Verrier, T. Martin, C. Hoarau, F. Marsais, J. Org. Chem. 2008, 73, 7383-7386.

Rf = 0.35) afforded <u>**3b**</u> (92%) as a yellow solid (mp = 191-192 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.42 (t, 3H, *J* = 7.2 Hz), 3.02 (s, 6H), 4.44 (q, 2H, *J* = 7.2 Hz), 6.71 (d, 2H, *J* = 8.7 Hz), 7.71 (d, 2H, *J* = 8.2 Hz), 7.95 (d, 2H, *J* = 8.7 Hz), 8.25 (d, 2H, *J* = 8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 40.2, 61.8, 111.6, 112.6, 113.3, 128.4, 128.5, 130.2, 131.5, 132.0, 151.2, 152.0, 161.7, 162.3; IR (KBr) v 2903, 2223, 1711, 1614, 1604, 1509, 1432, 1347, 1317, 1219, 1191, 1099 cm⁻¹; Anal. Calcd for C₂₁H₁₉N₃O₃ (361.4): C, 69.79; H, 5.30; N, 11.63. Found: C, 69.87; H, 5.26; N, 11.97.

Ethyl [2-(4-cyanophenyl)-5-(4-methoxyphenyl)]oxazole-4-carboxylate (4a):

According to the general procedure B using <u>1c</u> (85 mg, 0.35 mmol) with 4-iodoanisole (82 mg, 0.35 mmol), Pd(OAc)₂/P(*o*-tol)₃ (4:11 mg, 0.017:0.035 mmol) and toluene solvent. Standard workup followed by flash chromatography (EtOAc/PE 3/7, Rf = 0.43) afforded <u>4a</u> (94%) as a white solid (mp = 192-193 °C). ¹H NMR (CDCl₃, 300 MHz) δ =1.41 (t, 3H, *J* = 6.9 Hz), 3.87 (s, 3H), 4.43 (q, 2H, *J* = 6.9 Hz), 8.64 (d, 2H, *J* = 8.6 Hz), 7.76 (d, 2H, *J* = 8.1 Hz), 8.10 (d, 2H, *J* = 8.6 Hz), 8.23 (d, 2H, *J* = 8.1 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 55.5, 61.6, 114.0, 114.1, 118.3, 119.1, 127.1, 127.6, 130.3, 130.4, 132.7, 156.4, 157.1, 161.5, 162.1; IR (KBr) v 2994, 2947, 2837, 2227, 1709, 1610, 1578, 1507 cm⁻¹; Anal. Calcd for C₂₀H₁₆N₂O₄ (348.4): C, 68.96; H, 4.63; N, 8.04. Found: C, 69.06; H, 4.85; N, 8.21. Spectral data were in agreement with those previously reported.³

Ethyl [5-(4-methoxyphenyl)-2-(pyridin-4-yl)]oxazole-4-carboxylate (4b):

According to the general procedure B using <u>1c</u> (88 mg, 0.35 mmol) with 4-bromopyridine.HCl (69 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.19) afforded <u>4b</u> (79%) as a white solid (mp = 145-146 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.39 (t, 3H, J = 7.2 Hz), 3.83 (s, 3H), 4.42 (q, 2H, J = 7.2 Hz), 6.97 (d, 2H, J = 9.0 Hz), 7.93 (d, 2H, J = 5.8 Hz), 8.06 (d, 2H, J = 9.0 Hz), 8.72 (d, 2H, J = 5.8 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 55.4, 61.6, 114.0, 119.0, 120.2, 127.5, 130.4, 133.4, 150.6, 156.4, 156.7, 161.5, 162.0; IR (KBr) v 3535, 1709, 1608, 1507, 1263, 1233, 1181, 1099, 1032, 835, 709 cm⁻¹; Anal. Calcd for C₁₈H₁₆N₂O₄ (324.3): C, 66.66; H, 4.97; N, 8.64. Found: C, 66.48; H, 5.05; N, 8.79.

