Electronic Supplementary Information

DPO and POPOP Carboxylate-Analogs Sensors by Sequential Palladium-Catalysed Direct Arylation of Oxazole-4-Carboxylates

Cécile Verrier, Catherine Fiol-Petit, Christophe Hoarau* and Francis Marsais

Institut de Chimie Organique Fine (IRCOF) associé au CNRS (UMR 6014, COBRA), INSA et Université de Rouen, BP08 76131 Mont Saint Aignan, France

Contents

- General \& experimental procedures with all spectral data

General Informations

Dioxane was distilled from benzophenone/ Na and toluene was distilled from calcium hydride. Melting points are uncorrected. Column chromatography was performed using silica gel (mesh size $60-80$ mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 MHz . Chemical shifts (δ) are given as ppm relative to the residual solvent peak. Microanalyses were carried out at the analytical laboratory of our Department (IRCOF). Commercially available halogenoaromatics, 2-(dicyclohexylphosphino)biphenyl (Cy-JohnPhos Buchwald's ligand), and 1,3-bis-(mesitylimidazolyl)carbene (IMes) were used without further purification.

UV-visible and fluorescence spectroscopy

UV-visible spectra were obtained on a Varian Cary 50 scan spectrophotometer, in a quartz Suprasil cell (Hellma, 100-QS, $10 \times 10 \mathrm{~mm}, 3500 \mu \mathrm{l}$). A Cary Eclipse fluorescence spectrophotometer Varian was used to measure the absorption spectra. A 80 Hz xenon flash lamp was used as the excitation source and two Czerny-Turner monochromators; the slit width was 5 nm (10 nm band-pass). Its excitation and emission wavelength range is of 200-

900 nm . Scan rate was $120 \mathrm{~nm} / \mathrm{min}$. The excitation light was focused on the sample cell (Hellma, 104F-QS, $10 \times 4 \mathrm{~mm}, 1400 \mu \mathrm{l}$).

All measurements were made at $25^{\circ} \mathrm{C}$ temperature with peltier thermostated cell holder.
The fluorescence quantum yield of the analogs was measured relative to sodium fluorescein in 0.1 M NaOH and distilled water $\left(\phi_{\mathrm{f}}=0.90\right)$ at $\lambda_{\text {exc }}=450 \mathrm{~nm}$, relative to harmane in a 0.1 M sulfuric acid and distilled water $\left(\phi_{\mathrm{f}}=0.83\right)$ at $\lambda_{\mathrm{exc}}=360 \mathrm{~nm}$, relative to Rhodamin 6 G in distilled water $\left(\phi_{f}=0.76\right)$ at $\lambda_{\text {exc }}=488 \mathrm{~nm}$.

The reproductibility of fluorescence quantum yield was typically $\pm 10 \%$ as described in the literature.

General procedure A for synthesis of 5-aryl oxazole-4-carboxylates:

The 5-aryl oxazole-4-carboxylates were prepared following the Schröder's procedure: ${ }^{1}$ A solution of ethyl isocyanoacetate ($1.5 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (8 ml) was added dropwise to a stirred ice-cooled solution of potassium tert-butoxyde ($1.5 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (15 ml) under argon. A solution of acyl chloride (13 mmol) in THF (6 ml) was then added dropwise by maintaining the temperature below $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature during 1 h . An aqueous solution of acetic acid ($0.4 \mathrm{ml}, 6.5 \mathrm{mmol}$) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and the crude product was purified by flash chromatography to afford 5-aryloxazole-4-carboxylates 1a-e.

