Electronic Supplementary Information

Reactions of the Simple Nitroalkanes with Hydroxide Ion in Water.

Evidence for a Complex Mechanism

Zhao Li^{*a,b*}, Jin-Pei Cheng^{**b*} and Vernon D. Parker^{**a*}

^aDepartment of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, ^bDepartment of Chemistry, The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Table of Contents 1
Table S1. Apparent rate constants and standard deviations for 3 sets of experiments on the
reaction of NM (0.10 mM) with NaOH (20.0 mM) in H ₂ O at 298 K 3
Table S2. Apparent rate constants and standard deviations for 4 sets of experiments on the
reaction of NE (0.10 mM) with NaOH (50.0 mM) in H ₂ O at 298 K 4
Table S3. Apparent rate constants and standard deviations for 3 sets of experiments on the
reaction of 2-NP (0.10 mM) with NaOH (50.0 mM) in H ₂ O at 298 K
Figure S1. Apparent KIE for the reactions of NM and NM-d ₃ in H_2O at 298K as a function of
degree of conversion
Figure S2. Apparent KIE for the reactions of NE and NE- d_2 in H_2O at 298K as a function of degree
of conversion
Figure S3. Apparent KIE for the reactions of 2-NP and 2-NP- d_1 in H_2O at 298K as a function of
degree of conversion
Figure S4. UV absorption spectra for the reactions of NM (a, a'), NE (b, b'),2-NP (c, c') with OH ⁻ in
H ₂ O at 298K
Figure S5. Absorbance – time profile at the isosbestic point near 269.6 nm for the reaction of NE
(21.1 mM) with hydroxide ion (50.0 mM) in H_2O at 298K
Figure S6. Absorbance – time profile at the isosbestic point near 267.5 nm for the reaction of NE-d ₂
(20.37 mM) with hydroxide ion (100.0 mM) in H ₂ O at 298K

Figure S7. Absorbance – time profile at the isosbestic point near 269.8 nm for the reaction of 2-NP
(40.6 mM) with hydroxide ion (100.0 mM) in H ₂ O at 298K10
Figure S8. Absorbance – time profile at the isosbestic point near 269.4 nm for the reaction of 2-NP-
d ₁ (19.5 mM) with hydroxide ion (100.0 mM) in H ₂ O at 298K10
Figure S9. Apparent KIE for the reactions of NM and NM- d_3 in H_2O at 298K as a function of reaction time
Figure S10. Apparent KIE for the reactions of NE and NE- d_2 in H_2O at 298K as a function of reaction time
Figure S11. Apparent KIE for the reactions of 2-NP and 2-NP- d_1 in H_2O at 298K as a function of reaction time

Table S1. Apparent rate constants and standard deviations for 3 sets of experiments on the
reaction of NM (0.10 mM) with NaOH (20.0 mM) in H ₂ O at 298 K.

time/s	Set 1 ^a		Set 2 ^b		Set 3 ^c		Sagmont
unie/s	k_{app}/s^{-1}	SD	k _{app} /s ⁻¹	SD	k _{app} /s ⁻¹	SD	Segment
0.009	0.550	0.083	0.394	0.119	0.489	0.128	1
0.013	0.545	0.035	0.559	0.070	0.576	0.036	2
0.017	0.548	0.026	0.546	0.032	0.550	0.030	3
0.020	0.542	0.016	0.548	0.012	0.545	0.021	4
0.024	0.542	0.013	0.546	0.009	0.544	0.013	5
0.043	0.537	0.008	0.543	0.007	0.534	0.007	6
0.080	0.532	0.004	0.536	0.003	0.525	0.003	7
0.118	0.528	0.003	0.533	0.002	0.521	0.002	8
0.155	0.525	0.003	0.531	0.002	0.518	0.002	9
0.193	0.523	0.003	0.530	0.001	0.517	0.002	10
0.230	0.522	0.003	0.529	0.001	0.515	0.002	11
0.268	0.520	0.003	0.527	0.001	0.514	0.002	12
0.305	0.519	0.003	0.527	0.001	0.513	0.002	13
0.343	0.518	0.003	0.526	0.001	0.512	0.002	14
0.380	0.517	0.003	0.525	0.001	0.511	0.002	15
0.418	0.516	0.003	0.525	0.001	0.510	0.002	16
0.455	0.515	0.004	0.524	0.001	0.509	0.002	17
0.493	0.514	0.004	0.523	0.001	0.508	0.002	18
0.530	0.513	0.004	0.522	0.001	0.507	0.002	19
0.568	0.512	0.004	0.522	0.001	0.507	0.002	20
0.605	0.511	0.004	0.521	0.001	0.506	0.002	21
0.643	0.511	0.004	0.521	0.001	0.505	0.003	22
0.680	0.510	0.004	0.520	0.001	0.504	0.003	23
0.718	0.509	0.004	0.519	0.001	0.504	0.003	24