Ethyl [2-(4-cyanophenyl)-5-(4-(dimethylamino)phenyl)]oxazole-4-carboxylate (5a):

According to the general procedure B using <u>1d</u> (92 mg, 0.35 mmol) with 4-iodobenzonitrile (81 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.39) afforded <u>5a</u> (61%) as a yellow solid (mp = 149-150 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.42 (t, 3H, *J* = 7.1 Hz), 3.04 (s, 6H), 4.44 (q, 2H, *J* = 7.1 Hz), 6.74 (d, 2H, *J* = 8.8 Hz), 7.73 (d, 2H, *J* = 8.2 Hz), 8.05 (d, 2H, *J* = 8.8 Hz), 8.20 (d, 2H, *J* = 8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 40.2, 61.4, 111.3, 113.7, 113.8, 118.4, 126.1, 127.0, 130.0, 130.5, 132.6, 151.6, 156.3, 157.5, 162.4; IR (KBr) v 2229, 1709, 1610, 1513, 1369, 1218, 1197, 1093, 847, 816 cm⁻¹; Anal. Calcd for C₂₁H₁₉N₃O₃ (361.4): C, 69.79; H, 5.30; N, 11.63. Found: C, 69.99; H, 5.13; N, 11.58.

Ethyl [5-(4-(dimethylamino)phenyl)-2-(pyridin-4-yl)]oxazole-4-carboxylate (5b):

According to the general procedure B using <u>1d</u> (92 mg, 0.35 mmol) with 4-bromopyridine.HCl (69 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.15) afforded <u>5b</u> (57%) as a yellow solid (mp = 156-157 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.42 (t, 3H, J = 7.1 Hz), 3.02 (s, 6H), 4.44 (q, 2H, J = 7.1 Hz), 6.72 (d, 2H, J = 9.0 Hz), 7.94 (d, 2H, J = 5.8 Hz), 8.05 (d, 2H, J = 9.0 Hz), 8.72 (d, 2H, J = 5.8 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 40.0, 61.3, 111.2, 113.6, 120.1, 126.0, 130.0, 133.7, 150.5, 151.7, 155.8, 157.6, 162.3; IR (KBr) v 3502, 1709, 1608, 1519, 1229, 1196, 1091, 1027, 816, 788, 706 cm⁻¹; Anal. Calcd for C₁₉H₁₉N₃O₃ (337.4): C, 67.64; H, 5.68; N, 12.46. Found: C, 67.59; H, 5.72; N, 12.53.

Ethyl [2-(4-methoxyphenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (6a):

According to the general procedure B using <u>1e</u> (78 mg, 0.35 mmol) with 4-iodoanisole (83 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.21) afforded <u>6a</u> (82%) as a white solid (mp = 88-89 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.39 (t, 3H, *J* = 7.2

Hz), 3.80 (s, 3H), 4.43 (q, 2H, J = 7.2 Hz), 6.93 (d, 2H, J = 9.0 Hz), 7.98-8.04 (m, 4H), 8.70 (d, 2H, J = 5.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) $\delta = 14.2$, 55.4, 61.8, 118.4, 121.5, 128.8, 130.9, 134.2, 150.2, 151.2, 160.9, 161.9, 162.3; IR (KBr) v 3514, 1719, 1614, 1500, 1257, 1107, 840, 743, 702 cm⁻¹; Anal. Calcd for C₁₈H₁₆N₂O₄ (324.3): C, 66.66; H, 4.97; N, 8.64. Found: C, 66.84; H, 4.73; N, 9.06.

Ethyl [2-(4-(dimethylamino)phenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (6b):

According to the general procedure B using <u>1e</u> (78 mg, 0.35 mmol) with 4-bromo-*N*,*N*-dimethylaniline (71 mg, 0.35 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 6/4, Rf = 0.19) afforded <u>6b</u> (45%) as a orange solid (mp = 179-180 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.1 Hz), 3.03 (s, 6H), 4.46 (q, 2H, *J* = 7.1 Hz), 6.70 (d, 2H, *J* = 9.0 Hz), 7.98 (d, 2H, *J* = 9.0 Hz), 8.04 (d, 2H, *J* = 6.0 Hz), 8.72 (d, 2H, *J* = 6.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 40.1, 61.8, 111.4, 113.0, 121.5, 128.6, 131.0, 134.6, 150.2, 150.5, 152.3, 162.0, 162.3; IR (KBr) v 2972, 2930, 1711, 1611, 1512, 1189, 1104, 819, 741 cm⁻¹; Anal. Calcd for C₁₉H₁₉N₃O₃ (337.4): C, 67.64; H, 5.68; N, 12.46. Found: C, 67.84; H, 5.77; N, 12.40.