Ethyl 5-phenyloxazole-4-carboxylate (1a):

According to the general procedure A using benzoyl chloride ($1.5 \mathrm{ml}, 13 \mathrm{mmol}$). Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.35$) afforded $\underline{\mathbf{1 a}}(82 \%)$ as a white solid (mp < $50{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.39(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.41(\mathrm{q}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.45-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.04-8.07(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta=14.3,61.5,126.7,128.5,128.6,130.1,130.6,149.1,155.6,162.0$; $\mathrm{IR}(\mathrm{KBr})$ v 3109, 2977, 1719, 1583, 1495, 1370, 1226, 1189, 1066, 762, 686, $643 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}$ (217.2): C, 66.35; H, 5.10; N, 6.45. Found: C, 66.27; H, 5.04; N, 6.58. Spectral data were in agreement with those previously reported. ${ }^{2}$

[^0]
Ethyl 5-(4-cyanophenyl)oxazole-4-carboxylate (1b):

According to the general procedure A using 4-cyanobenzoyl chloride ($2.1 \mathrm{~g}, 13 \mathrm{mmol}$). Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.23$) afforded $\underline{\mathbf{1 b}}$ (80%) as a white solid ($\mathrm{mp}=147-148{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.3,62.0,113.8,118.3,128.7,128.9,130.8,132.3$, 149.9, 153.2, 161.7; IR (KBr) v 3136, 2987, 2226, 1719, 1591, 1500, 1076, 1027, 989, 842, 787, 643, $559 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ (242.2): C, 64.46; H, 4.16; N, 11.56. Found: C, $64.35 ; \mathrm{H}, 4.26 ; \mathrm{N}, 11.85$. Spectral data were in agreement with those previously reported. ${ }^{3}$

Ethyl 5-(4-methoxyphenyl)oxazole-4-carboxylate (1c):

According to the general procedure A using p-anisoyl chloride ($1.8 \mathrm{ml}, 13 \mathrm{mmol}$). Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.31$) afforded $\underline{\mathbf{1 c}}(71 \%)$ as a white solid ($\mathrm{mp}=70-71^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 4.41(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, 2 \mathrm{H}, J=9.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,55.5,61.4,113.9,119.3,125.4,130.3,148.5$, $155.9,161.3,162.3$; IR (KBr) v 3139, 2975, 1694, 1608, 1504, 1182, 1077, 847, 790, 643, 617, $547 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$ (247.2): C, 63.15 ; H, 5.30; N, 5.67. Found: C, 62.84; H, 5.61; N, 6.02.

Ethyl 5-(4-(dimethylamino)phenyl)oxazole-4-carboxylate (1d):

According to the general procedure A using 4-dimethylaminobenzoyl chloride ($2.4 \mathrm{~g}, 13$ $\mathrm{mmol})$. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.29$) afforded $\underline{\mathbf{1 d}}(75 \%)$ as a white solid $\left(\mathrm{mp}=83-84^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.03(\mathrm{~s}, 6 \mathrm{H}), 4.41(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.79(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.3,39.9,60.9,111.1,113.8$,

[^1]123.6, 129.6, 147.6, 151.3, 156.7, 162.3; IR (KBr) v 3125, 2899, 1705, 1608, 1516, 1371, 1181, 1070, 1029, 944, 785, $641 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ (260.3): C, 64.60; H, 6.20; N, 10.76. Found: C, 64.82; H, 6.34; N, 10.84.

Ethyl 5-(pyridin-4-yl)oxazole-4-carboxylate (1e)

A solution of ethyl isocyanoacetate ($6.7 \mathrm{ml}, 61.7 \mathrm{mmol}$) and triethylamine ($17.2 \mathrm{ml}, 121.3$ mmol) was added dropwise to a stirred ice-cooled solution of isonicotinoyl chloride hydrochloride ($2.3 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (40 ml) under argon and the resulting mixture was stirred for 1 h . The solution was refluxed for 24 h , and concentrated in vacuo. Then, water (50 ml) was added and the aqueous layer was further extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and solvent was evaporated. The crude product was purified on silica gel ($\mathrm{EtOAc} / \mathrm{PE} 3 / 7, \mathrm{Rf}=0.22$) afforded $\underline{\mathbf{1 e}}(66 \%)$ as a white solid $\left(\mathrm{mp}=47-48{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.40(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.42$ $(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.98-8.00(\mathrm{~m}, 3 \mathrm{H}), 8.73(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta=14.2,61.9,121.7,129.4,133.8,150.0,150.4,152.5,161.5$; IR (KBr) v 3094, 2993, 1721, 1584, 1518, 1203, 1103, 824, 788, 693, 624, $515 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ (218.2): C, 60.55; H, 4.62; N, 12.84. Found: C, 60.31; H, 4.59; N, 12.64.

