Supporting Information

Studies on Transannulation Reactions Across a Nine-Membered Ring: the Synthesis of Natural Product-like Structures.

Mudassar Iqbal, Richard J. G. Black, Joby Winn, Andrew T. Reeder, Alexander J. Blake and Paul A. Clarke

General experimental details	S 1
Experimental procedures and data for compounds not reported in the main paper	S2
Spectra for compounds reported in the main paper	S6
Spectra for compounds reported in the supporting information	S74

General Experimental Details

All reactions were carried out under N₂ unless otherwise specified. IR analyses were carried out on ThermoNicolet Avatar 370 FT-IR and ThermoNicolet IR100 spectrometer using NaCl plates or cesium fluoride solution cell. Nuclear magnetic resonance spectra were recorded on a Jeol EX-270 MHz, a Jeol ECX-400 MHz, a Jeol ECS-400 MHz and Bruker AV-500 MHz spectrometer at ambient temperature; chemical shifts are quoted in parts per million (ppm) and were referenced as follows: chloroform-*d*, $\delta_{\rm H}$ 7.26 ppm; chloroform-*d*, $\delta_{\rm C}$ 77.0 ppm, benzene-*d*, $\delta_{\rm H}$ 7.16 ppm; benzene-*d*, $\delta_{\rm C}$ 128.02 ppm, for the processing of 'fid' data the software delta and mestrec were used for Jeol 270 MHz and 400 MHz system and topspin was used for Bruker AV 500 MHz. The following abbreviations have been used to describe the signal multiplicity; s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); app (apparent); br (broad) and *J* (coupling constant in Hz). The mass spectrometry was performed by the University of York mass spectrometry service ESI or EI ionisation techniques, for accurate mass the samples were submitted to Swansea Mass spectrometry centre. Melting points were determined using a Stuart SMP3 apparatus and remain uncorrected. Optical rotaions were carried out at ambient temperature using a JASCO DIP-370 digital polarimeter. The molecular modelling calculations were carried out using AMI method on the Spartan '08, interatomic distances were calculated by using Spartan student version. Thin layer chromatography was performed on glass-backed plates coated with Merck Silica gel 60 F₂₅₄. Silver nitrate impregnated TLC plates were prepared by absorbing a silver nitrate solution on the plates and activating at 120 °C in oven for one night. The plates were developed using ultraviolet light, acidic aqueous ceric ammonium molybdate, basic aqueous potassium permanganate, ethanolic anisaldehyde or ninhydrin dip. Liquid chromatography was performed using forced flow (flash column) with the solvent systems indicated. The stationary phase was silica gel 60 (220-240 mesh) supplied by Fluorochem or silica gel Merck TLC grade 11695 supplied by Sigma-Aldrich. The silver nitrate impregnated silica was prepared by adsorbing silver nitrate on silica (10% w/w). Dichloromethane was distilled from calcium hydride; THF and diethyl ether were distilled from sodium-benzophenone; toluene was dried over sodium wire prior to use. All other solvents and reagents were used as received from commercial suppliers.

Experimental Procedures and Data for Compounds not Reported in the Main Paper

tert-Butyldimethyl(pent-4-ynloxy)silane Imidazole (9.7 g, 143 mmol) was added to a solution of 4-pentyn-1-ol (5 g, 59 mmol) dissolved in DMF (50 mL) under an N_2 atmosphere at 25 °C and

stirred until all solids had dissolved. TBSCl (10.7 g, 71 mmol) was then added to the solution with stirring continued for a further 4 h. After this period the mixture was washed with water (50 mL) and extracted with Et₂O (4 x 50 mL). The organics were combined the washed with brine (100 mL) before being dried over MgSO₄ and concentrated *in vacuo* to yield a colourless oil which did not require further purification (11.7 g, 100%). IR (film): v_{max} 2926, 2855, 1471, 1457, 1387, 1255, 1106, 835, 776 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 3.67 (2H, t, *J* = 6.3 Hz, H-1), 2.25 (2H, dt, *J* = 7.0, 2.8 Hz, H-3), 1.91 (1H, t, *J* = 2.8 Hz, H-5), 1.70 (2H, m, H-2), 0.87 (9H, s, CH₃-TBS), 0.05 (6H, s, CH₃-TBS) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 84.2 (C, C-4), 68.2 (CH, C-5), 61.4 (CH₂, C-1), 31.5 (CH₂, C-2), 25.9 (CH₃, TBS),

18.3 (C, TBS), 14.8 (CH₂, C-3), -5.4 (CH₃, TBS) ppm. HRMS (ESI): found (M + H⁺): 199.1513, $C_{11}H_{23}OSi$ requires (M + H⁺): 199.1507.