Ethyl [2-(4-chlorophenyl)-5-phenyl]oxazole-4-carboxylate (7a):

According to the general procedure B using <u>1a</u> (77 mg, 0.35 mmol) with 1-chloro-4iodobenzene (169 mg, 0.70 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 2/8, Rf = 0.37) afforded <u>7a</u> (87%) as a white solid (mp = 95-96 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41 (t, 3H, *J* = 7.1 Hz), 4.45 (q, 2H, *J* = 7.1 Hz), 7.44-7.51 (m, 5H), 8.07-8.10 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 61.7, 124.9, 127.0, 128.2, 128.4, 128.5, 128.6, 129.2, 130.5, 137.3, 155.4, 158.9, 162.2; IR (KBr) v 3515.1, 2925.4, 1721.3, 1606.6, 1484.5 cm⁻¹; Anal. Calcd for C₁₈H₁₄CINO₃ (327.8): C, 65.96; H, 4.31; Cl, 10.82; N, 4.27. Found: C, 65.71; H, 4.56; Cl, 10.95; N, 4.15.

Ethyl [2-(4-chlorophenyl)-5-(4-cyanophenyl)]oxazole-4-carboxylate (7b):

According to the general procedure B using <u>1b</u> (86 mg, 0.35 mmol) with 1-chloro-4iodobenzene (169 mg, 0.70 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 2/8, Rf = 0.26) afforded <u>7b</u> (66%) as a white powder (mp = 166-167 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.42 (t, 3H, *J* = 6.9 Hz), 4.45 (q, 2H, *J* = 6.9 Hz), 7.44 (d, 2H, *J* = 8.4 Hz), 7.75 (d, 2H, *J* = 8.4 Hz), 8.05 (d, 2H, *J* = 8.4 Hz), 8.26 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 62.0, 113.5, 118.3, 124.3, 128.3, 128.8, 129.3, 130.4, 130.9, 132.2, 137.9, 152.7, 159.7, 161.8; IR (KBr) v 3514, 2928, 2230, 1719, 1603, 1483, 1239, 1094, 835, 737, 547 cm⁻¹; Anal. Calcd for C₁₉H₁₃ClN₂O₃ (352.8): C, 64.69; H, 3.71; Cl, 10.05; N, 7.94. Found: C, 64.59; H, 3.54; Cl, 9.87; N, 8.08.

Ethyl [2-(4-chlorophenyl)-5-(4-methoxyphenyl)]oxazole-4-carboxylate (7c):

According to the general procedure B using <u>1c</u> (88 mg, 0.35 mmol) with 1-chloro-4iodobenzene (169 mg, 0.70 mmol), Pd(OAc)₂/IMes (8:24 mg, 0.034:0.07 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 3/7, Rf = 0.40) afforded <u>7c</u> (91%) as a white solid (mp = 145-146 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.1 Hz), 3.88 (s, 3H), 4.45 (q, 2H, *J* = 7.1 Hz), 7.01 (d, 2H, *J* = 9.0 Hz), 7.46 (d, 2H, *J* = 8.7 Hz), 8.06-8.11 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.5, 55.6, 61.6, 114.0, 119.5, 125.1, 127.2, 128.2, 129.3, 130.4, 137.2, 155.7, 158.4, 161.4, 162.5; IR (KBr) v 3504, 2977, 1714, 1610, 1507, 1226, 1170, 1000, 834, 734 cm⁻¹; Anal. Calcd for C₁₉H₁₆ClNO₄ (357.8): C, 63.78; H, 4.51; Cl, 9.91; N, 3.91. Found: C, 63.80; H, 4.58; Cl, 9.84; N, 4.08.

Ethyl [2-(4-chlorophenyl)-5-(4-(dimethylamino)phenyl)]oxazole-4-carboxylate (7d):

According to the general procedure B using <u>1d</u> (92 mg, 0.35 mmol) with 1-chloro-4iodobenzene (169 mg, 0.70 mmol), Pd(OAc)₂/IMes (8:24 mg, 0.034:0.07 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 3/7, Rf = 0.40) afforded <u>7d</u> (90%) as a white solid (mp > 260 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.2 Hz), 3.04 (s, 6H), 4.45 (q, 2H, *J* = 7.2 Hz), 6.75 (d, 2H, *J* = 8.7 Hz), 7.44 (d, 2H, *J*

= 8.1Hz), 8.04-8.07 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.5, 40.2, 61.3, 111.3, 114.2, 125.3, 125.7, 128.0, 129.1, 129.9, 136.8, 151.6, 156.8, 157.5, 162.7; IR (KBr) v 1711, 1614, 1515, 1197, 1086, 817, 731 cm⁻¹; Anal. Calcd for C₂₀H₁₉ClN₂O₃ (370.8): C, 64.78; H, 5.16; Cl, 9.56; N, 7.55. Found: C, 64.93; H, 5.31; Cl, 9.44; N, 7.83.

