Supplementary information for

Sigmatropic rearrangements in 5-allyloxytetrazoles

Luís M. T. Frija,^{a,b,§} Igor Reva,^{b,*} Amin Ismael,^a Daniela V. Coelho,^a Rui Fausto^b and M. Lurdes S. Cristiano^{a,*}

^aDepartment of Chemistry and Pharmacy, F.C.T. and CCMAR, University of Algarve, Campus de Gambelas, 8005-039 Faro, Portugal ^bDepartment of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

LIST OF CONTENTS

	Page
Figure 1S. ¹ H-NMR spectrum of 4-(3-methylcyclohex-2-enyl)-1-phenyl- 1 <i>H</i> -tetrazol-5(4 <i>H</i>)-one (12) (400 MHz, CD_3OD).	S2
Figure 2S. Predicted ¹ H-NMR spectra of tetrazolones 17 and 12 ([1,3]- and [3,3]- migration products).	S3
Figure 3S. ¹ H-NMR spectrum of $1-(3,7-\text{dimethylocta-1,6-dien-3-yl})-4-$ phenyl-1 <i>H</i> -tetrazol-5(4 <i>H</i>)-one (15) (400 MHz, CD ₃ OD).	S 4
Figure 4S. Predicted ¹ H-NMR spectra of tetrazolones 18 and 15 ([1,3]- and [3,3]- migration products).	S5
Table 1S. Conformationally relevant geometric parameters and relative energies of conformers of 9 and 16 calculated at the DFT(B3LYP)/6-31G(d,p) level of theory.	S6
Table 2S. Conformationally relevant geometric parameters and relative energies of conformers of 9 and 16 calculated at the MP2/6-31G(d,p) level of theory.	S7
Table 3S. Conformationally relevant geometric parameters and relative energies of conformers of 14 , 15 and 18 calculated at the DFT(B3LYP)/6-31G(d,p) level of theory for selected structures.	S 8
Table 4S. Conformationally relevant geometric parameters and relative energies of conformers 14 , 15 and 18 calculated at the MP2/6-31G(d,p) level of theory for selected structures.	S10

Cartesian coordinates for optimized structures of the transition states for S13-S38 signatropic rearrangements between the 5-allyloxytetrazoles and the corresponding tetrazolones.

[§] Current address: iMed.UL, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

Corresponding authors: Tel.: +351 239 854 489; fax: +351 239 827 703; *e-mail*: reva@qui.uc.pt Tel.: +351 289800100 x 7642; fax: +351 289800066 ; *e-mail*: mcristi@ualg.pt

Figure 1S. ¹H-NMR spectrum of 4-(3-methylcyclohex-2-enyl)-1-phenyl-1*H*-tetrazol-5(4*H*)-one (12) (400 MHz, CD₃OD).

Figure 2S. Predicted ¹H-NMR spectra of tetrazolones **17** and **12** ([1,3]- and [3,3]- migration products). (¹H-NMR shifts were acquired using the ChemDraw (Ultra 9.0) software)

Figure 3S. ¹H-NMR spectrum of 1-(3,7-dimethylocta-1,6-dien-3-yl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (15) (400 MHz, CD₃OD).

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Figure 4S. Predicted ¹H-NMR spectra of tetrazolones **18** and **15** ([1,3]- and [3,3]- migration products). (¹H-NMR shifts were acquired using the ChemDraw (Ultra 9.0) software)

Table 1S. Conformationally relevant geometric parameters and relative energies of conformers of 5-(Cyclohex-2-enyloxy)-1-phenyl-1*H*-tetrazole **9** [in brief: Ether **9** (R)] and corresponding isomeric 1-(cyclohex-2-enyl)-4-phenyltetrazol-5-one **16** [in brief: Tetrazolone **16** (R)] calculated at the DFT(B3LYP)/6-31G(d,p) level of theory.

	Compound /		Dihedra	angle /	Relative energy /				
	Conformer		degr	ees			kJ mol '		
N٥	Ether 9 (R)	А	В	С	D	ΔE_{el}	ΛEzde	ΛEc	
1	Ph ⁺ TG [−] G [−]	22.3	179.1	-83.6	-59.6	0.00	0.00	0.00	
2	Ph⁺TTG⁻	28.3	177.6	-158.0	-58.9	0.14	0.04	0.53	
3	Ph ⁻ TTG ⁻	-27.0	-176.9	-163.3	-59.6	0.21	0.37	0.83	
4	Ph ⁻ TG ⁻ G ⁻	-20.5	-175.8	-82.6	-59.4	0.34	0.47	0.99	
5	Ph⁻TG⁻G⁺	-24.9	-176.3	-81.2	60.7	0.82	0.63	1.05	
6	Ph⁺TG⁻G⁺	21.9	177.8	-80.7	60.7	1.39	1.23	0.73	
7	Ph⁺TTG⁺	27.6	176.8	-155.6	60.9	2.01	1.81	1.65	
8	Ph⁻TTG⁺	-26.4	-178.8	-158.6	60.9	2.42	2.27	2.28	
9	Ph⁺TG⁺G⁺	28.7	170.2	68.0	60.8	11.63	11.55	12.57	
10	Ph⁻TG⁺G⁺	-28.2	179.6	65.6	61.0	12.22	11.86	12.27	
11	Ph⁺TG⁺G⁻	30.5	160.5	77.4	-52.9	17.00	16.65	17.25	
12	Ph⁻TG⁺G⁻	-28.3	172.7	71.9	-52.3	18.11	17.58	16.85	
N٥	Tetrazolone 16 (R)	А		С	D	ΔE_{el}	ΔE_{7PE}	ΔE_{G}	
1	CG⁺	-0.7		5.0	60.8	-69.31	-68.22	-68.35	
2	CG⁻	0.1		9.9	-59.2	-68.08	-66.70	-66.66	
3	TG⁺	1.7		178.7	60.9	-65.43	-64.54	-64.84	
4	TG⁻	3.6		-171.5	-57.5	-62.46	-61.06	-61.25	
	Dictance / pm								
NIO	TS type	00(1)		NC(1)		AE.	۸ E	۸Ea	
1	1 3'-shift	273.7	338.0	270 5	304 1	⊥_ _e 161.80	יאב∠PE 150 32	⊿⊑ც 149.67	
2	1 3'-chift	266 1	400.0	267.8	332.8	160.49	149.02	148 31	
2 2	3 3'-chift	230.1	400.0 331 G	207.0	211 8	115 /1	107 50	110.51	
	3 3'-chift	200.0	328.2	333 E	244.0	107.41	107.50	102 77	
4	3,3 -SNIT	224.0	328.3	<u> </u>	239.1	107.37	100.06	102.77	

Definition of the geometric parameters (see also Figure 1 for the graphical representation). Compound "Ether" (R-enantiomer): A is defined as CCNC dihedral angle; B is defined as N–COC dihedral angle; C is defined as COC(1)C(6); D is defined as C(1)C(6)C(5)C(4) dihedral angle. Compound "Tetrazolone" resulting from 1,3'-shift (R-enantiomer): A is defined as CCNC dihedral angle; dihedral angle "B" (analogous of ether) is not applicable; C is defined as C–NC(1)H dihedral angle; D is defined as C(1)C(6)C(5)C(4). By the nature of compound, the structures resulting from the 3,3'-shift represent S-enantiomeric variety and otherwise are symmetrically identical to R-structures resulting from the 1,3'-shift. "TS" stands for transition state. Numbering of the carbon atoms corresponds to that of the starting compound. Nitrogen atom is N(5) of the ether. All relative energies are calculated with respect to Ph⁺TG⁻G⁻ conformer (N°1) of Ether 9. ΔE_{el} , ΔE_{ZPE} , ΔE_G state for the relative electronic, zero-point-corrected and Gibbs free energy (at 298.15 K), respectively. The absolute values calculated for the most stable conformer Ph⁺TG⁻G⁻ of Ether 9 at the DFT(B3LYP)/6-31G(d,p) level are: E_{el} =-797.995940; E_{ZPE} =-797.736523, E_G =-797.780470 hartree.

Table 2S. Conformationally relevant geor	metri	c pa	rameter	rs and	relative	ene	ergies	of confor	mers	s of
5-(Cyclohex-2-enyloxy)-1-phenyl-1H-tetraze	ole 9) [in	brief:	Ether	9 (R)]	and	corre	sponding	isom	neric
1-(cyclohex-2-enyl)-4-phenyltetrazol-5-one	16	[in	brief:	Tetraz	zolone	16	(R)]	calculated	at	the
MP2/6-31G(d,p) level of theory.										