^aSet 1: 20 stopped-flow repetitions.

^bSet 2: 12 stopped-flow repetitions.

^cSet 3: 20 stopped-flow repetitions.

time/s	Set 1 ^a		Set 2 ^b		Set 3 ^c		Set 4 ^d		Segment
time/s	k_{app}/s^{-1}	SD	k_{app}/s^{-1}	SD	k_{app}/s^{-1}	SD	k _{app} /s ⁻¹	SD	Segment
0.014	0.290	0.097	0.275	0.067	0.289	0.081	0.266	0.110	1
0.021	0.286	0.044	0.274	0.039	0.274	0.046	0.271	0.037	2
0.029	0.280	0.019	0.271	0.028	0.274	0.018	0.267	0.024	3
0.036	0.276	0.014	0.271	0.022	0.269	0.011	0.269	0.017	4
0.044	0.270	0.014	0.269	0.016	0.269	0.008	0.267	0.013	5
0.081	0.265	0.006	0.264	0.005	0.266	0.004	0.264	0.006	6
0.156	0.260	0.002	0.259	0.001	0.262	0.002	0.261	0.002	7
0.231	0.258	0.001	0.257	0.001	0.260	0.001	0.260	0.001	8
0.306	0.256	0.001	0.256	0.001	0.259	0.001	0.259	0.001	9
0.381	0.255	0.001	0.255	0.001	0.259	0.001	0.258	0.001	10
0.456	0.255	0.001	0.255	0.001	0.258	0.001	0.257	0.001	11
0.531	0.254	0.001	0.254	0.001	0.257	0.001	0.257	0.001	12
0.606	0.254	0.001	0.253	0.001	0.257	0.001	0.256	0.001	13
0.681	0.253	0.001	0.253	0.001	0.257	0.001	0.256	0.001	14
0.756	0.253	0.001	0.252	0.001	0.256	0.001	0.255	0.001	15
0.831	0.252	0.001	0.251	0.001	0.256	0.001	0.255	0.001	16
0.906	0.252	0.001	0.251	0.001	0.255	0.001	0.255	0.001	17
0.981	0.251	0.001	0.250	0.001	0.255	0.001	0.254	0.001	18
1.056	0.251	0.001	0.249	0.001	0.255	0.001	0.254	0.001	19
1.131	0.251	0.001	0.248	0.001	0.254	0.001	0.254	0.001	20
1.206	0.250	0.001	0.248	0.001	0.254	0.001	0.254	0.001	21
1.281	0.250	0.001	0.247	0.001	0.254	0.001	0.253	0.001	22
1.356	0.249	0.001	0.246	0.001	0.253	0.001	0.253	0.001	23
1.431	0.249	0.001	0.246	0.001	0.253	0.001	0.253	0.001	24

Table S2. Apparent rate constants and standard deviations for 4 sets of experiments on the reaction of NE (0.10 mM) with NaOH (50.0 mM) in H_2O at 298 K.

^aSet 1: 20 stopped-flow repetitions.

^bSet 2: 10 stopped-flow repetitions.

^cSet 3: 20 stopped-flow repetitions.

^dSet 4: 20 stopped-flow repetitions.

