
†Electronic Supplementary Information (ESI)

A naphthalene based Al³⁺ selective fluorescent sensor for living cell imaging

Animesh Sahana^a, Arnab Banerjee^a, Sudipta Das^a, Sisir Lohar, Debasis Karak, Bidisha Sarkar^b, Subhra Kanti Mukhopadhyay^b, Asok K. Mukherjee*^a and Debasis Das*^a

^aDepartment of Chemistry, The University of Burdwan, Burdwan − 713104, West Bengal, India, Debasis Das < e-mail: <u>ddas100in@yahoo.co</u>m >; Tel: +91-342-2533913; Fax: +91-342-2530452

^bDepartment of Microbiology, The University of Burdwan, Burdwan – 713104, West Bengal, India.

Fig. S1. ¹HNMR of **L** in DMSO-d₆.

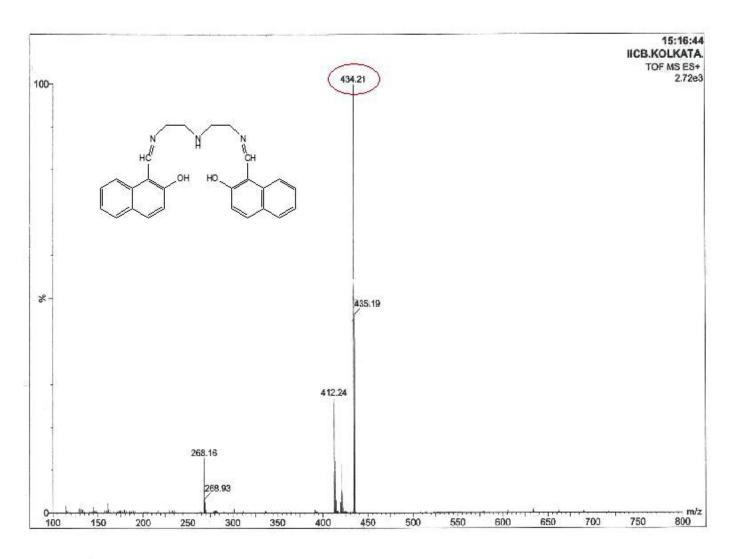


Fig.S2. QTOF-MS spectrum of L

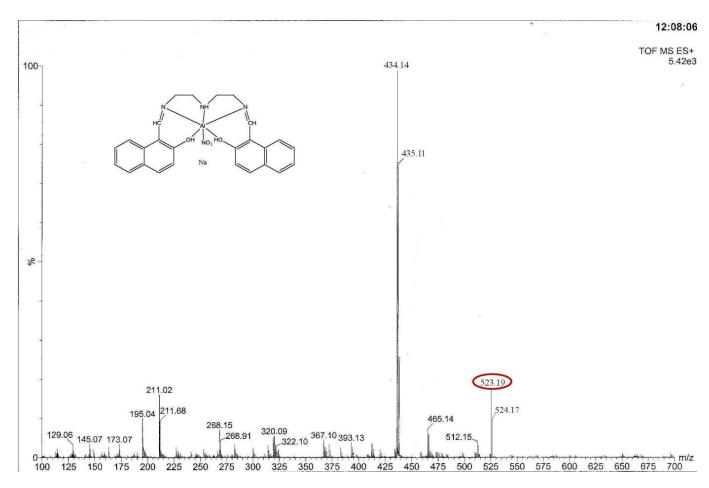
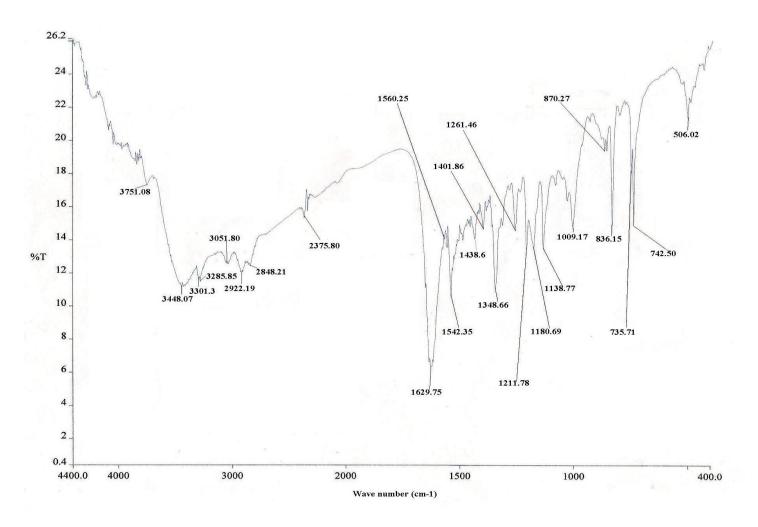
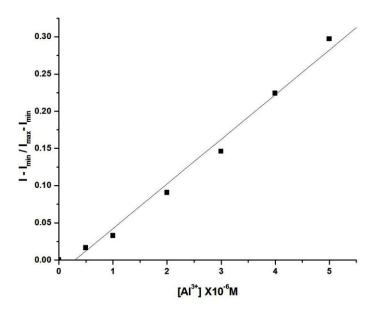
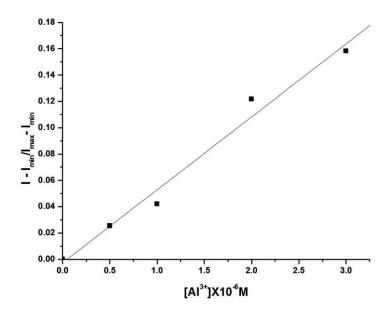