N° Ether 9 (R) A B C D ΔB 1 Ph ⁺ TTG ⁻ 36.6 -180.0 -164.9 -62.2 2 Ph ⁻ TTG ⁻ -35.2 -173.7 -168.4 -62.6 3 Ph ⁺ TG ⁻ G ⁻ 33.7 174.4 -78.9 -62.8 4 Ph ⁻ TG ⁻ G ⁻ -34.1 -177.0 -78.2 63.6 6 Ph ⁺ TG ⁻ G ⁺ -34.6 -177.0 -78.2 63.6 6 Ph ⁺ TG ⁻ G ⁺ -34.6 -177.0 -78.2 63.6 6 Ph ⁺ TG ⁻ G ⁺ -35.6 177.4 -161.4 63.9 8 Ph ⁻ TG ⁺ G ⁺ -35.1 -177.7 -163.1 63.8 9 Ph ⁺ TG ⁺ G ⁺ G ⁻ -37.1 177.6 67.4 63.5 1 10 Ph ⁻ TG ⁺ G ⁻ G ⁻ -38.6 91.6 104.6 -60.4 1 12 Ph ⁻ A ⁺ A ⁺ G ⁺ G ⁻ -39.4 157.3 86.4 -56.4 1 N° Tetrazolone 16 (R) A B C D ΔB	Relative Energy
N° Ether 9 (R)ABCD ΔII 1 $Ph^{+}TTG^{-}$ 36.6 -180.0 -164.9 -62.2 2 $Ph^{-}TTG^{-}$ -35.2 -173.7 -168.4 -62.6 3 $Ph^{+}TG^{-}G^{-}$ 33.7 174.4 -78.9 -62.8 4 $Ph^{-}TG^{-}G^{-}$ -34.1 -177.1 -79.9 -62.6 5 $Ph^{-}TG^{-}G^{+}$ -34.6 -177.0 -78.2 63.6 6 $Ph^{+}TG^{-}G^{+}$ 34.8 175.9 -76.7 63.6 7 $Ph^{+}TG^{+}G^{+}$ 35.6 177.4 -161.4 63.9 8 $Ph^{-}TG^{+}G^{+}$ -35.1 -177.7 -163.1 63.8 9 $Ph^{+}TG^{+}G^{-}$ 38.6 91.6 104.6 -60.4 1 10 $Ph^{-}TG^{+}G^{-}$ -39.4 157.3 86.4 -56.4 1 11 $Ph^{+}A^{+}G^{+}G^{-}$ -39.4 157.3 86.4 -56.4 1 N°Tetrazolone 16 (R)ABCD ΔII 12 $Ph^{-}CG^{+}$ 22.3 -26.7 90.3 62.8 -60.4 3 $Ph^{-}CG^{-}$ 23.1 -10.5 107.2 -63.6 -60.6 4 $Ph^{+}CG^{-}$ 23.8 179.8 61.7 63.7 -60.6 5 $Ph^{+}TG^{+}$ -23.5 -179.9 62.0 63.7 -60.8 6 $Ph^{-}TG^{-}$ 25.6 -164.5 78.5 -60.8 <t< td=""><td></td></t<>	
1 Ph^+TTG^- 36.6 -180.0 -164.9 -62.2 2 $Ph^+TG^-G^ -35.2$ -173.7 -168.4 -62.6 3 $Ph^+TG^-G^ 33.7$ 174.4 -78.9 -62.8 4 $Ph^+TG^-G^ -34.1$ -177.1 -79.9 -62.6 5 $Ph^+TG^-G^+$ -34.6 -177.0 -78.2 63.6 6 $Ph^+TG^-G^+$ 34.8 175.9 -76.7 63.6 7 Ph^+TTG^+ 35.6 177.4 -161.4 63.9 8 $Ph^+TG^+G^+$ -35.1 -177.7 -163.1 63.8 9 $Ph^+TG^+G^+$ -37.1 177.6 67.4 63.5 1 10 $Ph^-TG^+G^+$ -37.1 177.6 67.4 63.5 1 11 $Ph^+A^+G^+G^ 38.6$ 91.6 104.6 -60.4 1 12 $Ph^-A^+G^+G^ -39.4$ 157.3 86.4 -56.4 1 N°Tetrazolone 16 (R)ABCD ΔB 1 Ph^-CG^+ -22.2 -25.7 91.4 62.7 -66.4 2 Ph^+CG^+ 22.3 -26.7 90.3 62.8 -66.4 3 $Ph^-CG^ 23.1$ -10.5 107.2 -63.6 -66.4 4 $Ph^+CG^ 23.1$ -10.5 107.2 -63.6 -66.4 5 Ph^+TG^+ 23.8 179.8 61.7 63.7 -66.6 6 $Ph^+TG^ 25.6$ <td< td=""><td>ΔE_{el}</td></td<>	ΔE_{el}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.90
7 Ph^+TTG^+ 35.6 177.4 -161.4 63.9 8 Ph^-TTG^+ -35.1 -177.7 -163.1 63.8 9 $Ph^+TG^+G^+$ 36.8 167.0 71.1 63.4 1 10 $Ph^-TG^+G^+$ -37.1 177.6 67.4 63.5 1 11 $Ph^-A^+G^+G^-$ 38.6 91.6 104.6 -60.4 1 12 $Ph^-A^+G^+G^-$ -39.4 157.3 86.4 -56.4 1 N° Tetrazolone 16 (R) A B C D ΔB 1 Ph^-CG^+ -22.2 -25.7 91.4 62.7 -66 2 Ph^+CG^+ 22.3 -26.7 90.3 62.8 -66 3 Ph^-CG^- -22.9 -9.6 108.1 -63.6 -66 3 Ph^-CG^- 23.1 -10.5 107.2 -63.6 -66 4 Ph^+TG^+ 23.8 179.8 61.7 63.7 -66 5 Ph^+TG^+ 23.5 -179	4.31
8 Ph^-TTG^+ -35.1 -177.7 -163.1 63.8 9 $Ph^+TG^+G^+$ 36.8 167.0 71.1 63.4 1 10 $Ph^-TG^+G^+$ -37.1 177.6 67.4 63.5 1 11 $Ph^+A^+G^+G^-$ 38.6 91.6 104.6 -60.4 1 12 $Ph^-A^+G^+G^-$ -39.4 157.3 86.4 -56.4 1 N° Tetrazolone 16 (R) A B C D ΔB 1 Ph^-CG^+ -22.2 -25.7 91.4 62.7 -66 2 Ph^+CG^+ 22.3 -26.7 90.3 62.8 -66 3 Ph^-CG^- 23.1 -10.5 107.2 -63.6 -66 4 Ph^+CG^- 23.1 -10.5 107.2 -63.6 -66 5 Ph^+TG^+ 23.8 179.8 61.7 63.7 -66 6 Ph^-TG^+ -23.5 -179.9 62.0 63.7 -66 7 Ph^+TG^- 25.6 </td <td>4.32</td>	4.32
9 $Ph^+TG^+G^+$ 36.8167.071.163.4110 $Ph^-TG^+G^+$ -37.1 177.6 67.4 63.5 111 $Ph^+A^+G^+G^-$ 38.691.6104.6 -60.4 112 $Ph^-A^+G^+G^ -39.4$ 157.3 86.4 -56.4 112 $Ph^-CG^+G^+$ -22.2 -25.7 91.4 62.7 -66.4 1 Ph^-CG^+ 22.3 -26.7 90.3 62.8 -66.4 2 Ph^+CG^+ 22.3 -26.7 90.3 62.8 -66.4 3 $Ph^-CG^ -22.9$ -9.6 108.1 -63.6 -66.4 4 $Ph^+CG^ 23.1$ -10.5 107.2 -63.6 -66.4 5 Ph^+TG^+ 23.8 179.8 61.7 63.7 -66.6 6 Ph^-TG^+ -23.5 -179.9 62.0 63.7 -66.8 7 $Ph^+TG^ 25.6$ -164.5 78.5 -60.8 -66.8	4.64
10Ph^TG^+G^+ -37.1 177.6 67.4 63.5 1 11Ph^+A^+G^+G^- 38.6 91.6 104.6 -60.4 1 12Ph^-A^+G^+G^- -39.4 157.3 86.4 -56.4 1 12Ph^-CG^+G^- -39.4 157.3 86.4 -56.4 1 1Ph^-CG^+ -22.2 -25.7 91.4 62.7 -66.4 2Ph^+CG^+ 22.3 -26.7 90.3 62.8 -66.3 3Ph^-CG^- -22.9 -9.6 108.1 -63.6 -66.4 4Ph^+CG^- 23.1 -10.5 107.2 -63.6 -66.5 5Ph^+TG^+ 23.8 179.8 61.7 63.7 -66.6 6Ph^-TG^+ -23.5 -179.9 62.0 63.7 -66.8 7Ph^+TG^- 25.6 -164.5 78.5 -60.8 -66.8 8Ph^-TG^- -25.3 -164.2 78.8 -60.8 -66.8	11.16
11 $Ph^+A^+G^+G^-$ 38.691.6104.6-60.4112 $Ph^-A^+G^+G^-$ -39.4157.386.4-56.41N°Tetrazolone16 (R)ABCD ΔB 1 Ph^-CG^+ -22.2-25.791.462.7-66.42 Ph^+CG^+ 22.3-26.790.362.8-66.43 Ph^-CG^- -22.9-9.6108.1-63.6-66.44 Ph^+CG^- 23.1-10.5107.2-63.6-66.55 Ph^+TG^+ 23.8179.861.763.7-66.66 Ph^-TG^+ -23.5-179.962.063.7-66.87 Ph^+TG^- 25.6-164.578.5-60.8-66.88 Ph^-TG^- -25.3-164.278.8-60.8-66.8	11.88
12 $Ph^-A^+G^+G^-$ -39.4157.3 86.4 -56.41 N^0 Tetrazolone 16 (R)ABCD ΔB 1 Ph^-CG^+ -22.2-25.791.462.7-662 Ph^+CG^+ 22.3-26.790.362.8-663 Ph^-CG^- -22.9-9.6108.1-63.6-664 Ph^+CG^- 23.1-10.5107.2-63.6-665 Ph^+TG^+ 23.8179.861.763.7-666 Ph^-TG^+ -23.5-179.962.063.7-667 Ph^+TG^- 25.6-164.578.5-60.8-668 Ph^-TG^- -25.3-164.278.8-60.8-66	13.03
N°Tetrazolone 16 (R)ABCD ΔII 1Ph ⁻ CG ⁺ -22.2-25.791.462.7-62Ph ⁺ CG ⁺ 22.3-26.790.362.8-63Ph ⁻ CG ⁻ -22.9-9.6108.1-63.6-64Ph ⁺ CG ⁻ 23.1-10.5107.2-63.6-65Ph ⁺ TG ⁺ 23.8179.861.763.7-66Ph ⁻ TG ⁺ -23.5-179.962.063.7-67Ph ⁺ TG ⁻ 25.6-164.578.5-60.8-68Ph ⁻ TG ⁻ -25.3-164.278.8-60.8-6	19.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔE_{el}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-67.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-67.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-65.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-65.74
6 Ph ⁻ TG ⁺ -23.5 -179.9 62.0 63.7 -6 7 Ph ⁺ TG ⁻ 25.6 -164.5 78.5 -60.8 -6 8 Ph ⁻ TG ⁻ -25.3 -164.2 78.8 -60.8 -6	-63.52
7 Ph ⁺ TG ⁻ 25.6 -164.5 78.5 -60.8 -6 8 Ph ⁻ TG ⁻ -25.3 -164.2 78.8 -60.8 -6	-63.38
8 Ph TG ⁻ -25.3 -164.2 78.8 -60.8 -6	-62.16
	-61.97
Distance / pm	
OC(1) OC(3) NC(1) NC(3) AF	٨F
1 1 3'-shift 271 4 312 5 264 7 376 6 21	213 87
2 1 3'-shift 261 3 377 6 267 5 311 4 20	200 60
3 3 3'-chift 20/ 6 310 8 310 8 213 0 13	108.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.27

For the definition of the geometric parameters see caption of Table 1S and also Figure 1 for the graphical representation. All relative electronic energies (ΔE_{el} , in kJ mol⁻¹) are calculated with respect to Ph⁺TTG⁻ conformer (N°1) of Ether 9. The absolute value calculated for Ph⁺TTG⁻ conformer at the MP2/6-31G(d,p) level is E_{el} =-795.620869 hartree.

Table 3S. Conformationally relevant geometric parameters and relative energies of conformers of (E)-5-(3,7-dimethylocta-2,6-dienyloxy)-1-phenyl-1*H*-tetrazole (**14**) [in brief: Ether **14**] and corresponding isomeric 1-(3,7-dimethylocta-1,6-dien-3-yl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1H-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1H-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1H-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1H-tetrazol-5(4*H*)-one (**18**) [in brief: Tetrazolone **18**] calculated at the DFT(B3LYP)/6-31G(d,p) level of theory for selected structures.