(*E*)-6-(*tert*-butyldimethylsilanyloxy)-2-iodo-3-methylhex-2en-1-ol DIBAL-H (1 M in CH₂Cl₂, 20 mL, 20 mmol) was added a solution of **49** (4.0 g, 10 mmol) in dichloromethane : hexane, 2:1, (60 mL) at -78°C, under a nitrogen atmosphere and stirred

for 3 h. The solution was treated with methanol (15 mL) and then saturated aqueous Rochelle's salt (1 M, 20 mL) and allowed to stir for 1 h upon warming to 25 °C. The solution was extracted with CH₂Cl₂ (2 x 50 mL) and washed with brine (100 mL) before being dried over MgSO₄ and concentrated *in vacuo*. Purification *via* flash column chromatography on silica gel with a mobile phase of petroleum ether: EtOAc, 20:1, yielded a pale yellow oil (3.4 g, 92 %). IR (film): v_{max} 3395, 2927, 2856, 1634, 1471, 1387, 1361, 1255, 1103 cm⁻¹. ¹H NMR (CDCl₃, 270 MHz): δ 4.39 (2H, d, *J* = 6.6 Hz, H-6), 3.58 (2H, t, *J* = 5.9 Hz, H-1), 2.77 (1H, t, *J* = 7.0 Hz, OH), 2.43 (2H, t, *J* = 7.0 Hz, H-3), 1.92 (3H, s, Me-4), 1.62 (2H, m, H-2), 0.88 (9H, s, CH₃-TBS), 0.05 (6H, s, CH₃-TBS) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 143.5 (C, C-4), 104.2 (C, C-5), 68.3 (CH₂, C-6), 61.2 (CH₂, C-1), 30.7 (CH₂, C-2), 29.6 (CH₂, C-3), 29.5 (CH₃, C-4), 25.9 (CH₃, TBS), 18.3 (C, TBS), -5.3 (CH₃, TBS) ppm. HRMS (ESI): found (M + H⁺): 271.0898, C₁₃H₂₈IO₂Si requires (M + H⁺): 271.0904.

(Z)-4,5-dimethyl-6-(para-methoxybenzyloxy)-hex-

4-en-1-ol TBAF (1M in THF, 17.8 mL, 17.8 mmol, 2 equiv) was added to a solution of **51** (3.8 g, 8.9 mmol,

1 equiv) in THF (20 mL) under a nitrogen atmosphere at 25 °C. The solution was allowed to stir for 1 h before being diluted with Et₂O (50 mL) and washed with saturated NaHCO₃ solution (40 mL) followed by brine (50 mL). The ether extracts were then dried over MgSO₄, and concentrated *in vacuo*. Purification *via* flash column chromatography on silica gel with a mobile phase of petroleum ether : EtOAc, 10:1, yielded the desired alcohol as a yellow oil (2.3 g, 98%). IR (film): ν_{max} 3403, 2926, 2866, 2359, 2243, 1733, 1634, 1627, 1496, 1454, 1436, 1375, 1350, 1243, 1212, 1072 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.26-6.85 (4H, m, aromatics), 4.41 (2H, s, H-8), 3.92 (2H, s, H-9), 3.78 (3H, s, H-1), 3.49 (2H, dt, *J* = 6.1, 5.8

Hz, H-16), 2.41 (1H, t, J = 6.1 Hz, H-17), 2.18 (2H, t, J = 7.0 Hz, H-14), 1.71 (3H, s, H-12), 1.65 (3H, s, H-13), 1.62 (2H, dt, J = 7.0, 6.1 Hz, H-15) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 159.2 (C, aromatic), 134.1 (C, C-11), 130.2 (C, C-10), 129.7 (CH, aromatic), 126.2 (C, aromatic), 113.8 (CH, aromatic), 72.1 (CH₂, C-8), 70.5 (CH₂, C-9), 61.2 (CH₂, C-16), 55.2 (CH₃, C-1), 30.5 (CH₂, C-15), 29.7 (CH₂, C-14), 18.3 (CH₃, C-13), 17.9 (CH₃, C-12) ppm. MS (ESI): m/z 287 (M + Na⁺), HRMS (ESI): found (M + H⁺): 265.1798, C₁₆H₂₅O₃ requires (M + H⁺): 265.1800.