Table S3. Apparent rate constants and standard deviations for 3 sets of experiments on the
reaction of 2-NP (0.10 mM) with NaOH (50.0 mM) in H ₂ O at 298 K.

time/s	Se	t 1 ^a	Set 2 ^b		Set 3 ^c		Sagmant
time/s	k_{app}/s^{-1}	SD	k_{app}/s^{-1}	SD	k _{app} /s ⁻¹	SD	Segment
0.135	0.0248	0.0045	0.0229	0.0081	0.0267	0.0071	1
0.248	0.0221	0.0013	0.0215	0.0023	0.0233	0.0032	2
0.360	0.0216	0.0012	0.0206	0.0014	0.0219	0.0011	3
0.473	0.0214	0.0008	0.0197	0.0012	0.0218	0.0010	4
0.585	0.0212	0.0006	0.0195	0.0009	0.0212	0.0007	5
1.148	0.0207	0.0002	0.0188	0.0004	0.0204	0.0003	6
2.273	0.0199	0.0002	0.0182	0.0001	0.0197	0.0002	7
3.398	0.0193	0.0002	0.0178	0.0001	0.0192	0.0002	8
4.523	0.0187	0.0002	0.0173	0.0001	0.0188	0.0002	9
5.648	0.0183	0.0002	0.0170	0.0001	0.0184	0.0002	10
6.773	0.0180	0.0002	0.0167	0.0001	0.0181	0.0002	11
7.898	0.0177	0.0002	0.0165	0.0001	0.0179	0.0002	12
9.023	0.0175	0.0002	0.0163	0.0001	0.0177	0.0002	13
10.148	0.0173	0.0002	0.0161	0.0001	0.0175	0.0002	14
11.273	0.0172	0.0002	0.0159	0.0001	0.0174	0.0002	15
12.398	0.0170	0.0002	0.0158	0.0001	0.0172	0.0002	16
13.523	0.0169	0.0002	0.0157	0.0001	0.0171	0.0002	17
14.648	0.0168	0.0002	0.0156	0.0001	0.0171	0.0002	18
15.773	0.0167	0.0002	0.0155	0.0001	0.0170	0.0002	19
16.898	0.0166	0.0002	0.0154	0.0001	0.0169	0.0002	20
18.023	0.0165	0.0002	0.0153	0.0001	0.0169	0.0002	21
19.148	0.0165	0.0002	0.0153	0.0001	0.0168	0.0002	22
20.273	0.0164	0.0002	0.0152	0.0001	0.0167	0.0002	23
21.398	0.0163	0.0002	0.0151	0.0001	0.0167	0.0002	24

^aSet 1: 15 stopped-flow repetitions.

^bSet 2: 15 stopped-flow repetitions.

^cSet 3: 20 stopped-flow repetitions.

Figure S1. Apparent KIE for the reactions of NM and NM-d₃ in H₂O at 298K as a function of degree of conversion.

Figure S2. Apparent KIE for the reactions of NE and NE- d_2 in H_2O at 298K as a function of degree of conversion.

Figure S3. Apparent KIE for the reactions of 2-NP and 2-NP-d₁ in H₂O at 298K as a function of degree of conversion.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S4. UV absorption spectra for the reactions of NM (a, a'), NE (b, b'), 2-NP (c, c') with OH⁻ in H₂O under the conditions as shown.

275

19.5

9779

2-NP

224

Figure S5. Absorbance – time profile at the isosbestic point near 269.6 nm for the reaction of NE (21.1 mM) with hydroxide ion (50.0 mM) in H₂O at 298K.

Figure S6. Absorbance – time profile at the isosbestic point near 267.5 nm for the reaction of NE-d₂ (20.37 mM) with hydroxide ion (100.0 mM) in H₂O at 298K.

Figure S7. Absorbance – time profile at the isosbestic point near 268.4 nm for the reaction of 2-NP (20.9 mM) with hydroxide ion (100.0 mM) in H₂O at 298K

Figure S8. Absorbance – time profile at the isosbestic point near 269.4 nm for the reaction of 2-NP- d_1 (19.5 mM) with hydroxide ion (100.0 mM) in H₂O at 298K.

Figure S9. Apparent KIE for the reactions of NM and NM-d₃ in H₂O at 298K as a function of reaction time.

Figure S10. Apparent KIE for the reactions of NE and NE-d2 in $\rm H_2O$ at 298K as a function of reaction time.

Figure S11. Apparent KIE for the reactions of 2-NP and 2-NP-d₁ in H₂O at 298K as a function of reaction time.