	Compound / Form		Dihedral angle / degrees							Relative	energy / k	J mol ^{−1}
No.	Ether 14	А	В	С	O12=3	12=34	2=345	3456	456=7	ΔE_{el}	ΔE_{ZPE}	ΔE_G
1	Ph⁺TG⁻A⁺CA⁻TA⁻	27.4	171.7	-82.9	131.8	-0.7	-104.5	-173.6	-111.7	0.00	0.00	0.00
2	Ph [−] TG ⁺ A [−] CA [−] TA ⁺	-26.8	-171.5	84.2	-120.5	0.3	-89.2	-178.5	119.8	1.45	1.17	-0.98
3	Ph ⁺ TG [−] A ⁺ TA [−] TA ⁺	26.1	171.3	-85.1	119.6	177.2	-115.0	176.2	115.5	1.50	1.20	-0.95
4	Ph [−] TG [−] A ⁺ TA [−] TA ⁺	-25.8	175.9	-87.2	118.9	177.1	-114.5	176.4	116.8	1.64	1.53	-1.53
5	Ph⁺TG⁻A⁺TA⁺TA⁺	25.4	171.1	-85.1	118.1	178.7	103.0	175.0	115.2	1.91	1.56	-1.50
6	Ph [−] TG [−] A ⁺ TA ⁺ TA ⁺	-25.0	175.9	-86.5	118.9	178.2	105.6	175.8	118.9	2.11	1.58	-1.89
7	Ph⁺TG⁺A⁻CA⁻TA⁺	26.0	-176.2	86.8	-120.0	0.3	-90.8	-178.8	119.0	1.49	1.69	0.87
8	Ph⁻TG⁻A⁺CA⁻TA⁺	-25.3	176.4	-85.6	117.9	-0.5	-119.4	173.2	112.0	2.53	2.45	0.17
9	Ph⁺T T A⁺CA⁻TA⁻	21.8	177.6	175.1	90.0	-1.8	-95.5	-175.9	-116.8	3.05	2.46	-0.47
10	Ph⁺TG [−] A⁺T C TA⁺	26.3	171.4	-84.9	119.7	177.4	-2.3	177.6	116.0	3.20	2.54	-1.07
11	Ph⁺TG⁻A⁺CA⁻TA⁺	26.5	171.7	-83.9	117.7	-0.7	-120.6	172.9	111.1	2.31	2.60	1.51
12	Ph [−] TG [−] A ⁺ T C TA ⁺	-26.2	176.3	-87.5	119.3	177.1	-2.3	177.9	117.0	3.32	2.65	0.30
13	Ph⁺T T A⁺CA⁻TA⁺	22.2	178.7	176.0	92.0	-1.9	-92.0	179.3	116.7	3.97	3.08	-2.53
14	Ph⁻T T A⁺CA⁻TA⁺	-23.3	-176.6	176.9	109.2	-1.9	-93.0	-180.0	116.4	4.36	3.56	-3.02
15	Ph⁻TG⁺A⁺CA⁻TA⁺	-26.9	-176.0	74.1	89.4	-1.5	-91.0	-179.5	117.3	3.85	3.91	1.56
16	Ph⁻TG⁻A⁻CA⁻TA⁺	-26.2	-178.5	-80.6	-112.9	-0.3	-97.4	179.9	116.7	4.33	4.10	0.01
17	Ph⁺TG⁺A⁺CA⁻TA⁺	26.1	177.1	78.3	101.3	-1.6	-93.8	-179.8	117.7	4.65	4.38	-0.02
18	Ph⁺TG⁻A⁻CA⁻TA⁺	25.2	177.6	-77.5	-108.9	0.0	-98.1	179.6	117.4	4.83	4.50	-0.86
19	Ph⁺TG⁺A⁺CA⁻GA⁺	24.4	176.0	74.5	95.1	-1.6	-124.3	59.4	129.6	7.28	7.75	7.05
No.	Tetrazolone 15 (R)	А		CN39		1=234	2345	3456	456=7	$\Delta {\rm E}_{\rm el}$	ΔE_{ZPE}	ΔE_G
1	$T A^{+} T T A^{+}$	-2.8		-170.1		132.6	179.6	173.2	116.6	-43.50	-45.32	-44.11
2	ТСТТА⁺	1.4		-178.1		-4.1	-179.2	172.0	117.3	-43.55	-44.68	-41.78
3	G⁺A⁻T T A⁺	0.7		49.4		-120.5	178.9	173.8	114.8	-42.85	-44.18	-43.45

4	G⁻A⁺G⁺T A⁺	-2.5	-70.2		93.8	50.8	175.0	112.5	-41.80	-43.56	-42.66
5	T A⁺ T G⁺A⁻	1.2	-172.6		134.2	174.9	71.6	-128.9	-40.00	-41.21	-36.91
6	$T A^{+} T G^{+}A^{+}$	-0.3	-172.0		132.5	171.2	62.1	85.4	-37.93	-38.52	-30.80
7	$C A^+ T G^+A^+$	0.7	14.9		119.6	167.9	59.9	91.0	-31.57	-32.45	-29.90
8	A⁻A⁺G⁺G⁺A⁺	1.1	-131.9		110.2	47.7	61.9	93.5	-32.18	-32.39	-29.20
No.	Tetrazolone 18	А	CN12	N12=3	12=34	2=345	3456	456=7	ΔE_{el}	ΔE_{ZPE}	ΔE_G
1	A⁻ A⁺ C A⁻ T A⁻	-0.1	-88.8	122.4	-0.5	-96.5	-172.5	-111.2	-78.90	-77.48	-77.40
2	$A^{-} A^{+} C A^{-} T A^{+}$	0.5	-90.1	118.5	-0.6	-99.1	-179.2	113.0	-75.19	-74.53	-78.14
3	$A^{-} A^{+} C A^{+} T A^{-}$	1.5	-89.9	108.3	0.0	92.2	178.9	-117.5	-74.40	-73.54	-77.07
4	$A^- A^+ C A^+ T A^+$	1.7	-90.2	108.3	-0.2	94.4	173.3	117.0	-74.16	-73.34	-78.31
5	A⁺ A⁻ C A⁻G⁺ A⁻	-2.7	89.3	-108.0	0.6	-98.1	74.7	-113.7	-73.59	-72.72	-75.58
6	$A^+ A^+ C A^- T A^+$	1.2	107.6	112.1	-1.4	-96.8	179.6	116.2	-72.86	-72.13	-76.27
7	$A^+ A^+ T A^+ T A^+$	1.0	107.4	117.5	179.7	109.0	178.4	116.5	-71.58	-71.58	-79.25
8	$A^+ A^+ C A^+ T A^+$	-0.8	107.5	116.0	-0.3	97.8	174.6	117.3	-71.98	-71.51	-76.69
9	$A^+ A^+ C A^+ T A^-$	0.7	104.5	116.2	0.0	95.6	179.8	-117.3	-71.68	-70.98	-75.99
10	A [−] A ⁺ C A ⁺ G ⁺ A ⁺	0.2	-88.2	109.2	0.4	82.9	56.8	108.7	-71.16	-69.72	-71.25

Definition of the geometric parameters (see also Figure 4 for the graphical representation). Compound "Ether 14": dihedral angles A, B, C, are defined similar to the ethers derived from the carbocyclic allylic alcohols 9 and 10 (compare with Figure 1). The numbers from 1 to 7 in the names of the remaining dihedral angles correspond to the numbers of the carbon atoms of the side chain (as shown in Figure 4), e.g. "2=345" is defined as C(2)=C(3)C(4)C(5) dihedral angle. Compound "Tetrazolone 15 (R)" resulting from 3,3'-shift (R-enantiomer): A is defined as CCNC dihedral angle describing the mutual orientation of the phenyl and tetrazolone rings; dihedral angles "B" and "C" (analogous of ether) are not applicable; CN39 is defined as C(tetrazolone)–NC(3)C(9) dihedral angle. Compound "Tetrazolone 18" resulting from 1,3'-shift: A is defined as CCNC dihedral angle in Tetrazolone 15; dihedral angles "B" and "C" (analogous of ether) are not applicable; CN39 is defined as C(etrazolone)–NC(3)C(9) dihedral angle. CN12 is defined as C(tetrazolone)–NC(1)C(2) dihedral angle. All relative energies are calculated with respect to Ph⁺TG⁻A⁺CA⁻TA⁻ conformer (N°1) of Ether 14. ΔE_{el} , ΔE_{ZPE} , ΔE_{G} state for the relative electronic, zero-point-corrected and Gibbs free energy (at 298.15 K), respectively. The absolute values calculated for the most stable conformer of Ether 14 at the DFT(B3LYP)/6-31G(d,p) level are: E_{el} =-955.237317; E_{ZPE} =-954.868515, E_{G} =-954.923266 hartree.

Table 4S. Conformationally relevant geometric parameters and relative energies of conformers of (E)-5-(3,7-dimethylocta-2,6-dienyloxy)-1-phenyl-1*H*-tetrazole (**14**) [in brief: Ether **14**] and corresponding isomeric 1-(3,7-dimethylocta-1,6-dien-3-yl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**15**) [in brief: Tetrazolone **15** (R)] and isomeric (E)-1-(3,7-dimethylocta-2,6-dienyl)-4-phenyl-1*H*-tetrazol-5(4*H*)-one (**18**) [in brief: Tetrazolone **18**] calculated at the MP2/6-31G(d,p) level of theory for selected structures.

. <u> </u>	Compound / Form Dihedral angle / degrees							Energy		
No.	Ether 14	А	В	С	O12=3	12=34	2=345	3456	456=7	$\Delta {\rm E}_{\rm el}$
1	Ph⁺TG⁺G⁺CA⁻G⁺A⁺	32.7	172.8	67.2	60.9	-3.4	-118.6	53.8	138.7	0.0
2	$Ph^{+}T T G^{+}CA^{-}TA^{-}$	31.1	176.1	171.4	73.9	-1.7	-97.7	-175.7	-85.9	10.7
3	Ph⁺T G⁻A⁺CA⁻TA⁻	35.5	162.3	-72.0	118.6	2.3	-123.6	-173.3	-107.7	11.6
4	Ph⁺T G⁻A⁺CA⁻TA⁺	35.7	160.7	-78.4	111.6	-1.2	-118.9	166.3	95.1	13.8
5	Ph [−] T G [−] A ⁺ CA [−] TA ⁺	-36.4	165.8	-81.0	111.2	-1.1	-118.2	166.4	95.0	14.3
6	Ph ⁺ A ⁺ G [−] A ⁺ TA ⁺ TA ⁺	31.4	125.1	-64.2	101.7	-168.0	90.9	179.9	89.8	14.4
7	Ph [−] A ⁺ G [−] A ⁺ TA ⁺ TA ⁺	-16.8	122.3	-64.1	98.8	-167.1	100.0	-178.1	110.6	17.2
8	Ph [−] T G ⁺ A [−] CA [−] TA ⁺	-35.7	-164.3	76.5	-120.5	-1.7	-86.1	-178.5	106.0	18.8
9	Ph⁺T G⁺A⁻CA⁻TA⁻	36.3	-170.4	79.2	-120.7	-1.6	-86.0	-178.5	106.0	19.4
10	Ph⁺T G⁻A⁺TA⁻TA⁺	35.7	164.5	-76.1	120.5	177.3	-113.9	177.6	96.3	19.7
11	Ph [−] T G [−] A ⁺ TA [−] TA ⁺	-36.3	170.5	-78.8	120.7	177.2	-113.9	177.6	96.1	20.2
12	Ph [−] T G [−] A ⁺ TA ⁺ TA ⁺	-36.4	168.0	-75.9	117.3	-177.1	99.5	176.7	101.6	20.7
13	Ph⁺T G⁻A⁺TC TA⁺	35.6	163.5	-75.7	119.9	178.4	-1.2	177.8	101.8	22.7
14	Ph⁻T G⁻A⁺TC TA⁺	-36.4	169.3	-78.3	120.1	178.4	-1.1	177.7	101.7	23.2
No.	Tetrazolone 15 (R)	А		CN39		1=234	2345	3456	456=7	ΔE_{el}
1	$Ph^{+}TA^{+}TG^{+}A^{-}$	20.1		-174.9		135.0	-178.4	70.7	-124.3	-70.1
2	$Ph^{-}TA^{+}TG^{+}G^{+}$	-20.5		-174.6		134.3	177.3	61.8	80.0	-67.1
3	$Ph^{+}TA^{+}TG^{+}G^{+}$	10.6		-175.2		134.4	175.6	59.4	81.0	-66.4
4	Ph ⁺ A [−] A ⁺ G ⁺ G ⁺ A [−]	26.6		-125.2		111.3	50.6	59.0	-124.4	-64.8
5	Ph ⁻ A ⁻ A ⁺ G ⁺ G ⁺ G ⁺	-22.1		-129.5		113.2	53.1	56.6	77.2	-60.7
6	$Ph^{-}CA^{+}TG^{+}G^{+}$	-22.9		-3.9		125.6	173.4	54.6	79.8	-60.2
7	$Ph^{-}TA^{+}TTA^{+}$	-25.5		-165.4		128.3	-175.1	173.1	105.3	-50.8
8	$Ph^{+}TA^{+}TTA^{+}$	26.0		-164.6		127.1	-175.4	172.2	106.2	-50.7