(4R,5S)-ethyl 10-(benzyloxy)-5-(tert-butyldimethylsilyloxy)-

4,8,9-trimethyl-3-oxodec-8-enoate To a mixture of SnCl₂ (40 mg, 0.46 mmol, 0.1 equiv) and *tert*-butyl diazoacetate (1 g, 7.0 mmol, 1.5 equiv) in dry CH₂Cl₂ (2 mL), at 25 °C, was added the aldehyde **55** (2 g, 4.6 mmol, 1.0 equiv) dissolved in dry CH₂Cl₂ (5 mL) *via* cannula, and the reaction was heated to 35 °C and stirred for 16 h. The mixture was then cooled to room temperature, diluted with Et₂O (50 mL), and washed with water (40 mL) then the layers were separated. The aqueous

phase was extracted with Et₂O (2 x 20 mL), the organic phases were combined, washed with brine (50 mL), dried over MgSO₄, and the solvents concentrated *in vacuo*, to give the crude as a yellow oil. Purification *via* flash column chromatography on silica gel eluting with petroleum ether : EtOAc, 20:1, gave the β -ketoester as a pale yellow oil (1.49 g , 67 %). [α]²⁴_D -19.2 (c = 1.40, CHCl₃). ν_{max} (solution; CDCl₃): 2952, 2930, 2857, 1739, 1712, 1634, 1613, 1512, 1461, 1367, 1246, 1149, 1065, 1034, 951, 833 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.27-6.86 (4H, m, Ar-H), 4.38 (2H, s, H-15), 3.98-3.86 (1H, m, H-8), 3.91 (2H, s, H-13), 3.80 (3H, s, H-23), 3.52 (1H, d, *J* = 15.7 Hz, H-5), 2.78 (1H, dq, *J* = 7.0, 4.0 Hz, H-7), 2.19-2.10 (1H, m, H-10), 1.90 (1H, dt, *J* = 12.5, 4.4 Hz, H-10), 1.70 (3H, s, C-12 Me), 1.67 (3H, s, C-6 Me), 1.56-1.50 (2H, m, H-9), 1.45 (9H, s, H-1), 1.05 (3H, d, *J* = 6.8 Hz, C-7 Me), 0.90 (9H, s, TBS-Me), 0.07 (6H, s, TBS-Me) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 205.8 (C-6), 166.8 (C-4), 159.2 (C-Ar), 133.6 (C-11), 130.9 (C-12), 129.5 (CH-Ar), 125.8 (C-Ar), 113.8 (CH-Ar), 81.7 (C-2), 74.1 (C-15), 71.7 (C-13), 70.3 (C-8), 55.3 (C-23), 50.7 (C-7), 33.5, (C-9), 30.8 (C-10), 25.9 (CH₃, TBS), 18.9 (CH₃, C-11), 18.1 (C, TBS), 17.0

(CH₃, C-12), 11.8 (CH₃, C-7), -4.3 (CH₃, TBS), -4.1 (CH₃, TBS) ppm. HRMS (ESI): found (M + Na⁺): 571.3425, C₃₁H₅₂NaO₆Si requires (M + Na⁺): 571.3422.

(2R*,8S,9R)-2-(tert-Butoxycarbonyl)-4,5,9-trimethyl-8-hydroxy-

cyclonon-4-enone To a solution of a mixture of diastereomers of **42a/b** (403 mg, 0.98 mmol) in acetonitrile (7 mL) was added a 48 % aqueous HF solution (987 μ l, 23.7 mmol, 24 equiv) at room temperature. The reaction mixture was stirred at 25 °C for 16 h,