Ethyl [2-(4-chlorophenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (7e):

According to the general procedure B using <u>1e</u> (78 mg, 0.35 mmol) with 1-chloro-4iodobenzene (169 mg, 0.70 mmol), Pd(OAc)₂/IMes (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 6/4, Rf = 0.32) afforded <u>7e</u> (78%) as a white solid (mp = 87-88 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.1 Hz), 4.47 (q, 2H, *J* = 7.1 Hz), 7.46 (d, 2H, *J*= 8.4 Hz), 8.03 (d, 2H, *J* = 6.0 Hz), 8.07 (d, 2H, *J* = 8.4 Hz), 8.75 (d, 2H, *J* = 6.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 62.1, 121.7, 124.4, 128.4, 129.4, 131.2, 134.0, 138.0, 150.4, 152.1, 160.0, 161.8; IR (KBr) v 1720, 1602, 1583, 1482, 1091, 835, 735, 694, 495 cm⁻¹; Anal. Calcd for C₁₇H₁₃ClN₂O₃ (328.7): C, 62.11; H, 3.99; Cl, 10.78; N, 8.52. Found: C, 62.04; H, 4.22; Cl, 10.86; N, 8.64.

POPOP dicarboxyalte-analog 8a:

According to the general procedure B using <u>1a</u> (77 mg, 0.35 mmol) with <u>7a</u> (232 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.35) afforded <u>8a</u> (22%) as a white solid. ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (t, 3H, *J* = 7.2 Hz), 4.47 (q, 4H, *J* = 7.2 Hz), 7.50-7.52 (m, 6H), 8.12-8.14 (m, 4H), 8.29 (s, 4H).

POPOP dicarboxyalte-analog 8b:

According to the general procedure B using <u>1c</u> (88 mg, 0.35 mmol) with <u>7c</u> (254 mg, 0.70 mmol), $Pd(OAc)_2/Cy$ -JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = 0.24)

afforded <u>8b</u> (98%) as a white solid (mp > 260 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.44 (t, 6H, *J* = 7.1 Hz), 3.89 (s, 6H), 4.47 (q, 4H, *J* = 7.1 Hz), 7.03 (d, 4H, *J* = 8.7 Hz), 8.13 (d, 4H, *J* = 8.7 Hz), 8.25 (s, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 55.5, 61.6, 114.0, 119.5, 127.2, 127.4, 128.4, 130.4, 155.9, 158.4, 161.4, 162.4; IR (KBr) v 2971, 2841, 1713, 1609, 1578, 1504, 1220, 1178, 1033, 833, 787, 711, 648 cm⁻¹; Anal. Calcd for C₃₂H₂₈N₂O₈ (568.6): C, 67.60; H, 4.96; N, 4.93. Found: C, 67.48; H, 5.24; N, 5.11.

POPOP dicarboxyalte-analog 8c:

According to the general procedure B using <u>1d</u> (92 mg, 0.35 mmol) with <u>7d</u> (263 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 6/4, Rf = 0.32) afforded <u>8c</u> (99%) as a yellow solid (decomposition 180 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.45 (t, 6H, *J* = 7.1 Hz), 3.06 (s, 12H), 4.47 (q, 4H, *J* = 7.1 Hz), 6.77 (d, 4H, *J* = 8.7 Hz), 8.10 (d, 4H, *J* = 8.7 Hz), 8.23 (s, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.5, 40.2, 61.4, 111.4, 114.3, 126.0, 127.0, 128.4, 130.0, 151.7, 157.1, 157.7, 162.8; IR (KBr) v 2929, 1717, 1610, 1560, 1513 cm⁻¹; Anal. Calcd for C₃₄H₃₄N₄O₆ (594.7): C, 68.67; H, 5.76; N, 9.42. Found: C, 68.59; H, 5.66; N, 9.58.