9	Ph [−] T C T A ⁺	-24.6	-177.2		-1.0	-176.4	171.2	105.0	-49.1
10	$Ph^{+}TCTA^{+}$	24.4	-177.1		-1.2	-176.2	171.4	105.0	-48.9
11	Ph⁻G⁻G⁺G⁺G⁺	-24.3	-70.7		88.1	51.9	-179.3	89.6	-48.7
12	Ph⁺G⁻G⁺G⁺G⁺	22.6	-71.1		87.6	52.1	-179.1	89.6	-48.6
13	Ph⁺G⁺A⁻ T A⁺	24.2	52.8		-123.6	178.8	173.8	169.4	-47.9
14	Ph [−] G ⁺ A [−] T A ⁺	-25.6	52.7		-123.4	178.9	169.5	100.8	-47.8
No.	Tetrazolone 18	А	CN12	N12=3	12=34	2=345	3456	456=7	$\Delta {\rm E}_{\rm el}$
1	Ph⁻ A⁺ A⁻ C A⁻G⁺A⁻	-23.0	90.0	-105.9	-2.1	-93.1	70.0	-97.4	-63.2
2	$Ph^{+}A^{-}G^{+}CA^{-}TA^{+}$	39.0	-110.9	73.9	-1.8	-99.3	173.5	133.5	-62.0
3	$Ph^{+}A^{-}A^{+}CA^{-}TA^{-}$	24.7	-92.2	123.0	-0.7	-93.2	-172.1	-99.4	-61.5
4	Ph⁺ A⁻ A⁺ C A⁺T A⁺	24.7	-101.1	99.5	0.5	89.9	180.0	83.9	-57.6
5	Ph⁺ A⁻ A⁺ C A⁺G⁺A⁺	23.3	-87.7	108.0	1.8	81.4	54.6	95.7	-55.1
6	Ph⁺ A⁻ A⁺ C A⁺T A⁻	23.4	-92.2	104.9	1.4	88.3	178.7	-105.9	-53.8
7	Ph⁺ G⁺ A⁺ C A⁻T A⁺	23.0	75.1	106.7	-1.6	-90.5	-178.9	93.4	-51.9
8	$Ph^{-}G^{+}A^{+}CA^{+}TA^{+}$	-22.5	68.4	85.8	0.9	92.3	178.9	83.6	-50.8
9	Ph⁺ G⁺ A⁺ C A⁺T A⁻	22.9	80.2	96.9	1.8	91.2	178.9	-101.2	-49.2
10	$Ph^{+}A^{+}A^{+}TA^{+}TA^{+}TA^{+}$	23.4	107.7	90.9	-176.2	112.4	-179.4	100.6	-48.1

For the definition of the geometric parameters see caption of Table 3S and also Figure 4 for the graphical representation. All relative electronic energies (ΔE_{el} , in kJ mol⁻¹) are calculated with respect to Ph⁺TG⁺G⁺CA⁻G⁺A⁺ conformer (N°1) of Ether 14. The absolute value calculated for Ph⁺TG⁺G⁺CA⁻G⁺A⁺ conformer at the MP2/6-31G(d,p) level is E_{el} =-952.323974 hartree.

This Section of Supplementary information contains Cartesian coordinates for optimized structures of the transition states for the sigmatropic isomerisation of 5-allyloxytetrazoles to the corresponding tetrazolones. For brevity, before each structure, the theoretical methods are specified briefly as DFT or MP2, which correspond to DFT(B3LYP)/6-31G(d,p) and MP2/6-31G(d,p), respectively. The theory level is followed by a short name of the structure: TS1a, TS1a', TS1b, TS1b', TS2a, TS2a', TS2b, TS2b', TS3a, TS3a', TS3b and TS3b'.

In these names "TS" designates "Transition State". Numbers 1, 2 and 3 correspond to the tetrazoles derived from the carbocyclic allylic alcohols (1) cyclohex-2-enol; (2) 3-methylcyclohex-2-enol; (3) natural terpene alcohol nerol.

Some names finish with one or two apostrophes, which designate transition states occurring on alternative "parallel" pathways. These structures have relative energies slightly higher than the base structure (without apostrophe). The calculated electronic energies (in hartree) and total dipole moments (debye) are also shown.

DFT, TS1a, -797.93481127 hartree, 7.7 debye

Ν	0.80257800	1.92563300	-0.04402300
Ν	-0.47814500	1.97239800	-0.13656600
Ν	-1.02000200	0.74216900	-0.22650200
С	-0.00998300	-0.16931700	-0.19803100
Ν	1.14675600	0.58658900	-0.07568000
С	2.49971700	0.17943400	-0.01058800
С	3.50476300	1.15147300	0.09605800
С	4.83796600	0.75503200	0.16159600
С	5.18330200	-0.59746600	0.12187200
С	4.17532400	-1.55591600	0.01532500
С	2.83382300	-1.18111900	-0.05156500
Н	3.22862300	2.19782100	0.12528600
Н	5.61186700	1.51292400	0.24373400
Н	6.22512200	-0.89940800	0.17264900
Н	4.42994800	-2.61158900	-0.01749100
Н	2.04383600	-1.91639800	-0.13633000
0	-0.11580300	-1.41770400	-0.26978400
С	-2.75530200	-1.26885200	-0.57084800
С	-2.92029900	-1.45559100	0.81195400
С	-3.56082800	-0.48570400	1.53670500
С	-4.02201300	0.76650000	0.89063700
С	-4.57671800	0.49813200	-0.51866200
С	-3.59523000	-0.33330100	-1.36552000
Н	-2.07931000	-1.92875000	-1.10034200
Н	-2.42181900	-2.28807900	1.29581400
Н	-4.73831100	1.30683200	1.51534800
Н	-3.10726400	1.38666600	0.80297200
Н	-5.52645400	-0.04145400	-0.42457800
Н	-4.79482400	1.44494500	-1.01927000
Н	-2.91411800	0.29703100	-1.94465700
Н	-4.13211500	-0.94475000	-2.10791400
Н	-3.62419700	-0.58152100	2.61884100

DFT, TS1a', -797.93427933 hartree, 8.6 debye

N	-1.41384700	2.31525400	0.00450300
Ν	-0.23227900	2.82370500	-0.05032500
Ν	0.71852200	1.87674600	-0.11240100
С	0.10658600	0.66522000	-0.12705600
Ν	-1.24900300	0.94411000	-0.02522200
С	-2.36486000	0.07595900	0.00268700
С	-3.65182900	0.61717900	0.13601500
С	-4.75385600	-0.23315100	0.16883000
С	-4.59172800	-1.61675200	0.07051100
С	-3.30743400	-2.14474400	-0.06211500
С	-2.19013300	-1.31111200	-0.09806500
Н	-3.76895200	1.69075100	0.21108200
Н	-5.74772500	0.19291300	0.27231400
Н	-5.45593700	-2.27370000	0.09590600
Н	-3.16681200	-3.21921600	-0.14115200
Н	-1.18949500	-1.70959100	-0.20334900
0	0.65688600	-0.46351200	-0.22016600
С	3.09952100	0.70177600	-0.62980200
С	3.42013900	0.81564800	0.73442300
С	3.57535700	-0.32199800	1.47921900
С	3.34373100	-1.66405000	0.88447700
С	3.83209200	-1.71734000	-0.57370400
С	3.25686400	-0.55514400	-1.40018900
Н	2.82189100	1.60203800	-1.16444300
Н	3.42725300	1.79770100	1.19358700
Н	3.79035000	-2.45572800	1.49244900
Н	2.24581800	-1.79666100	0.90203700
Н	4.92769500	-1.66442100	-0.58050700
Н	3.55535300	-2.67321300	-1.02629100
H	2.25381000	-0.79276200	-1.78024100
H	3.87371400	-0.33817200	-2.28445400
Н	3.76750000	-0.23950900	2.54713200

DFT, TS1b, -797.95473353 hartree, 5.2 debye

Ν	0.89407200	2.17726300	-0.17393700
Ν	-0.34542100	2.48115000	-0.35645600
Ν	-1.08874900	1.38186200	-0.63944900
С	-0.25378000	0.30815300	-0.59786300
Ν	1.00440800	0.82254400	-0.29588100
С	2.25128400	0.16937800	-0.11846800
С	3.33197500	0.89030100	0.40676200
С	4.55883400	0.25496100	0.58019600
С	4.71775200	-1.09074000	0.24282800
С	3.63428000	-1.79870000	-0.27729500
С	2.39880100	-1.17965500	-0.46528500
Н	3.19940600	1.93332000	0.66551200
Н	5.39453000	0.81811500	0.98503500
Н	5.67640100	-1.58078500	0.38292000
Н	3.74680300	-2.84470600	-0.54734800
Н	1.55453700	-1.72238400	-0.86904000
0	-0.56316300	-0.90604100	-0.73144600
С	-2.14080300	-1.45801100	0.76055200
С	-2.17034500	-0.24856100	1.44943000
С	-2.84820000	0.81662900	0.87830300
С	-3.92809700	0.60921400	-0.14335800
С	-4.38507900	-0.85500200	-0.20031000
С	-3.18724800	-1.81375500	-0.25406500
Н	-1.47584100	-2.24447300	1.10060300
Н	-1.45632100	-0.06657100	2.24670300
Н	-4.77029200	1.27233700	0.08948600
Н	-3.53202900	0.94276200	-1.10889800
Н	-4.97968800	-1.07811100	0.69411900
Н	-5.03679400	-1.01504100	-1.06452500
Н	-2.70501800	-1.79303200	-1.23849600
Н	-3.50964100	-2.84919100	-0.08850000
Н	-2.72717100	1.81107600	1.29550400

DFT, TS1b', -797.95167216 hartree, 5.8 debye

Ν	-0.25351300	2.14655400	0.32602800
Ν	0.93772000	2.48635600	-0.05218200
N	1.45061900	1.60842300	-0.94460800
С	0.51599300	0.62755900	-1.12657900
Ν	-0.56433100	0.98493000	-0.30931300
С	-1.82175200	0.35560800	-0.11298500
С	-2.65460200	0.79824800	0.92371700
С	-3.89026600	0.18629100	1.11765700
С	-4.30164200	-0.86466300	0.29513900
С	-3.46429800	-1.29740700	-0.73300600
С	-2.22510400	-0.69456400	-0.94873200
Н	-2.32970100	1.61615400	1.55457100
Н	-4.53413100	0.53524500	1.91956900
Н	-5.26554800	-1.33853600	0.45321400
Н	-3.77561000	-2.10963600	-1.38335200
Н	-1.57226700	-1.02261800	-1.74670200
0	0.62318200	-0.42219700	-1.80462400
С	2.14491100	-1.70088000	-0.63722400
С	3.12521200	-0.72657000	-0.75722900
С	3.18015100	0.29226700	0.18158200
С	2.58264500	0.15111300	1.54899600
С	2.16397800	-1.29675700	1.84618600
С	1.42368700	-1.93110400	0.65866000
Н	2.00330600	-2.41607300	-1.43931400
Н	3.64809300	-0.61210800	-1.70026500
Н	3.31699700	0.49900700	2.28677400
Н	1.73923200	0.85050700	1.64635800
Н	3.06486600	-1.88704500	2.05286800
Н	1.54170100	-1.33706900	2.74495300
H	0.40825100	-1.52430800	0.56864100
H	1.29317800	-3.00891000	0.81225800
Н	3.80923600	1.15426600	-0.00914100

MP2, TS1a, -795.54103565 hartree, 9.0 debye

Ν	0.75323400	1.90374800	-0.38207600
Ν	-0.55928200	1.94111000	-0.54112700
Ν	-1.08146100	0.69039000	-0.54089600
С	-0.06642500	-0.20146900	-0.37716700
Ν	1.08099200	0.58463100	-0.27567000
С	2.42521300	0.19010100	-0.08280900
С	3.37656600	1.15612700	0.26937800
С	4.70227400	0.76902500	0.45105600
С	5.08099800	-0.56725100	0.30009900
С	4.11992000	-1.51874700	-0.04324100
С	2.78842400	-1.15249900	-0.24229900
Н	3.06890400	2.18519300	0.38352000
Н	5.43971300	1.51542500	0.71866700
Н	6.11218500	-0.86147600	0.44794400
Н	4.40457300	-2.55652800	-0.16478000
Н	2.03069300	-1.87556300	-0.50347500
0	-0.14999600	-1.46167600	-0.30684400
С	-2.76140200	-1.38312000	-0.36294800
С	-2.62735300	-1.30360400	1.02642400
С	-3.11203500	-0.18080600	1.65405300
С	-3.78130600	0.90205000	0.90464200
С	-4.58877000	0.33428900	-0.26045000
С	-3.71400700	-0.55811100	-1.13670700
Н	-2.18435000	-2.13313700	-0.88518100
Н	-2.00140400	-2.01664700	1.54055400
Н	-4.38997900	1.51845000	1.56517800
Н	-2.95320400	1.51996000	0.51596200
Н	-5.41890600	-0.25261500	0.14038300
Н	-5.01666700	1.14111700	-0.85367100
Н	-3.09682400	0.02643200	-1.82311000
Н	-4.30996400	-1.23733100	-1.75586000
Н	-2.89177800	-0.03493000	2.70681500