diluted with Et₂O (50 mL) and guenched with saturated aqueous NaHCO₃ solution (5 mL). The layers were separated and the organic phase was washed with saturated aqueous NaHCO₃ solution (3 x 10 mL). The combined aqueous washings were extracted with Et₂O (4 x 10 mL). The combined organics were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo leaving the alcohol as a mixture of inseparable diastereoisomers (286 mg, 100 %). $[\alpha]^{24}$ -22.9 (c = 0.60, CHCl₃). ν_{max} (solution; CDCl₃): 3435, 2981, 2933, 1734, 1699, 1643, 1455, 1369, 1265, 1149, 1030, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 4.08 (1H, dt, J = 8.8, 5.1 Hz, H-8 minor), 3.62 (1H, dd, J = 11.4, 1.8 Hz, H-2 major), 3.54 (1H, dt, J = 11.4, 1.8 Hz), 3.54J = 9.5, 2.6 Hz, H-8 major), 3.46 (1H, dd, J = 11.0, 1.8 Hz, H-2 major), 2.92 (1H, dd, Hz) 14.3, 11.4 Hz, H-3), 2.81 (2H, m, H-9 minor), 2.71 (2H, m, H-9 major), 2.34 (1H, d, J = 14.3 Hz, H-3), 2.24 (1H, m, H-6), 2.10 (1H, m, H-6), 1.92 (1H, m, H-7), 1.82 (1H, m, H-7), 1.73 (3H, s, C-4 Me minor), 1.68 (3H, s, C-4 Me major), 1.64 (3H, s, C-5 Me minor), 1.62 (3H, s, C-4 Me major), 1.42 (9H, s, ^t-Bu), 1.29 (3H, d, J= 7.0 Hz, C-9 Me major), 1.07 (3H, d, J=7.0 Hz, C-9 Me minor) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 213.8$ (C-1 minor), 211.8 (C-1 major), 168.7 (C-10 major), 162.8 (C-10 minor), 132.7 (C-5 minor), 130.2 (C-5 major), 126.4 (C-4 major), 119.8 (C-4 minor), 82.1 (C, ^t-Bu major), 81.5 (C, ^t-Bu minor), 74.1 (C-8 minor), 70.1 (C-8 major), 57.6 (C-2 minor), 56.0 (C-2 major), 54.3 (C-9 major), 53.2 (C-9 minor), 35.3 (C-7, major), 35.2 (C-6, major), 34.7 (C-7 minor), 33.3 (C-6 minor), 29.5 (C-3 major), 28.9 (C-3 minor), 28.0 (CH₃, ^{t-}Bu), 20.5 (CH₃, C-5 minor), 19.8 (C-5 major), 18.3 (CH₃, C-4 minor), 17.7 (CH₃, C-4 major), 15.2 (CH₃, C-9 major), 14.0 (CH₃ C-9 minor) ppm. HRMS (ESI): found $(M + Na^{+})$: 319.1880, $C_{17}H_{28}NaO_4$ requires $(M + H^{+})$: 319.1869.

٦

X : parts per Million : 13C

TBSO OAc 13	Supplementary Mat Supplementary Mat This journal is (c) T	terial (ESI) for Gro he Royal Society I L L T	anic & Biomolecula of Chemistry 2011	駅Chemistry で・こそ 「	119.462		77.421	60.799 51.271	33.276	23.537	7.999	TTC.F
220	200	180	160	140	120	100	80	60	40	20	S11 0	ppm

TBSO O O Supplementary Material (ESI) for Organic & Biomolecular Chemistry OAc This journal is (c) The Royal Society of Chemistry 2011

OAc This journal is (c) The F	142.	119.3	ם ס ס	81. // 77.42 77.42 76.78 73.99	60.85	28.95	23.55	1.099

Н Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

ppm (f1)

S25

S27

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

S31

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $(\underline{\dot{e}})$ The Royal Society of Chemistry 2011

C	Supple	ementar ourgal is	y Materia (c) The	al (ESI) f Royal So	for Organ	nic & Bio Chemist	molecula ry 2011	ır Chemi	stry										
															25 22			2	
	and of	100 •••••••••••••••••••••••••••••••••••	100	170	4),000	150		120	11 vet her 1 17 rad Par-	110	100		4	 6 ^{11,2} Jan	40	30	164 m J. 400 174 jan ja 194 m 194 m J. 400 194 m J. 400 m J. 400 194 m J. 400 m J. 400 m J. 400 m J. 400 m J.		ayun kinikud poorabajah moorabajah

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

ATR-13-16-1 (13C)

ومرافع الساعدات بر ساليف

Compound 48

Compound 48

Compound 51

X : parts per Million : 1H

\$50

Compound 53

Compound 54

Compound 54

Compound 55

S58

Compound 55

Compound 56

Compound 56

Compound 42

Compound 42

0.87

0.85

0.88

2.00

2.75

1.45

3.25

1.00

1.61

X : parts per Million : 1H
Compound 61

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