Fig. S3. QTOF-MS spectrum of complex $[L +Al^{3+}+NO_3]Na^+$.

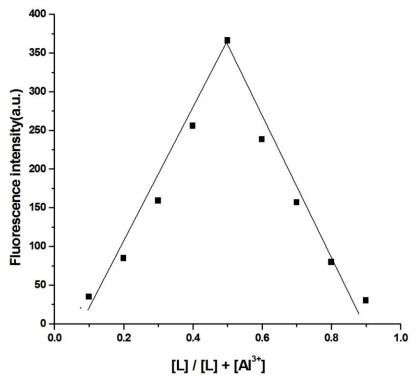

Fig.S4. FTIR spectra of L

Fig.S5. Emission intensities of **L** (10 μ M) as a function of externally added [Al³⁺] in ethanol, λ_{em} : 445 nm, λ_{ex} : 355 nm. The detection limit is 3.0 × 10⁻⁷.

Fig.S6. Emission intensities of **L** (10 μ M) as a function of externally added [A1³⁺] in HEPES buffer (0.1 M in ethanol/water = 3/7, v/v, pH 7.4, λ_{em} : 445 nm, λ_{ex} : 355 nm). The detection limit is 1.0×10^{-7} .

Fig. S7. Job's plot of the complexation reaction between **L** and Al^{3+} in HEPES buffer (0.1 M) solution (ethanol/water = 3/7, v/v, pH 7.4).

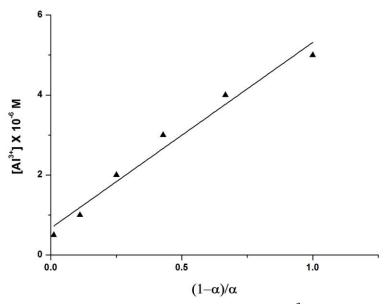
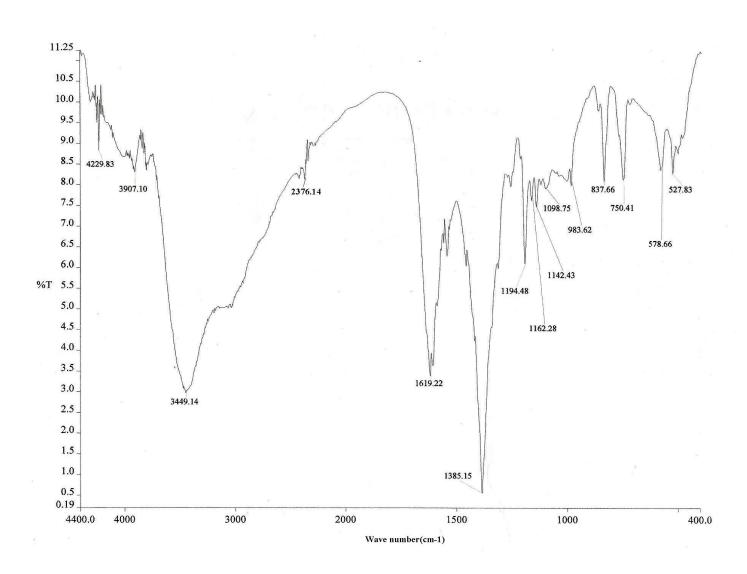