POPOP dicarboxyalte-analog 8d:

According to the general procedure B using <u>1b</u> (86 mg, 0.35 mmol) with <u>7c</u> (254 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 5/5, Rf = 0.38) afforded <u>8d</u> (86%) as a yellow solid (mp = 241-242 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.39-1.45 (m, 6H), 3.84 (s, 3H), 4.39-4.49 (m, 4H), 6.97 (d, 2H, *J* = 9.0 Hz), 7.75 (d, 2H, *J* = 8.4 Hz), 8.07 (d, 2H, *J* = 9.0 Hz), 8.18 (s, 4H), 8.27 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 14.4, 55.4, 61.5, 62.1, 113.5, 113.9, 118.3, 119.2, 127.1, 127.3, 127.4, 127.5, 128.9, 130.3, 130.6, 130.8, 132.2, 152.9, 155.9, 157.9, 159.7, 161.4, 161.8, 162.2; IR (KBr) v 2984, 2840, 2227, 1715, 1608, 1578, 1560, 1506 cm⁻¹; Anal. Calcd for C₃₂H₂₅N₃O₇ (563.6): C, 68.20; H, 4.47; N, 7.46. Found: C, 68.14; H, 4.58; N, 7.49.

POPOP dicarboxyalte-analog 8e:

According to the general procedure B using <u>1b</u> (86 mg, 0.35 mmol) with <u>7d</u> (263 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 5/5, Rf = 0.33) afforded <u>8e</u> (95%) as a yellow solid (mp = 244-245 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.43 (m, 6H), 3.01 (s, 6H), 4.45 (m, 4H), 6.70 (d, 2H, *J* = 8.5 Hz), 7.74 (d, 2H, *J* = 8.1 Hz), 8.04 (d, 2H, *J* = 8.5 Hz), 8.16 (s, 4H), 8.27 (d, 2H, *J* = 8.1 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 14.4, 40.1, 61.3, 62.0, 111.2, 113.4, 113.9, 118.3, 125.8, 126.9, 127.1, 127.2, 128.8, 129.1, 129.8, 130.5, 130.8, 132.2, 151.4, 152.8, 157.0, 159.7, 161.8, 162.5; IR (KBr) v 2980, 2926, 2226, 1715, 1608, 1512 cm⁻¹; Anal. Calcd for C₃₃H₂₈N₄O₆ (576.6): C, 68.74; H, 4.89; N, 9.72. Found: C, 68.63; H, 5.02; N, 9.91.

POPOP dicarboxyalte-analog 8f:

According to the general procedure B using <u>1e</u> (78 mg, 0.35 mmol) with <u>7c</u> (254 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.19) afforded <u>8f</u> (92%) as a yellow powder (mp = 225-226 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 139-1.47 (m, 6H), 3.86 (s, 3H), 4.41-4.52 (m, 4H), 6.99 (d, 2H, *J* = 9.0 Hz), 8.06-8.11 (m, 4H), 8.23 (s, 4H), 8.78 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.3, 14.4, 55.5, 61.6, 62.2, 113.9, 119.3, 121.9, 127.2, 127.4, 127.6, 129.1, 130.4, 131.4, 134.1, 150.3, 152.2, 156.0, 158.0, 160.1, 161.4, 161.7, 162.3; IR (KBr) v 2977, 1715, 1609, 1578, 1542, 1505 cm⁻¹; Anal. Calcd for C₃₀H₂₅N₃O₇ (539.5): C, 66.78; H, 4.67; N, 7.79. Found: C, 66.84; H, 4.87; N, 7.62.

POPOP dicarboxyalte-analog (8g)

According to the general procedure B using <u>1e</u> (78 mg, 0.35 mmol) with <u>7d</u> (263 mg, 0.70 mmol), Pd(OAc)₂/Cy-JohnPhos Buchwald's ligand (4:12 mg, 0.017:0.035 mmol) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.16) afforded <u>8g</u> (98%) as a yellow powder (mp = 180-181 °C). ¹H NMR (CDCl₃, 300 MHz) δ = 1.41-1.48 (m, 6H), 3.04 (s, 6H), 4.42-4.51 (m, 4H), 6.75 (d, 2H, *J* = 9 Hz), 8.06 (m, 4H), 8.24 (s, 4H), 8.78 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ = 14.4, 14.5, 40.2, 61.4, 62.2, 111.3, 114.0, 121.8, 126.0, 127.1, 127.3, 127.4, 129.4, 129.9, 131.4, 134.1, 150.4, 151.7, 152.3, 157.2, 160.2, 161.8, 162.6; IR (KBr) v 2928, 1719, 1609, 1511 cm⁻¹; Anal. Calcd for C₃₁H₂₈N₄O₆ (552.6): C, 67.38; H, 5.11; N, 10.14. Found: C, 67.48; H, 4.86; N, 10.27.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

S18

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