MP2, TS1a', -795.53941160 hartree, 10.2 debye

	1 0 5 4 5 5 0 0 0		
N	-1.35155200	2.32906000	-0.02859100
N	-0.14476900	2.86016800	-0.12657800
Ν	0.79159300	1.89822100	-0.31216900
С	0.16771300	0.69307900	-0.33933700
Ν	-1.18152700	0.98229900	-0.15571500
С	-2.28516500	0.10423300	-0.07011400
С	-3.48615400	0.56901300	0.48057200
С	-4.57792400	-0.29304600	0.55486700
С	-4.47601300	-1.61124100	0.10331300
С	-3.27008100	-2.06196000	-0.43519700
С	-2.16825000	-1.21178000	-0.53301400
Н	-3.54829900	1.59054200	0.82641900
Н	-5.50889500	0.06620300	0.97525800
Н	-5.32680500	-2.27722400	0.16970100
Н	-3.18393400	-3.08094900	-0.79187200
Н	-1.22664600	-1.54226400	-0.94414800
0	0.69322400	-0.45318600	-0.49062200
С	3.14852800	0.70205000	-0.44670900
С	3.08203400	0.73321100	0.95100300
С	2.99956900	-0.46337500	1.61860600
С	3.00830600	-1.76177500	0.90583100
С	3.88495700	-1.68721400	-0.34212600
С	3.46075900	-0.51463600	-1.22000200
Н	3.00332800	1.63252300	-0.97794800
Н	2.93712500	1.67701700	1.45413100
Н	3.31173900	-2.56833400	1.57250100
Н	1.95945600	-1.92104700	0.61469500
Н	4.92557600	-1.55304600	-0.03583000
Н	3.82800300	-2.61914700	-0.90303400
Н	2.52763200	-0.73113100	-1.75258800
Н	4.20973600	-0.26201900	-1.97612600
Н	2.82028500	-0.45322700	2.68904000

MP2, TS1b, -795.57454659 hartree, 6.0 debye

N	-0.06026300	2.13455100	0.34940800
Ν	1.19081100	2.42634000	-0.00707000
Ν	1.65810100	1.51187700	-0.89788100
С	0.64906700	0.60519200	-1.13289600
Ν	-0.40552900	1.01217900	-0.30451500
С	-1.68773700	0.43060800	-0.13005200
С	-2.38552000	0.67885500	1.05708400
С	-3.64713900	0.11299700	1.22710600
С	-4.19152700	-0.71476200	0.24183400
С	-3.47418300	-0.96263900	-0.92959700
С	-2.21681700	-0.39232400	-1.12983000
Н	-1.94884700	1.32249500	1.80761100
Н	-4.19842900	0.30866500	2.13779700
Н	-5.16875000	-1.15738300	0.38413100
Н	-3.89376600	-1.59899200	-1.69811800
Н	-1.65148400	-0.57444000	-2.03130700
0	0.69460500	-0.43975500	-1.83475300
С	1.92670000	-1.74879200	-0.64326000
С	2.99585600	-0.86790300	-0.64021200
С	2.98135700	0.18554900	0.26990400
С	2.25654300	0.06039800	1.57989400
С	1.77912400	-1.37052500	1.81564700
С	1.06862100	-1.91371800	0.57835500
Н	1.85834000	-2.49593600	-1.42337000
Н	3.64489600	-0.81635100	-1.50339400
Н	2.93511500	0.37576700	2.37624000
Н	1.42075600	0.76725100	1.62396600
Н	2.64380100	-2.00266800	2.03076000
Н	1.11796900	-1.41224200	2.68221900
Н	0.11670700	-1.39578200	0.43417800
Н	0.82157400	-2.97002500	0.70314500
Н	3.73737000	0.95545200	0.19069500

MP2, TS1b', -795.57201317 hartree, 4.9 debye

Ν	0.80281800	2.19570400	-0.21368500
Ν	-0.47474700	2.49579900	-0.40753100
Ν	-1.18169600	1.36851800	-0.70163200
С	-0.31792900	0.31358600	-0.67290100
Ν	0.91742900	0.85842100	-0.34235100
С	2.15918800	0.20363000	-0.14281900
С	3.12674700	0.81866100	0.65788900
С	4.34950600	0.17836600	0.84700300
С	4.59388300	-1.06863000	0.26627400
С	3.61111800	-1.67221700	-0.51997800
С	2.38720900	-1.03999700	-0.73925400
Н	2.91725500	1.78115500	1.10243400
Н	5.10719600	0.65060200	1.45887300
Н	5.54288500	-1.56417600	0.42436200
Н	3.79771200	-2.63589800	-0.97614600
Н	1.61913700	-1.49506200	-1.34629700
0	-0.60822200	-0.92076200	-0.75015800
С	-1.86733700	-1.37191700	0.79779000
С	-1.97646900	-0.12072700	1.40563300
С	-2.69323200	0.85332200	0.72162200
С	-3.80245200	0.45460900	-0.21828900
С	-4.21205800	-0.99566000	0.02100800
С	-2.99423700	-1.91270700	-0.04085100
Н	-1.17120500	-2.09078800	1.21342900
Н	-1.25625700	0.17738400	2.15718800
Н	-4.65005700	1.12688400	-0.07013100
Н	-3.46420700	0.59315600	-1.24544900
Н	-4.67102600	-1.07768600	1.00884200
Н	-4.95780300	-1.30499800	-0.71235300
Н	-2.64352500	-2.02487500	-1.06815100
Н	-3.24977300	-2.91213400	0.32018300
Н	-2.68480200	1.87151200	1.09211800

DFT, TS2a, -837.26441743 hartree, 8.8 debye

N	1.06105700	1.92976500	0.26993900
Ν	-0.20804900	2.03400400	0.09476300
Ν	-0.75515300	0.87751500	-0.33187600
С	0.24092400	-0.04475700	-0.44683400
Ν	1.39373100	0.62917300	-0.05896100
С	2.73106900	0.17845500	0.01617200
С	3.73268000	1.06430200	0.43993800
С	5.05110900	0.62333000	0.51845800
С	5.38667300	-0.68932700	0.18001200
С	4.38294400	-1.56195200	-0.24105000
С	3.05613000	-1.14148600	-0.32690400
Н	3.46468100	2.08046100	0.69995300
Н	5.82157300	1.31511500	0.84728600
Н	6.41713600	-1.02608900	0.24303600
Н	4.62955700	-2.58566800	-0.50892300
Н	2.26907000	-1.80899700	-0.65359600
0	0.13552300	-1.23790800	-0.81737500
С	-2.54122300	-0.96579900	-1.17258900
С	-2.75144200	-1.43092200	0.12639300
С	-3.41120700	-0.63505900	1.04123200
С	-3.85230700	0.72633300	0.62176200
С	-4.37163100	0.73873500	-0.82378700
С	-3.33541200	0.13323600	-1.78337100
Н	-1.83067800	-1.49849000	-1.79382700
Н	-2.25386100	-2.34097300	0.44507300
Н	-4.58244500	1.14410600	1.32136800
Н	-2.93380600	1.34234900	0.67533400
Н	-5.30324500	0.16206600	-0.87338900
Н	-4.61221000	1.76196700	-1.12410700
Н	-2.61780400	0.88186400	-2.13384000
Н	-3.81336000	-0.27043000	-2.68867200
С	-3.55088600	-1.03179900	2.47001500
Н	-3.03387900	-0.30027300	3.10549900
Н	-4.60608400	-1.00250700	2.77039500
Н	-3.14446300	-2.02416800	2.67367000

DFT, TS2a', -837.26395925 hartree, 9.8 debye

N	-1.68982700	2.32227200	0.06953300
N	-0.52727300	2.85938500	-0.06213000
Ν	0.43300400	1.94018000	-0.26905600
С	-0.15643800	0.71799600	-0.29465000
Ν	-1.50435900	0.95963000	-0.05844600
С	-2.59606100	0.06639500	0.02295400
С	-3.87320800	0.56712800	0.31656500
С	-4.95200300	-0.30895400	0.40177900
С	-4.77731900	-1.67965700	0.19884900
С	-3.50360100	-2.16765800	-0.09338800
С	-2.40973100	-1.30762900	-0.18478600
Н	-4.00048900	1.63093500	0.47169700
Н	-5.93785300	0.08666500	0.62931800
Н	-5.62347800	-2.35690100	0.26629200
Н	-3.35333800	-3.23143600	-0.25638600
Н	-1.41772700	-1.67397300	-0.41447200
0	0.39774500	-0.39609900	-0.49332000
С	2.83683200	0.80800400	-0.97727000
С	3.22409900	0.82615700	0.36410300
С	3.41957200	-0.35844100	1.04368600
С	3.15152800	-1.64700500	0.33759600
С	3.58457300	-1.59129800	-1.13602600
С	2.94628800	-0.38881900	-1.84619600
Н	2.51209400	1.74115900	-1.42261800
Н	3.23927900	1.77341800	0.89287600
Н	3.60689100	-2.49111300	0.86449400
Н	2.05319800	-1.76285800	0.38131000
Н	4.67787900	-1.51340400	-1.18608300
Н	3.30683000	-2.52021000	-1.64139100
Н	1.91835500	-0.61351500	-2.16220200
Н	3.49575600	-0.10883100	-2.75608600
С	3.74964200	-0.38592700	2.49564000
Н	2.96209400	-0.92088600	3.04313200
Н	4.67352000	-0.95502700	2.66216200
Н	3.85917100	0.61276700	2.92207800

DFT, TS2b, -837.28137234 hartree, 5.5 debye

N	0.96944900	2.02639500	-0.44243900
Ν	-0.28357600	2.21201200	-0.68312400
N	-0.93979500	1.03755000	-0.83980400
С	-0.03451200	0.03356800	-0.65100000
Ν	1.17965000	0.67788100	-0.39959700
С	2.46760500	0.14713500	-0.13562700
С	3.51789300	1.02066700	0.17889800
С	4.78450600	0.50390000	0.43831900
С	5.01630700	-0.87237800	0.39163500
С	3.96364400	-1.73205600	0.07813700
С	2.68802200	-1.23558500	-0.18881700
Н	3.33048600	2.08643700	0.21224900
Н	5.59503800	1.18547200	0.67950900
Н	6.00636300	-1.26860100	0.59578800
Н	4.13133800	-2.80443800	0.03529600
Н	1.86640000	-1.89486100	-0.43488900
0	-0.25171000	-1.20018000	-0.65308400
С	-2.04969500	-1.61548200	0.87816600
С	-2.15043800	-0.32249500	1.34608400
С	-2.83253000	0.64738600	0.59857400
С	-3.77767500	0.21829300	-0.49684000
С	-4.17622600	-1.25984200	-0.39468300
С	-2.94568400	-2.15237800	-0.19281300
Н	-1.38541800	-2.30858100	1.38389400
Н	-1.52555600	0.00048500	2.17395500
Н	-4.66413300	0.86385600	-0.47343800
Н	-3.26914700	0.42283100	-1.44495600
H	-4.85869400	-1.39264900	0.45420900
H	-4.72338800	-1.56174600	-1.29303500
Н	-2.34301600	-2.21104100	-1.10819100
Н	-3.23916400	-3.17941700	0.05559600
С	-2.89967200	2.06804400	1.05432800
H	-2.90087300	2.75182300	0.20284200
Н	-3.84394900	2.20963300	1.60023800
Н	-2.07196500	2.33272500	1.71418400