General procedure B for preparation of DPO and POPOP mono(di)carboxylate-analogs:

The direct (hetero)arylation reactions were carried out in a sealed tube at $110{ }^{\circ} \mathrm{C}$ for 18 h under argon. A solution of ethyl 5-aryl oxazole-4-carboxylate derivative $\mathbf{1}$ (0.35 mmol) was allowed to react with arylhalide ($0.35-0.7 \mathrm{mmol}$) with palladium acetate ($0.017-0.034 \mathrm{mmol}$), cesium carbonate ($231 \mathrm{mg}, 0.7 \mathrm{mmol}$) and ligand ($0.035-0.07 \mathrm{mmol}$).in the appropriate solvent (1 mL). After filtration on Celite and concentration under vacuo, the crude product was purified by flash column chromatography on silica gel using a mixture of ethyl acetate (EtOAc) and petroleum Ether (PE) as eluent to give the DPO (2-7) and POPOP (8) mono(di)carboxylate-analogs. The following detailed procedures are given using optimized experimental conditions.

Ethyl 2,5-diphenyl-4-oxazolecarboxylate (2)

According to the general procedure B using 1a ($76 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 4-iodobenzene $(40 \mu \mathrm{~L}, 0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 2 / 8, \mathrm{Rf}=0.42$) afforded $\underline{\mathbf{2}}$ (100%) as a white solid $\left(\mathrm{mp}=86-87{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 4.47(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.48-7.50(\mathrm{~m}, 6 \mathrm{H}), 8.10-8.17(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta=14.3,61.6,126.4,127.0,127.2,128.3,128.5,128.6,128.9,130.4,131.2,155.2$, 159.9, 162.4; IR (KBr) v 1585, 1716, 2926, 2950, $2975 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ (293.32): C, 73.71 ; H, 5.15 ; N, 4.78. Found: C, 73.85 ; H, 5.11 ; N, 4.52. Spectral data were in agreement with those previously reported. ${ }^{4}$

Ethyl [5-(4-cyanophenyl)-2-(4-methoxyphenyl)]oxazole-4-carboxylate (3a):

According to the general procedure B using $\underline{\mathbf{1 b}}(86 \mathrm{mg}, 0.35 \mathrm{mmol})$ with 4-iodoanisole ($82 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.42$) afforded $\underline{\mathbf{3 a}}$ (83%) as a white solid ($\mathrm{mp}=193-194{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.24(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.2$, $55.4,61.8,113.0,114.3,118.4,128.6,128.8,130.2,131.2,132.1,151.9,160.7,162.0,162.2$; IR (KBr) v 2222, 1708, 1610, 1500, 1370, 1096, 1025, 829, $740 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (348.4): C, 68.96; H, 4.63; N, 8.04. Found: C, 69.11; H, 4.56; N, 8.19.

Ethyl [5- (4-cyanophenyl)-2-(4-dimethylaminophenyl)]oxazole-4-carboxylate (3b)

According to the general procedure B using $\mathbf{1 b}$ ($86 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 4-bromo-N,Ndimethylaniline ($71 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Cy-JohnPhos ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6,

[^2]$\mathrm{Rf}=0.35)$ afforded $\underline{\mathbf{3 b}}(92 \%)$ as a yellow solid $\left(\mathrm{mp}=191-192{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta=1.42(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.02(\mathrm{~s}, 6 \mathrm{H}), 4.44(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.71(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.25(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.3,40.2,61.8,111.6,112.6,113.3,128.4,128.5,130.2,131.5,132.0$, $151.2,152.0,161.7,162.3$; $\mathrm{IR}(\mathrm{KBr})$ v 2903, 2223, 1711, 1614, 1604, 1509, 1432, 1347, 1317, 1219, 1191, $1099 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (361.4): C, 69.79; H, 5.30; N, 11.63. Found: C, 69.87; H, 5.26; N, 11.97.