Fig. S8. The binding constant (K_a) of L for Al^{3+}

Fig. S9. FTIR spectra of $[L-Al]^{3+}$ NO₃ complex.

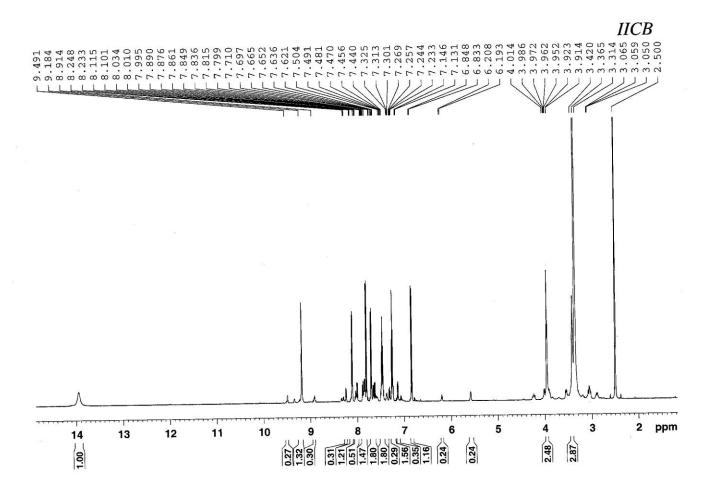
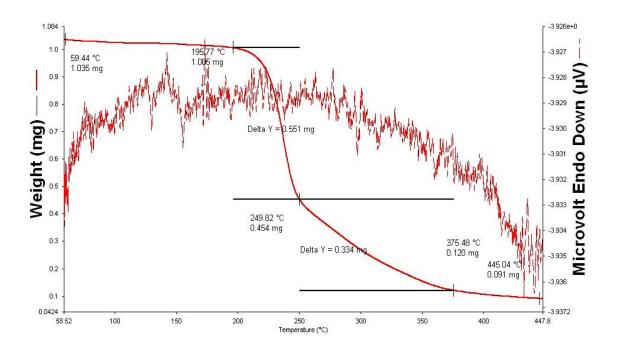
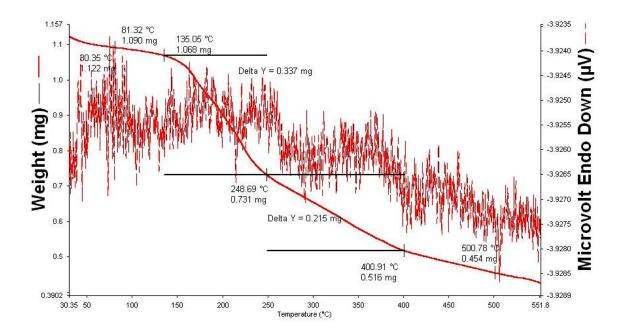


Fig. S10. 1 HNMR spectra of [L-Al] $^{3+}$ NO $_{3}$ complex. in DMSO-d $_{6.}$

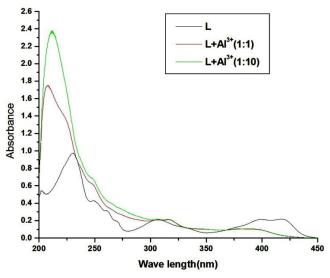

Fig. S11. Thermogravimetric analysis of L.

Fig. S 12. Thermogravimetric analysis of $[\mathbf{L} - Al^{3+}]NO_3$ complex.