DFT, TS2b', -837.27860054 hartree, 5.7 debye

NT	0 20022600	2 01110500	0 22007400
IN N	0.38022800	-2.04140300	0.32097400
IN N	-0.83304300	-2.2/03/000	-0.06344300
N	-1.26516600	-1.35838200	-0.9562/400
C	-0.24960300	-0.45630/00	-1.13954800
N	0.79488200	-0.91192600	-0.31712600
С	2.09963700	-0.39395200	-0.11273500
С	2.93261900	-0.98882600	0.84542600
С	4.21323000	-0.48168000	1.04925500
С	4.67242000	0.61262100	0.31298200
С	3.83572600	1.19575100	-0.63838300
С	2.55049300	0.70180400	-0.86176300
Н	2.57100600	-1.83906500	1.40981000
Н	4.85553400	-0.94821400	1.79046300
Н	5.67185800	1.00331900	0.47802700
Н	4.18290800	2.04359300	-1.22183500
Н	1.89716400	1.14393300	-1.60220800
0	-0.26523500	0.58569500	-1.82406300
С	-1.89253400	1.95112900	-0.58543400
С	-2.85653000	0.98657000	-0.75880700
С	-2.99006300	-0.06647700	0.15943000
С	-2.38048700	0.05156800	1.53305600
С	-1.93340100	1.48012200	1.87392400
С	-1.16472300	2.12450300	0.71274300
Н	-1.71435300	2.66968100	-1.37780700
Н	-3.36823700	0.91057200	-1.71273000
Н	-3.11415400	-0.30548300	2.26691000
H	-1.54599900	-0.66047800	1.60504500
H	-2.82098600	2.08813600	2.08752300
Н	-1 32219800	1 47661500	2 78131100
н	-0 16534300	1 67986300	0 61076900
н	-0 99455000	3 19137300	0 89870400
C	-3 97703900	-1 16606200	-0.05987100
ч	-3 59///100	-2 10857500	0 33026100
тт П		-0 0215000	0.18520300
п		-U.921390UU	U.4002U3UU
п	-4.21218400	-T.7200T200	-1.11031000

MP2, TS2a, -834.74626254 hartree, 9.0 debye

Ν	-0.16131800	1.30122100	1.40781600
N	1.05079600	0.98257400	1.87593300
N	1.26829500	-0.35038500	1.83657000
С	0.17107200	-0.94185100	1.28518500
N	-0.72972100	0.12263500	1.05576600
С	-1.96425800	0.09221400	0.37383100
С	-2.48660200	1.28164200	-0.15653100
С	-3.70103000	1.24873200	-0.83919300
С	-4.38259600	0.04242400	-1.01828000
С	-3.84933100	-1.13388000	-0.48900800
С	-2.64217600	-1.12380600	0.21085100
Н	-1.95876900	2.21047900	0.00759100
Н	-4.11048900	2.16838700	-1.23824500
Н	-5.32282700	0.02254700	-1.55409800
Н	-4.37697900	-2.07117700	-0.61392700
Н	-2.21470400	-2.02438400	0.62452300
0	0.00091500	-2.13502500	0.92039300
С	1.14751700	-1.07124400	-1.24339700
С	1.05365900	0.30982600	-1.21284100
С	2.11117800	1.06741500	-0.70573200
С	3.38321400	0.41233800	-0.30157000
С	3.61665600	-0.90736700	-1.02823600
С	2.38676900	-1.79587500	-0.88996500
Н	0.27154400	-1.64752400	-1.51443100
Н	0.12492600	0.79503300	-1.48250100
Н	4.21258400	1.11073000	-0.42605400
Н	3.25957100	0.22530700	0.77463800
Н	3.81215200	-0.71424300	-2.08663400
Н	4.49423000	-1.40775700	-0.62022500
Н	2.22749700	-2.11241400	0.15071700
Н	2.45821500	-2.70933700	-1.48244300
С	2.00670900	2.53985400	-0.57328400
Н	2.33802200	2.82620100	0.42390600
Н	2.68376200	2.99769900	-1.30134600
Н	0.99288900	2.89580400	-0.72819700

MP2, TS2a', -834.73903699 hartree, 10.3 debye

NT	1 22262200	2 45021400	0 21600700
IN N	-1.23562500	2.45921400	0.31099700
IN	-0.07549900	3.09294800	0.213/4200
N	0.84/55800	2.33603800	-0.43099000
С	0.26312100	1.15663500	-0.76286200
Ν	-1.04648900	1.24994300	-0.28249800
С	-2.05247400	0.26317500	-0.26121800
С	-3.10439500	0.37488400	0.65960000
С	-4.09219900	-0.60699800	0.68713100
С	-4.02529800	-1.70870600	-0.17021000
С	-2.96851200	-1.81215100	-1.07583400
С	-1.97593900	-0.83237600	-1.13303100
Н	-3.14196500	1.23450800	1.31334200
Н	-4.91068100	-0.51572500	1.39020800
Н	-4.79381100	-2.47036500	-0.13932000
Н	-2.91608800	-2.65631200	-1.75235200
Н	-1.15726600	-0.88759500	-1.83462000
0	0.78774700	0.13214100	-1.29893600
С	3.10796900	0.62147200	-0.07930800
С	2.40388800	0.38732000	1.09116000
С	1.77405700	-0.84576700	1.18636100
С	2.17801100	-1.99024000	0.32216300
C	3.57378600	-1.80691300	-0.25489900
C	3 65810400	-0 44929600	-0 93478300
е н	3 22014600	1 65359700	-0 39141900
н	2 05965100	1 22492900	1 68047300
н	2 08627800	-2 91869300	0 88998900
ц	1 42687200	-2 01/23500	-0.47627100
п п	4 30703900	-1 85504400	0.55302600
и П	3 80630400	-2 60667000	-0.95694900
п	2 05270100	-2.00007000	1 94692200
H	3.052/8100	-0.41405600	-1.84682200
H	4.68028200	-0.18300600	-1.21802900
C	0.56381300	-0.99864/00	2.02955100
Н	-0.29/48000	-0.98983300	1.35143600
H	0.56100400	-1.95815700	2.54643700
H	0.44772900	-0.18183000	2.73767000

MP2, TS2b, -834.76908917 hartree, 5.8 debye

N	0.17028500	-2.07420000	0.25558000
N	-1.09295600	-2.25921300	-0.13154000
N	-1 47774400	-1 28121700	-0 99178200
C	-0 40276100	-0 44428600	-1 18367500
N	0 60709100	-0.95881000	-0 35510600
C	1 92360700	-0 47724900	-0 13945900
C	2 59101800	-0 83739200	1 03678100
C	3 88598500	-0 36897900	1 2/708800
C	4 49603600	0.30037300	0 31364200
C	3 80948800	0.83328200	-0 8/689300
C	2 51845500	0.36224300	-1 097/0100
с u	2.010408200	-1 19020000	1 7/730/00
n u	4 41274500	-1.49020000	2 1/030700
n u	5 49941000	-0.03100200	2.14939700
п	1 27016500	1 40126500	0.40/JI/00 1 57576200
н	4.2/915500	1.48126500	-1.5/5/6300
H	1.9/58/300	0.63198000	-1.98086800
0	-0.35850300	0.61866200	-1.85251500
C	-1.57700900	1.96481200	-0.59521900
C	-2.68290000	1.13944/00	-0.64309600
C	-2./8048600	0.05609600	0.23599400
C	-2.03017900	0.09796600	1.54247800
С	-1.46546500	1.48391300	1.84049100
С	-0.71463300	2.02994600	0.63005900
H	-1.45488200	2.72680500	-1.35394100
H	-3.32410100	1.16256500	-1.51485500
Н	-2.71817400	-0.21236600	2.33391600
Н	-1.23817500	-0.65902600	1.54311700
Н	-2.28937200	2.16051800	2.08000400
Н	-0.80919800	1.44528300	2.71117100
Н	0.20213500	1.45677500	0.46662000
Н	-0.40100000	3.06258000	0.79638300
С	-3.93073100	-0.89558700	0.15588500
Н	-3.62503300	-1.87871300	0.50869500
Н	-4.73322900	-0.53031700	0.80392500
Н	-4.30148900	-0.98303300	-0.86187800

MP2, TS2b', -834.76579356 hartree, 5.1 debye

Ν	0.87139900	2.06979900	-0.50458500
Ν	-0.41879800	2.25886700	-0.75550500
N	-1.04836500	1.06226800	-0.91245300
С	-0.12240500	0.07430700	-0.74105700
N	1.07122100	0.73755300	-0.46563900
С	2.34666900	0.19494700	-0.16893700
С	3.26177300	0.97128900	0.54957800
С	4.51846200	0.44119700	0.83325700
С	4.84940300	-0.85422900	0.42783400
С	3.91874400	-1.61846500	-0.27783500
С	2.66172000	-1.10052600	-0.59017300
Н	2.98612100	1.96948800	0.85855400
Н	5.23514600	1.03844600	1.38213800
Н	5.82451800	-1.26287000	0.65892800
Н	4.17192500	-2.62086200	-0.59848600
Н	1.93253000	-1.68025300	-1.13558400
0	-0.32412000	-1.17510800	-0.69153900
С	-1.66620900	-1.51783000	0.89504800
С	-1.89132300	-0.21017000	1.30478300
С	-2.65931700	0.62544500	0.49247500
С	-3.62831700	-0.00738800	-0.48030200
С	-3.96162700	-1.43880400	-0.07194700
С	-2.68363400	-2.25757800	0.07370900
Н	-0.93385900	-2.10911000	1.43169900
Н	-1.24602400	0.23792100	2.05147900
Н	-4.53236900	0.60476900	-0.52377900
Н	-3.18254500	0.01094800	-1.47509900
Н	-4.49163400	-1.42499300	0.88346900
Н	-4.62597900	-1.89581900	-0.80669600
Н	-2.25068700	-2.47888000	-0.90330700
Н	-2.89309800	-3.21587600	0.55595600
С	-2.90633400	2.05023100	0.87229700
Н	-3.05528400	2.66146000	-0.01467300
Н	-3.81773800	2.08689900	1.47606200
Н	-2.08189900	2.46563100	1.44654200

DFT, TS3a, -955.18072885 hartree, 7.8 debye

Ν	2.37017500	-1.16957200	-1.70231000
Ν	1.46656600	-2.08055700	-1.63850800
Ν	0.91412500	-2.14403000	-0.41332700
С	1.50696900	-1.20943800	0.37976800
Ν	2.42948100	-0.58832500	-0.44717200
С	3.33976500	0.45852800	-0.17044300
С	4.18929000	0.91645200	-1.18758200
С	5.08321400	1.95006700	-0.92009000
С	5.14207900	2.53292800	0.34754700
С	4.29304200	2.06823800	1.35216900
С	3.39012000	1.03437900	1.10619600
Н	4.13799500	0.45870300	-2.16728500
Н	5.73907200	2.30035300	-1.71203300
Н	5.84214000	3.33815900	0.54902400
Н	4.32968300	2.51131700	2.34343800
Н	2.72833000	0.66480600	1.87921300
0	1.25736100	-0.97983000	1.58476200
С	-0.49873700	-2.88657300	1.55220100
С	-1.61925800	-2.06773700	1.46422900
С	-2.47621700	-2.07019300	0.37659200
С	-3.60412700	-1.09113400	0.32227200
С	-3.25301800	0.13231400	-0.59020700
Н	0.16824400	-2.80921700	2.39845500
Н	-1.78281800	-1.33738900	2.25184500
Н	-4.49830900	-1.57906400	-0.08543800
Н	-3.84527300	-0.72100600	1.32301300
Н	-2.99820700	-0.24020200	-1.59023800
С	-2.21945400	-2.92681100	-0.81654400
Н	-2.23483100	-3.99125000	-0.55592200
Н	-2.94878800	-2.75791800	-1.61033100
Н	-1.19984900	-2.71817600	-1.18335900
Н	-0.34453200	-3.71059800	0.87184500
Н	-2.35315600	0.61202800	-0.19829000
С	-4.40620100	1.09124100	-0.68610800
Н	-5.28243400	0.69600900	-1.20193600
С	-4.48020300	2.34545600	-0.21254400
С	-5.73031000	3.16758800	-0.41370600
Н	-6.15172100	3.48325400	0.54960500
Н	-5.50972800	4.08683600	-0.97147300
Н	-6.50100000	2.61621900	-0.95870700
С	-3.37758100	3.05709200	0.53103900
Н	-2.48982700	2.44386300	0.69314200
Н	-3.06706300	3.95790700	-0.01334000
Н	-3.73549700	3.39700700	1.51116900