Ethyl [2-(4-cyanophenyl)-5-(4-methoxyphenyl)]oxazole-4-carboxylate (4a):

According to the general procedure B using $\mathbf{1 \mathbf { c }}(85 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 4-iodoanisole (82 $\mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{P}(o-\mathrm{tol})_{3}(4: 11 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and toluene solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 3 / 7, \mathrm{Rf}=0.43$) afforded $\underline{\mathbf{4 a}}$ (94%) as a white solid ($\mathrm{mp}=192-193{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 8.64(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 8.10(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.23(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4$, $55.5,61.6,114.0,114.1,118.3,119.1,127.1,127.6,130.3,130.4,132.7,156.4,157.1,161.5$, 162.1; IR (KBr) v 2994, 2947, 2837, 2227, 1709, 1610, 1578, $1507 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (348.4): C, 68.96; H, 4.63; N, 8.04. Found: C, 69.06; H, 4.85; N, 8.21. Spectral data were in agreement with those previously reported. ${ }^{3}$

Ethyl [5-(4-methoxyphenyl)-2-(pyridin-4-yl)]oxazole-4-carboxylate (4b):

According to the general procedure B using 1c ($88 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 4-bromopyridine. $\mathrm{HCl}(69 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = $0.19)$ afforded $\mathbf{4 b}(79 \%)$ as a white solid $\left(\mathrm{mp}=145-146{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ $1.39(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.93$ $(\mathrm{d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 8.06(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.72(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta=14.3,55.4,61.6,114.0,119.0,120.2,127.5,130.4,133.4,150.6,156.4,156.7$, 161.5, 162.0; IR (KBr) v 3535, 1709, 1608, 1507, 1263, 1233, 1181, 1099, 1032, 835, 709 cm^{-1}; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.3): C, 66.66; H, 4.97; N, 8.64. Found: C, 66.48; H, 5.05; N, 8.79.

Ethyl [2-(4-cyanophenyl)-5-(4-(dimethylamino)phenyl)]oxazole-4-carboxylate (5a):

According to the general procedure B using $\underline{\mathbf{1 d}}(92 \mathrm{mg}, 0.35 \mathrm{mmol})$ with 4-iodobenzonitrile ($81 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.39$) afforded 5a (61%) as a yellow solid ($\mathrm{mp}=149-150{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.42(\mathrm{t}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 4.44(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.20(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4$, $40.2,61.4,111.3,113.7,113.8,118.4,126.1,127.0,130.0,130.5,132.6,151.6,156.3,157.5$, 162.4; $\mathrm{IR}(\mathrm{KBr})$ v 2229, 1709, 1610, 1513, 1369, 1218, 1197, 1093, 847, $816 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (361.4): C, 69.79; H, 5.30; N, 11.63. Found: C, 69.99; H, 5.13; N, 11.58.

Ethyl [5-(4-(dimethylamino)phenyl)-2-(pyridin-4-yl)]oxazole-4-carboxylate (5b):

According to the general procedure B using 1d (92 mg, 0.35 mmol) with 4-bromopyridine. $\mathrm{HCl}(69 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = $0.15)$ afforded $\mathbf{5 \mathbf { b }}(57 \%)$ as a yellow solid ($\mathrm{mp}=156-157^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $=1.42(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.02(\mathrm{~s}, 6 \mathrm{H}), 4.44(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz})$, $7.94(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.72(\mathrm{~d}, 2 \mathrm{H}, \quad J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,40.0,61.3,111.2,113.6,120.1,126.0,130.0,133.7,150.5,151.7$, $155.8,157.6,162.3$; IR (KBr) v 3502, 1709, 1608, 1519, 1229, 1196, 1091, 1027, 816, 788, $706 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (337.4): C, 67.64; H, 5.68; N, 12.46. Found: C, 67.59; H, 5.72; N, 12.53.