Fig. S 13. Colour change of the Ligand solution after adding equivalent quantity of Al^{3+} (under UV light).

Fig. S 14. Absorbance spectra of **L** (10 μ M), **L** + Al³⁺ (1:1, mole ratio) and **L** + Al³⁺ (1:10, mole ratio) in HEPES buffer (0.1 M) solution (ethanol/water = 3/7, v/v, pH 7.4).

1. General method of UV-vis. and fluorescence titration

Path length of the cells used for absorption and emission studies was 1 cm. For UV-vis and fluorescence titrations, stock solution of $\bf L$ was prepared ($C=10~\mu M$) in ethanol and ethanol/water (3/7, v/v) HEPES (0.1M) buffer. Working solutions of $\bf L$ and Al^{3+} were prepared from their respective stock solutions. Fluorescence measurements were performed using 5 nm x 5 nm slit width.

2. Calculation of Quantum Yield

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence curves using the equation,

$$\phi_{\text{sample}} = \frac{\text{OD}_{\text{standard}} \times A_{\text{sample}}}{\text{OD}_{\text{sample}} \times A_{\text{standard}}} \times \phi_{\text{standard}}$$

where A was the area under the fluorescence spectral curve and OD was optical density of the compound at the excitation wavelength¹. Anthracene was used as quantum yield standard (quantum yield is 0.27 in ethanol)² for measuring the quantum yields of ligand and its Al³⁺ complex.

3. Job's plot from fluorescence experiments

A series of solutions containing \mathbf{L} and $Al(NO_3)_3$ were prepared such that the total concentration of Al^{3+} and \mathbf{L} remained constant (10 μ M) in all the sets. The mole fraction (X) of \mathbf{L} was varied from 0.1 to 0.9. The fluorescence intensity at 445 nm was plotted against the mole fraction of the ligand (\mathbf{L}) in solution.

4. Determination of Binding Constant

Li *et al.* derived the following Tsein equation³ that can be used to find out the stoichiometric ratio between the ligand and metal ion.

$$[\mathbf{M}^{n+}]^m = \frac{1}{n \cdot K} \cdot \frac{1}{[\mathbf{L}]_{\mathrm{T}}^{n-1}} \cdot \frac{1-\alpha}{\alpha^n}$$

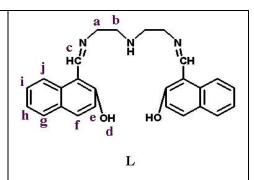

Where K is complex equilibrium constant, $M_m L_n$ is the complex species, L is ligand and M is the metal ion. Third bracket is used to denote their concentration. α is the ratio between free ligand concentration [L], and its initial concentration [L]_T. In our case, the stoichiometric ratio of the Al^{3+} : L was 1:1. So, this equation can be written as $[Al^{3+}] = 1/K \cdot (1-\alpha)/\alpha$. The curve fitting of the experimental data points using this equation yielded, $K_a = (2.12 \pm 0.05) \times 10^5 \, \text{M}^{-1}$.

Table 1: Changes in Chemical shifts (δ ppm) of **L** during ¹HNMR titration experiment upon concomitant additions of Al³⁺.

[Al ³⁺] Equiv.	-ОН	-CH=N-	-N-H	-CH ₂ (a)	-CH ₂ (b)	Ar-H (e)	Ar-H (f)	Ar-H (g)	Ar-H (h)	Ar-H (i)	Ar-H (j)
0.00	13.9	9.1		2.9	3.7	6.7	8.0	7.6	7.15	7.4	7.7
1.00	13.9	9.2	5.6	3.4	4.0	6.85	8.1	7.7	7.3	7.5	7.8
2.00	13.9	9.2	5.6	3.4	4.0	6.85	8.1	7.7	7.3	7.5	7.8

References

- 1 E. Austin, M. Gouterman, Bioinorg. Chem., 1978, 9, 281.
- 2 W. H. Melhuish, J. Phys. Chem., 1961, **65**, 229.
- 3 G. Grynkiewcz, M. Poenie and R. Y. Tsein, J. Biol. Chem. 1985, 260, 3440.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is @ The Royal Society of Chemistry 2011