DFT, TS3a', -955.17940164 hartree, 8.1 debye

NT	1 00520200	1 00024700	0 06192600
IN N	1.00JJ0J0	-1.00034700	0.00103000
N	0.65159900	-1./115/600	-0.25566100
N	0.42151900	-0.46110100	-0.69050800
C	1.58922600	0.23283900	-0.65692600
Ν	2.51918000	-0.67109100	-0.17482400
С	3.90390100	-0.51162400	0.06689500
С	4.63763300	-1.58565500	0.58983500
С	6.00070500	-1.43150400	0.82951400
С	6.64137800	-0.22139600	0.55532000
С	5.90104800	0.84028500	0.03490800
С	4.53523300	0.70759600	-0.21316400
Н	4.13334900	-2.52058700	0.79863300
Н	6.56445200	-2.26709900	1.23444100
Н	7.70462800	-0.10860200	0.74463600
Н	6.38714000	1.78680500	-0.18421600
Н	3,95173300	1.52499400	-0.61776700
0	1.75422500	1.42981800	-0.99220000
C	-0 72721800	1 58811100	-1 55840600
C	-1 06660400	2 33374100	-0 42777900
C	-1 95929400	1 90244200	0.53288600
C	-2 61385500	1.90244200	0.35200000
C	-2.01303300	0.53737700	0.40500500
	-3.09094000	0.55511000	-0.4007JI00 1.92610700
п	-1.2/082200	0.69940400	-1.03019700
н	-0.55869300	3.28222000	-0.27796300
н	-1.89221400	-0.18232600	0.11546100
H	-2.90595100	0.26219000	1.49806700
H	-3.61105100	0.82015800	-1.42906600
C	-2.27622100	2.77578600	1.70434600
H	-3.36171700	2.85283600	1.84419000
H	-1.88552400	2.31288400	2.62090700
Н	-1.85266000	3.77803600	1.61417300
H	-0.02858200	1.98735400	-2.27906200
Н	-4.59839800	1.29647400	-0.05880300
С	-4.52426500	-0.83205200	-0.42292000
Н	-3.88920900	-1.61271200	-0.84259100
С	-5.73695000	-1.19407200	0.02520600
С	-6.19368300	-2.62949800	-0.07509400
Н	-6.42850800	-3.03639100	0.91712400
Н	-7.11376000	-2.70905000	-0.66868600
Н	-5.43573600	-3.26927600	-0.53392300
С	-6.74652000	-0.26141700	0.64710500
Н	-6.39693100	0.76901700	0.73286000
Н	-7.67432000	-0.25221600	0.06080000
Н	-7.02020000	-0.60829600	1.65170300
			=

DFT, TS3a'', -955.17905429 hartree, 7.5 debye

N	-1.32575600	-1.56439200	-0.80763100
Ν	-0.19357100	-1.14421800	-1.24927800
Ν	-0.12571100	0.19782800	-1.24441000
С	-1.29977900	0.68555500	-0.77026100
Ν	-2.06177800	-0.43537200	-0.48910000
С	-3.37616800	-0.53926400	0.02394300
С	-3.94301700	-1.80767700	0.21115400
C	-5.23603100	-1.91173700	0.71768000
C	-5 97095900	-0 76871200	1 03911100
C	-5 39666200	0 48817400	0 84803900
C	-4 10335100	0 61536600	0 34243800
е Н	-3 36693500	-2 68868800	-0 04179800
н	-5 67052200	-2 89704700	0 86035000
Ч	-6 97896300	-0.85762300	1 43288000
и П	-5 95762600	1 38563200	1 09315900
и И	-3 64880800	1 58609300	0 18931800
0	_1 50512300	1 99675300	-0 62360600
C	0 68498700	2 57625000	-1 51867000
C	1 200496700	2.37023900	-1.51007900
C	1.20940600	2.97810000	-0.20003500
C	2.33203600	2.43136000	0.30264100
C	3.03843100	1.22145300	-0.21940500
C	2.78076800	-0.03231500	0.68980000
H	-0.18239300	3.0/825/00	-1.92103300
H	0.6/896800	3.76208500	0.244/9/00
Н	2.71725800	0.97230900	-1.22995800
Н	4.11910100	1.40696100	-0.24523200
H	1.70310200	-0.10233400	0.86500900
С	2.83146800	3.00459800	1.59293200
H	2.69198100	2.27981600	2.40572100
Н	3.90951600	3.19727600	1.53729100
Н	2.31558000	3.92694200	1.86646600
Н	1.21663100	1.90510400	-2.17419400
Н	3.26777500	0.11808900	1.65763600
С	3.24121000	-1.29580100	0.01647900
Н	2.54243200	-1.67939600	-0.72584300
С	4.38161700	-1.97065200	0.23171800
С	4.67926200	-3.23889800	-0.53071000
Н	5.61518200	-3.14813100	-1.09816300
Н	4.81300400	-4.08700600	0.15373900
Н	3.87817000	-3.49006800	-1.23012700
С	5.44822700	-1.56740600	1.21994800
Н	5.21469400	-0.64846700	1.76188300
Н	5.61186200	-2.36110800	1.96044900
Н	6.40942500	-1.42007600	0.71027700

DFT, TS3b, -955.19733638 hartree, 4.5 debye

Ν	-1.06364400	-0.85350000	-1.52797400
Ν	-0.07486300	-0.08925000	-1.84624900
Ν	-0.22505800	1.15411200	-1.32620200
С	-1.37627900	1.15656000	-0.60233400
Ν	-1.89984300	-0.12795000	-0.73177200
С	-3.08186900	-0.70266700	-0.19547100
С	-3.30016000	-2.07889900	-0.34277400
С	-4.45913100	-2.64733300	0.17913700
С	-5.39818600	-1.86117500	0.85003300
С	-5.16876300	-0.49276400	0.99214600
С	-4.01732100	0.09787300	0.47214000
Н	-2.56725100	-2.68110700	-0.86471300
Н	-4.62565400	-3.71392800	0.06058000
Н	-6.29900200	-2.31112200	1.25603100
Н	-5.89326600	0.12985700	1.50894000
Н	-3.83358000	1.15882600	0.57695000
0	-1.84009800	2.09933300	0.09334400
С	-0.31594600	2.65224700	1.56326300
С	0.74250000	1.83924100	1.21825100
С	1.46990900	2.00619200	0.02893900
С	2.56312800	1.04666200	-0.36386700
С	2.64568700	-0.30081700	0.37436500
Н	-0.91970000	2.42374200	2.43403300
Н	0.86415300	0.90724800	1.76001200
Н	2.46600300	0.86827300	-1.44034800
Н	3.51455600	1.58904000	-0.24299500
Н	1.67255900	-0.80123900	0.29087000
С	1.48538000	3.31330700	-0.71605600
Н	2.20854000	3.98447500	-0.23249800
Н	1.80075500	3.15978500	-1.74885100
Н	0.51078400	3.79847400	-0.72908300
Н	-0.44954700	3.63920900	1.14574200
Н	2.83265700	-0.13580600	1.43955800
С	3.69919200	-1.19080000	-0.23019900
Н	3.48650800	-1.49743100	-1.25489000
С	4.83740500	-1.63427300	0.32487200
С	5.77234400	-2.53197800	-0.45011400
Н	6.76926800	-2.08047300	-0.54065000
Н	5.91319100	-3.49213700	0.06377500
Н	5.39946000	-2.73802200	-1.45681700
С	5.30022500	-1.31475500	1.72530200
Н	4.62604300	-0.64782700	2.26582500
Н	5.40749500	-2.23364400	2.31640800
Н	6.29197600	-0.84446400	1.70495600

DFT, TS3b', -955.19685072 hartree, 4.4 debye

Ν	1.78123700	1.46002100	-1.20802800
Ν	0.49645600	1.52927700	-1.12631400
Ν	-0.01655400	0.44601300	-0.49362700
С	1.02676700	-0.34439300	-0.12604000
Ν	2.16799100	0.31350300	-0.57874800
С	3.53886100	-0.04043500	-0.47767800
С	4.51471100	0.89190700	-0.85426200
С	5.86090400	0.54900500	-0.75992300
C	6.24414600	-0.70850100	-0.28901200
С	5.26364400	-1.62738400	0.08480200
С	3.90953200	-1.30674500	-0.00791700
H	4,20886000	1.86469600	-1.21818900
Н	6,61398900	1,27357600	-1.05535700
Н	7 29568400	-0.96871500	-0.21615000
Н	5 54896100	-2 61007900	0 44886200
н	3 14365500	-2.01530600	0.27806400
\cap	0 98018700	-1 41484100	0 53722800
C	0 00130600	-0 97346900	2 44058400
C	-0 34326900	0.35311900	2 29939100
C	-1 34167500	0.80613400	1 41977800
C	-2 44171500	-0.10509100	0 92992700
C	-3 23613800	0.10000000	-0.30324500
Ч	0 8/618300	-1 25/80600	3 058/5700
и П	0.32953700	1 10330300	2 70778300
и П	-2 030/3500	-1 09586/00	0 72710100
и ц	-3 13925200		1 77/70500
н	-2 51422900	0.22270000	-1 10508400
C	-1 54641200	2 28393800	1 27187500
н	-1 62405800	2.203330000	0 21883300
н	-2 48823700	2.56949100	1 75988500
н	-0 73300800	2 85463500	1 72359800
Н	-0.65778500	-1 77882600	2 15191800
Н	-3.74009000	1,31621700	-0.08692800
C	-4 21951900	-0 67563500	-0 75500800
H	-3.75863200	-1.60514300	-1.09313400
C	-5.55927300	-0.60767800	-0.79202500
C	-6.37649300	-1.77499400	-1.29219300
H	-7.07466700	-2.12791200	-0.52144200
Н	-6.98993600	-1.48607800	-2.15594200
H	-5.74623700	-2.61677800	-1.59109100
С	-6.37756700	0.58730600	-0.36806700
H	-5.77542000	1.41508500	0.01066100
H	-6.97393800	0.96512000	-1.20873000
H	-7.09320000	0.30572300	0.41546100