Ethyl [2-(4-methoxyphenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (6a):

According to the general procedure B using $\underline{\mathbf{1 e}}(78 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 4-iodoanisole $(83 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 7 / 3, \mathrm{Rf}=0.21$) afforded $\underline{\mathbf{6 a}}$ (82%) as a white solid $\left(\mathrm{mp}=88-89^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.39(\mathrm{t}, 3 \mathrm{H}, J=7.2$
$\mathrm{Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.98-8.04(\mathrm{~m}, 4 \mathrm{H}), 8.70$ $(\mathrm{d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.2,55.4,61.8,118.4,121.5,128.8$, $130.9,134.2,150.2,151.2,160.9,161.9,162.3$; IR (KBr) v 3514, 1719, 1614, 1500, 1257, 1107, 840, 743, $702 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.3): C, 66.66; H, 4.97; N, 8.64. Found: C, 66.84; H, 4.73; N, 9.06.

Ethyl [2-(4-(dimethylamino)phenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (6b):

According to the general procedure B using $\underline{\mathbf{1 e}}(78 \mathrm{mg}, 0.35 \mathrm{mmol})$ with 4-bromo-N,Ndimethylaniline ($71 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 6/4, Rf = $0.19)$ afforded $\mathbf{6 \mathbf { b }}(45 \%)$ as a orange solid ($\mathrm{mp}=179-180^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $=1.43(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.03(\mathrm{~s}, 6 \mathrm{H}), 4.46(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz})$, $7.98(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.04(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.72(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta=14.3,40.1,61.8,111.4,113.0,121.5,128.6,131.0,134.6,150.2,150.5,152.3$, 162.0, 162.3; $\mathrm{IR}(\mathrm{KBr}) \vee 2972,2930,1711,1611,1512,1189,1104,819,741 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (337.4): C, 67.64; H, 5.68; N, 12.46. Found: C, 67.84; H, 5.77; N, 12.40 .

Ethyl [2-(4-chlorophenyl)-5-phenyl]oxazole-4-carboxylate (7a):

According to the general procedure B using $\underline{\mathbf{1 a}}(77 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 1-chloro-4iodobenzene ($169 \mathrm{mg}, 0.70 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 2/8, $\mathrm{Rf}=0.37$) afforded $\underline{\mathbf{7 a}}(87 \%)$ as a white solid $\left(\mathrm{mp}=95-96^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.41(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.45(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.44-7.51(\mathrm{~m}, 5 \mathrm{H}), 8.07-8.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,61.7,124.9,127.0,128.2,128.4,128.5,128.6,129.2,130.5$, $137.3,155.4,158.9,162.2$; $\mathrm{IR}(\mathrm{KBr})$ v 3515.1, 2925.4, 1721.3, 1606.6, $1484.5 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{3}$ (327.8): C, $65.96 ; \mathrm{H}, 4.31 ; \mathrm{Cl}, 10.82$; N, 4.27. Found: C, $65.71 ; \mathrm{H}$, 4.56; Cl, 10.95; N, 4.15.