MP2, TS3a, -952.24896144 hartree, 7.7 debye

Ν	-0.33396400	-1.63861700	-1.88482000
Ν	-1.65666700	-1.73330200	-1.80942800
Ν	-2.07120100	-1.75934300	-0.51758200
С	-0.97600200	-1.65913600	0.28731400
Ν	0.10384400	-1.60869400	-0.59694700
С	1.46661600	-1.40952000	-0.29309100
С	2.28515700	-0.74226400	-1.21274700
С	3.63215400	-0.55266400	-0.90817300
С	4.15499300	-1.00134100	0.30862300
С	3.32133900	-1.65250100	1.22109000
С	1.97436100	-1.86726000	0.92810700
Н	1.86311000	-0.40383900	-2.14839100
Н	4.27300700	-0.04968100	-1.62188200
Н	5.20177300	-0.84955900	0.53979300
Н	3.72153400	-2.00658000	2.16295100
Н	1.31157200	-2.35823200	1.62527900
0	-0.92829400	-1.53694400	1.54253600
С	-3.46086500	-0.86157100	1.53724600
С	-2.99440200	0.43029000	1.45465900
С	-3.08372300	1.14467000	0.25925200
С	-2.09427200	2.22126500	0.04305300
С	-0.79998300	1.49805300	-0.47205100
Н	-3.20558100	-1.48081400	2.38219700
Н	-2.33426700	0.79506600	2.22917100
Н	-2.42909900	2.95295600	-0.69147400
Н	-1.84447200	2.72546500	0.97711700
Н	-1.02859200	0.97626600	-1.40464600
С	-3.91846400	0.71085200	-0.88487300
Н	-4.87637400	0.30314400	-0.57203600
Н	-4.07570800	1.52728300	-1.58465200
Н	-3.36676300	-0.09833400	-1.38734100
Н	-4.09737400	-1.28676900	0.77810300
Н	-0.53669300	0.73970100	0.25979600
С	0.32788100	2.45679200	-0.66813400
Н	0.25860100	3.11130800	-1.53281700
С	1.41501500	2.55260100	0.12278200
С	2.52171300	3.51090200	-0.21817500
Н	2.70932800	4.20076600	0.60734800
Н	3.44985500	2.96224100	-0.39304600
H	2.29291000	4.09287200	-1.10975900
С	1.66160100	1.72978200	1.35595200
H	0.84753200	1.05539300	1.61060400
Н	2.55863500	1.12336900	1.22139500
H	1,84062700	2.38952300	2,20843000
		· · · · ·	

MP2, TS3a', -952.24252078 hartree, 8.3 debye

Ν	-1.02983800	-1.42897100	-1.10388400
Ν	0.05535000	-0.88315800	-1.63123100
Ν	-0.01386100	0.46689700	-1.56713800
С	-1.18467900	0.81617900	-0.97771200
N	-1.81185300	-0.38967500	-0.69016800
С	-3.05748900	-0.62624000	-0.06150700
С	-3.36391900	-1.91847600	0.38208900
С	-4.59379400	-2.15003600	0.99393500
C	-5.50482200	-1.10696400	1.17824600
С	-5.18000300	0.17641000	0.73722300
С	-3.95943700	0.42975500	0.11069000
H	-2.64900300	-2.71442300	0.23315000
H	-4.83629500	-3.14908300	1.33362600
Н	-6.45641200	-1.29385900	1.65901200
Н	-5.88141400	0.98999300	0.87351200
Н	-3.69001400	1.41705100	-0.23374700
0	-1.57759100	1.99363300	-0.73046200
С	0.60932600	2.83463100	-1.38281400
С	0.88622800	2.99546900	-0.02537600
С	1.89896200	2.32000300	0.62286300
С	2.69193500	1.22016100	0.00968600
С	2.36975100	-0.13211000	0.70524000
Н	-0.17998900	3.40839100	-1.83926300
Н	0.24419300	3.65365500	0.54476700
Н	2.48525900	1.10501100	-1.05015800
Н	3.75876700	1.42374000	0.13940900
Н	1.28680700	-0.26169400	0.71812600
С	2.13479700	2.59088400	2.07347000
Н	1.65691600	1.80833000	2.66812200
Н	3.19969200	2.56500000	2.30411500
Н	1.71822900	3.54840400	2.37838300
Н	1.29096200	2.32329500	-2.03890100
Н	2.71681200	-0.10474600	1.73841900
С	2.98627700	-1.26461600	-0.05952800
Н	2.38601300	-1.62449900	-0.88860900
С	4.19325400	-1.81549800	0.16950200
С	4.69408700	-2.94300800	-0.68975500
Н	5.63650800	-2.67536600	-1.17320600
Н	4.88867300	-3.83274400	-0.08663000
Н	3.97267000	-3.20336500	-1.46199600
С	5.13016600	-1.39366300	1.26741600
Н	4.75226900	-0.55874500	1.85363200
Н	5.32226000	-2.22585100	1.94822700
Н	6.09540600	-1.10049200	0.84865000

MP2, TS3a'', -952.23962938 hartree, 9.1 debye

Ν	1.74110400	-1.90293000	-0.13424800
Ν	0.49399700	-1.72512300	-0.53514300
Ν	0.31533500	-0.45193600	-0.95931900
С	1.48128700	0.22726100	-0.82225200
Ν	2.37074300	-0.70218800	-0.30335500
С	3.73283600	-0.54345000	0.04666600
С	4.36486200	-1.54004900	0.80019200
С	5.70780500	-1.38494700	1.13649100
С	6.41378700	-0.24585200	0.74174200
C	5.76642600	0.74115000	-0.00238500
C	4 42534000	0 60218700	-0.36105700
С Н	3 80567000	-2 41449200	1 09904900
Ч	6 20086400	-2.15582700	1 71523700
и И	7 45576100	-0.13044700	1 0111//00
u u	6 30649100	1 62622300	-0 31/57500
и П	3 90773800	1 35758300	-0 93331100
	1 67200700	1 44691000	1 10044900
0 C		1.44001900	-1.10044000
C		1.07024100	-1.39124100
		2.29852600	-0.35842800
C	-1./1/61300	1.//968600	0.6065/400
C	-2.44349000	0.48993100	0.43514700
C	-3.76969600	0.66353700	-0.34940200
Н	-1.31881700	0.85303500	-1.89920400
H	-0.30891800	3.19057600	-0.14616600
H	-1.79075800	-0.22519300	-0.07590900
H	-2.68628600	0.08297700	1.41813400
H	-3.54517800	1.08975000	-1.33074100
С	-1.89858700	2.49559600	1.90238600
Н	-2.96179600	2.58538700	2.13330800
Н	-1.45278500	1.90000200	2.70297000
Н	-1.44221600	3.48271600	1.90236400
Н	-0.07218100	2.13092100	-2.34281200
Н	-4.40529000	1.38536500	0.16488900
С	-4.45410000	-0.65801100	-0.51245700
Н	-3.93268700	-1.36370400	-1.15352500
С	-5.59549600	-1.06771300	0.07226600
С	-6.13077000	-2.44876300	-0.18825700
Н	-6.21522200	-3.01200600	0.74341000
Н	-7.13177800	-2.39975200	-0.62210100
Н	-5.48868200	-3.00617400	-0.86776300
С	-6.43451100	-0.23942800	1.00501500
Н	-6.01759800	0.74466700	1.20309100
Н	-7.43722800	-0.10556300	0.59411600
Н	-6.55109200	-0.75477700	1.96042900
	· · · · •		

MP2, TS3b, -952.27651013 hartree, 4.2 debye

Ν	-0.86315400	-0.79764700	-1.52363900
Ν	0.13396100	0.03410700	-1.80789800
Ν	-0.11148000	1.26019900	-1.26795500
С	-1.30697100	1.20069100	-0.61457900
Ν	-1.73877200	-0.11314800	-0.76301900
С	-2.90513800	-0.73365300	-0.24723400
С	-2.89800600	-2.11685900	-0.04245200
С	-4.04578700	-2.72832800	0.45693700
С	-5.17420300	-1.96683500	0.77162400
С	-5.15726500	-0.58540400	0.57226200
С	-4.02610700	0.04509600	0.05376900
Н	-2.01308300	-2.68740000	-0.28642500
Н	-4.05273100	-3.79952900	0.61162700
Н	-6.05942300	-2.44719900	1.16761600
Н	-6.03087500	0.00760100	0.81032600
Н	-3.99961000	1.11232100	-0.10705100
0	-1.84749300	2.10112100	0.10117600
С	-0.55148900	2.53927300	1.58373400
С	0.55474900	1.75773000	1.28933300
С	1.31267800	1.98704200	0.13738200
С	2.45582900	1.07445100	-0.21766400
С	2.42561100	-0.33344600	0.38171500
Н	-1.18904000	2.27001500	2.41519700
Н	0.62900600	0.78941400	1.76545100
Н	2.50035900	1.00517300	-1.30608300
Н	3.37839000	1.58034200	0.09422800
Н	1.44223400	-0.77235200	0.20142500
С	1.38970400	3.35520200	-0.48369000
Н	2.06895600	3.97473000	0.10778600
Н	1.77876100	3.27774900	-1.49547800
Н	0.41863300	3.83804600	-0.53200800
Н	-0.60329300	3.57168600	1.27839100
Н	2.56736200	-0.28495300	1.46188300
С	3.46299500	-1.20080000	-0.26557600
Н	3.22110800	-1.51018500	-1.27888600
С	4.64400600	-1.59200400	0.24794200
С	5.58039100	-2.45398700	-0.55353800
Н	6.54397300	-1.95826600	-0.69133400
Н	5.77971600	-3.39534100	-0.03640300
Н	5.17002300	-2.68385000	-1.53542500
С	5.14169000	-1.23590900	1.62139400
Н	4.46456900	-0.58170000	2.16479300
Н	5.29498800	-2.13797200	2.21786500
Н	6.10990600	-0.73543300	1.55252500

MP2, TS3b', -952.27503700 hartree, 4.1 debye

N	1 81398300	1 34726300	-1 39240800
N	0,49229600	1,47560100	-1.37445000
N	-0 06551600	0 46374500	-0 65481400
C	0 94136200	-0.33034000	-0.19470100
N	2 11226400	0.26490100	-0 64755200
C C	3 45741100	-0.12608100	-0.42507500
C	1 16219300	0.12000100	-0 19728900
C	5 78440000	0.04300900	0.49720900
C	5.78440900	0.43636200	-0.20070300
C	0.09589800 5.07722700	-0.00923000	0.01033100
	5.07733700	-1.02034600	0.09614500
C	3.74877100	-1.46123500	-0.13128100
H	4.20024200	1.86650100	-0./2/62600
H	6.57000500	1.20055200	-0.34818200
Н	7.12428200	-1.15968/00	0.18/33500
H	5.31461900	-2.85110000	0.32584800
H	2.95139200	-2.18683100	-0.07436700
0	0.85035300	-1.31324600	0.60923400
С	0.07160900	-0.60418200	2.30888400
С	-0.24648800	0.71254200	2.00802700
С	-1.22113400	1.02735900	1.05753300
С	-2.34805300	0.06677200	0.75968500
С	-3.17658600	0.38233100	-0.48972500
Н	0.91107700	-0.81181200	2.95912400
Н	0.47275100	1.48431800	2.25747400
Н	-1.94724900	-0.94213800	0.66957400
Н	-3.01437300	0.07108500	1.63153700
Н	-2.49261900	0.49080100	-1.33329400
С	-1.45317300	2.47039200	0.72341800
Н	-1.68560200	2.59935900	-0.32991000
Н	-2.30138100	2.83296100	1.31104300
Н	-0.58025900	3.07497800	0.96006100
Н	-0.67373300	-1.38144400	2.25819900
Н	-3.69605800	1.33251700	-0.36863200
С	-4.14735400	-0.72652300	-0.76818000
Н	-3.70833000	-1.62444900	-1.19602300
С	-5.46945000	-0.74239400	-0.51483900
С	-6.30100800	-1.95152000	-0.84443600
H	-6.78761300	-2.34548300	0.05069000
Н	-7 09497100	-1 69570800	-1 54969700
Н	-5 69755500	-2 74456000	-1 28319900
C.	-6,23760000	0.39904100	0.09180300
с Н		1 24182900	0 36233200
н	-7 00293600	0 75574200	-0.60097100
н Ц	-6 75796900	0.06545200	0.00007100
11	0.13130300	0.00040200	0.992 ± 0000