Ethyl [2-(4-chlorophenyl)-5-(4-cyanophenyl)]oxazole-4-carboxylate (7b):

According to the general procedure B using $\underline{\mathbf{1 b}}(86 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 1-chloro-4iodobenzene ($169 \mathrm{mg}, 0.70 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 2 / 8, \mathrm{Rf}=0.26$) afforded $\mathbf{7 \mathbf { b }}(66 \%)$ as a white powder $\left(\mathrm{mp}=166-167{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ $1.42(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.45(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.26(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.3$, $62.0,113.5,118.3,124.3,128.3,128.8,129.3,130.4,130.9,132.2,137.9,152.7,159.7,161.8$; IR (KBr) v 3514, 2928, 2230, 1719, 1603, 1483, 1239, 1094, 835, 737, $547 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (352.8): C, $64.69 ; \mathrm{H}, 3.71 ; \mathrm{Cl}, 10.05 ; \mathrm{N}, 7.94$. Found: C, $64.59 ; \mathrm{H}, 3.54 ; \mathrm{Cl}$, 9.87; N, 8.08.

Ethyl [2-(4-chlorophenyl)-5-(4-methoxyphenyl)]oxazole-4-carboxylate (7c):

According to the general procedure B using $\underline{\mathbf{1 c}}(88 \mathrm{mg}, 0.35 \mathrm{mmol})$ with 1-chloro-4iodobenzene ($169 \mathrm{mg}, 0.70 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(8: 24 \mathrm{mg}, 0.034: 0.07 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 3/7, Rf = 0.40) afforded $\mathbf{7 \mathbf { c }}(91 \%)$ as a white solid $\left(\mathrm{mp}=145-146{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43$ $(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.46(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.06-8.11(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.5,55.6,61.6,114.0$, $119.5,125.1,127.2,128.2,129.3,130.4,137.2,155.7,158.4,161.4,162.5$; IR (KBr) v 3504, 2977, 1714, 1610, 1507, 1226, 1170, 1000, 834, $734 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{4}$ (357.8): C, $63.78 ; \mathrm{H}, 4.51 ; \mathrm{Cl}, 9.91 ; \mathrm{N}, 3.91$. Found: C, $63.80 ; \mathrm{H}, 4.58 ; \mathrm{Cl}, 9.84 ; \mathrm{N}, 4.08$.

Ethyl [2-(4-chlorophenyl)-5-(4-(dimethylamino)phenyl)]oxazole-4-carboxylate (7d):

According to the general procedure B using $\underline{\mathbf{1 d}}(92 \mathrm{mg}, 0.35 \mathrm{mmol})$ with 1-chloro-4iodobenzene ($169 \mathrm{mg}, 0.70 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(8: 24 \mathrm{mg}, 0.034: 0.07 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 3 / 7, \mathrm{Rf}=0.40$) afforded $\underline{\mathbf{7 d}}(90 \%)$ as a white solid ($\mathrm{mp}>260{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 4.45(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J$

Ethyl [2-(4-chlorophenyl)-5-(pyridin-4-yl)]oxazole-4-carboxylate (7e):

According to the general procedure B using $\underline{\mathbf{1 e}}(78 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 1-chloro-4iodobenzene ($169 \mathrm{mg}, 0.70 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{IMes}(4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol})$ and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 6/4, $\mathrm{Rf}=0.32$) afforded $\underline{\mathbf{7 e}}(78 \%)$ as a white solid $\left(\mathrm{mp}=87-88{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.47(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $8.07(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.75(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}){ }^{13}{ }^{3} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,62.1$, 121.7, 124.4, 128.4, 129.4, 131.2, 134.0, 138.0, 150.4, 152.1, 160.0, 161.8; IR (KBr) v 1720, 1602, 1583, 1482, 1091, 835, 735, 694, $495 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (328.7): C, 62.11; H, 3.99; Cl, 10.78; N, 8.52. Found: C, 62.04; H, 4.22; Cl, 10.86; N, 8.64.

POPOP dicarboxyalte-analog 8a:

According to the general procedure B using $\underline{\mathbf{1 a}}(77 \mathrm{mg}, 0.35 \mathrm{mmol}$) with $\underline{\mathbf{7 a}}(232 \mathrm{mg}$, $0.70 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}$-JohnPhos Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 4/6, Rf = $0.35)$ afforded $\underline{\mathbf{8 a}}(22 \%)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 4.47(\mathrm{q}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.50-7.52(\mathrm{~m}, 6 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 4 \mathrm{H}), 8.29(\mathrm{~s}, 4 \mathrm{H})$.

POPOP dicarboxyalte-analog 8b:

According to the general procedure B using $\mathbf{1 c}(88 \mathrm{mg}, 0.35 \mathrm{mmol})$ with $\mathbf{7 c}(254 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}$-JohnPhos Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 4 / 6, \mathrm{Rf}=0.24$)
afforded $\underline{\mathbf{8 b}}(98 \%)$ as a white solid ($\mathrm{mp}>260{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.44(\mathrm{t}$, $6 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 4.47(\mathrm{q}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.03(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.13(\mathrm{~d}, 4 \mathrm{H}, J$ $=8.7 \mathrm{~Hz}), 8.25(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,55.5,61.6,114.0,119.5,127.2$, 127.4, 128.4, 130.4, 155.9, 158.4, 161.4, 162.4; IR (KBr) v 2971, 2841, 1713, 1609, 1578, 1504, 1220, 1178, 1033, 833, 787, 711, $648 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$ (568.6): C, 67.60; H, 4.96; N, 4.93. Found: C, 67.48; H, 5.24; N, 5.11.

POPOP dicarboxyalte-analog 8c:

According to the general procedure B using 1d ($92 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 7d ($263 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}-J o h n P h o s$ Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 6 / 4, \mathrm{Rf}=0.32$) afforded $\underline{\mathbf{8 c}(99 \%)}$ as a yellow solid (decomposition $\left.180^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ $1.45(\mathrm{t}, 6 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.06(\mathrm{~s}, 12 \mathrm{H}), 4.47(\mathrm{q}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.77(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.10$ $(\mathrm{d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.23(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.5,40.2,61.4,111.4$, 114.3, 126.0, 127.0, 128.4, 130.0, 151.7, 157.1, 157.7, 162.8; IR (KBr) v 2929, 1717, 1610, $1560,1513 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}$ (594.7): C, 68.67 ; H, 5.76; N, 9.42. Found: C, 68.59; H, 5.66; N, 9.58.

POPOP dicarboxyalte-analog 8d:

According to the general procedure B using $\mathbf{1 b}(86 \mathrm{mg}, 0.35 \mathrm{mmol})$ with $\underline{\mathbf{c c}}$ ($254 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}$-JohnPhos Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 5 / 5, \mathrm{Rf}=0.38$) afforded 8d (86\%) as a yellow solid ($\mathrm{mp}=241-242{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ 1.39-1.45 (m, 6H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 4.39-4.49(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.18(\mathrm{~s}, 4 \mathrm{H}), 8.27(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}){ }^{13}{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta=14.3,14.4,55.4,61.5,62.1,113.5,113.9,118.3,119.2,127.1,127.3,127.4,127.5$, $128.9,130.3,130.6,130.8,132.2,152.9,155.9,157.9$, 159.7, 161.4, 161.8, 162.2; IR (KBr) v 2984, 2840, 2227, 1715, 1608, 1578, 1560, $1506 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$ (563.6): C, 68.20; H, 4.47; N, 7.46. Found: C, 68.14; H, 4.58; N, 7.49.

POPOP dicarboxyalte-analog 8e:

According to the general procedure B using $\underline{\mathbf{1 b}}$ ($86 \mathrm{mg}, 0.35 \mathrm{mmol}$) with $\underline{\mathbf{d}}$ ($263 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}-J o h n P h o s$ Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography ($\mathrm{EtOAc} / \mathrm{PE} 5 / 5, \mathrm{Rf}=0.33$) afforded $\underline{\mathbf{8 e}}(95 \%)$ as a yellow solid ($\mathrm{mp}=244-245{ }^{\circ} \mathrm{C}$). ${ }^{\mathrm{I}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.43$ $(\mathrm{m}, 6 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}), 4.45(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.04$ $(\mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.16(\mathrm{~s}, 4 \mathrm{H}), 8.27(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=$ $14.3,14.4,40.1,61.3,62.0,111.2,113.4,113.9,118.3,125.8,126.9,127.1,127.2,128.8$, $129.1,129.8,130.5,130.8,132.2,151.4,152.8,157.0,159.7,161.8,162.5$; IR (KBr) v 2980, 2926, 2226, 1715, 1608, $1512 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$ (576.6): C, 68.74; H, 4.89; N, 9.72. Found: C, 68.63; H, 5.02; N, 9.91.

POPOP dicarboxyalte-analog 8f:

According to the general procedure B using $\underline{\mathbf{1 e}}$ ($78 \mathrm{mg}, 0.35 \mathrm{mmol}$) with $\underline{\mathbf{7 c}}$ ($254 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}-J o h n P h o s$ Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.19) afforded $\mathbf{8 f}(92 \%)$ as a yellow powder $\left(\mathrm{mp}=225-226{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ $139-1.47(\mathrm{~m}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.41-4.52(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.06-8.11(\mathrm{~m}$, $4 \mathrm{H}), 8.23(\mathrm{~s}, 4 \mathrm{H}), 8.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.3,14.4,55.5,61.6,62.2$, $113.9,119.3,121.9,127.2,127.4,127.6,129.1,130.4,131.4,134.1,150.3,152.2,156.0$, 158.0, 160.1, 161.4, 161.7, 162.3; IR (KBr) v 2977, 1715, 1609, 1578, 1542, $1505 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$ (539.5): C, 66.78; H, 4.67; N, 7.79. Found: C, 66.84; H, 4.87; N, 7.62.

POPOP dicarboxyalte-analog (8g)

According to the general procedure B using $\underline{\mathbf{e} \mathbf{e}}(78 \mathrm{mg}, 0.35 \mathrm{mmol}$) with $\underline{\mathbf{d d}}(263 \mathrm{mg}, 0.70$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cy}-J o h n P h o s$ Buchwald's ligand ($4: 12 \mathrm{mg}, 0.017: 0.035 \mathrm{mmol}$) and dioxane solvent. Standard workup followed by flash chromatography (EtOAc/PE 7/3, Rf = 0.16) afforded $\mathbf{8 \mathbf { g }}(98 \%)$ as a yellow powder $\left(\mathrm{mp}=180-181^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=$ $1.41-1.48(\mathrm{~m}, 6 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 4.42-4.51(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 8.06(\mathrm{~m}, 4 \mathrm{H}), 8.24$ $(\mathrm{s}, 4 \mathrm{H}), 8.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=14.4,14.5,40.2,61.4,62.2,111.3$, $114.0,121.8,126.0,127.1,127.3,127.4,129.4,129.9,131.4,134.1,150.4,151.7,152.3$, 157.2, 160.2, 161.8, 162.6; IR (KBr) v 2928, 1719, 1609, $1511 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$ (552.6): C, 67.38; H, 5.11; N, 10.14. Found: C, 67.48; H, 4.86; N, 10.27.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

BRUKER
\qquad
Compound 1d
\qquad

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

6IS

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Cum曻

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

is journal is@ The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

[^0]: ${ }^{1}$ R. Schröder, U. Schöllkopf, E. Blume, I. Hoppe, Liebigs Ann. Chem., 1975, 533-546.
 ${ }^{2}$ A. P. Kozikowski, A. Ames, Tetrahedron, 1985, 41, 4821-4834.

[^1]: ${ }^{3}$ M. Baumann, I. R. Baxendale, S. V. Ley, C. D. Smith, G. K. Tranmer, Org. Lett. 2006, 8, 5231-5234.

[^2]: ${ }^{4}$ C. Verrier, T. Martin, C. Hoarau, F. Marsais, J. Org. Chem. 2008, 73, 7383-7386.

