Stereoselective Aza-Darzens Reactions of *T***ert-Butanesulfinimines: Convenient Access to Chiral Aziridines**

Toni Moragas Solá,^a Ian Churcher,^b William Lewis^a and Robert A. Stockman*^a

Supplementary Information

Experimental

General Information

All reagents were purchased from commercial sources and used without additional purification. Tetrahydrofuran was freshly distilled under nitrogen from the sodium anion of benzophenone. All other anhydrous solvents were purchased or obtained from in house solvent purification towers. All reactions were conducted in flame-dried glassware under an inert atmosphere of nitrogen or argon. All reactions were stirred with a magnetic stirrer bar. Infrared spectral data were recorded using a Perkin-Elmer 1600 FTIR spectrometer: points of maximum absorption (v_{max}) were recorded in cm⁻¹. ¹H and ¹³C NMR spectral data were recorded using a Bruker DPX300, Bruker DPX400, Bruker AV400 and Bruker AV(III)400 spectrometers. Chemical shifts are quoted with the deuterated solvent as the reference. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (integration, s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, oct = octet, m = multiplet or unresolved, coupling constant(s) in Hz). Melting points were measured using a Stuart SMP3 apparatus in open capillary tubes and are uncorrected. Mass spectra data were recorded using an open access Bruker MicroTOF spectrometer. Diastereomeric ratios (dr's) were determined by the crude 1H NMR spectra in and confirmed by the purified 1H NMR spectra.

General procedure for the preparation of *N*-[*tert*-butyl-(*S*)-sulfinyl] aziridine 2-carboxylates 2a-j.

To a solution of ethyl α -bromoacetate (0.42-1.28 mmol) in anhydrous tetrahydrofuran (4.2-12.8 mL) at -78 °C was added lithium bis-(trimethyl-silyl)amide (0.42-1.28 mmol). The mixture was stirred for 30 minutes. At this stage a solution of *N-tert*-butyl-(*S*)-sulfinylimine (0.21-0.64 mmol) in anhydrous tetrahydrofuran was added and the reaction was stirred at -78 °C, unless otherwise stated. Once the reaction was deemed complete by TLC, water (4-10 mL) was added to the mixture. After 10 minutes the product was extracted with ethyl acetate (5-15 mL), washed with brine (5-10 mL) and dried over sodium sulfate. The organic fractions were concentrated *in vacuo* to yield a crude mixture containing the aziridine.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-phenylaziridine 2-carboxylate (2a)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-benzaldimine (107 mg, 0.51 mmol) and gave the crude product (168 mg, >98% dr, 91:9 cis/trans) as a yellow oil. Purification by column chromatography over silica gel (eluting with 1:1 petroleum ether / dichloromethane) gave the *title compound* **2a** (117 mg, 79%) as a yellow oil. $[\alpha]_D^{25}$ +84 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3005, 2871, 1742, 1589, 1372, 1186, 1073; ¹H NMR (300 MHz, CDCl₃) 7.43-7.40 (2H, m), 7.36-7.28 (3H, m), 3.99 (2H, q, *J* 7.1), 3.68 (1H, d, *J* 7.3), 3.54 (1H, d, *J* 7.3), 1.36 (9H, s), 1.00 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.1, 133.1, 128.7, 128.1, 128.0, 127.6, 126.4, 61.1, 57.7, 39.8, 36.6, 22.5, 13.8; m/z (ES+) 613 ([2M+Na]⁺, 100%), 318 ([M+Na]⁺, 20); HRMS: Found: 318.1132 C₁₅H₂₁NaNO₃S 318.1134.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-cyclohexylaziridine 2-carboxylate (2b)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-cyclohexylaldimine (107 mg, 0.50 mmol) and gave the crude product (179 mg, >98% dr, 92:8 cis/trans) as a colourless oil. Purification by preparative TLC (eluting with 9:1 petroleum ether / ethyl acetate) gave the *title compound* **2b** (38 mg, 81%) as a colourless oil. $[\alpha]_D^{25}$ +37 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3008, 2931, 2854, 1740, 1450, 1192, 1067; ¹H NMR (300 MHz, CDCl₃) 4.28-4.17 (2H, m), 3.32 (1H, d, *J* 7.2), 2.14 (1H, dd, *J* 9.5, 7.2), 1.92-1.98 (1H, m), 1.71-1.35 (6H, m), 1.27 (3H, t, *J* 7.2), 1.23 (9H, s), 1.17-1.04 (4H, m); ¹³C NMR (75 MHz, CDCl₃) 167.9, 61.3, 57.3, 43.7, 36.1, 33.1, 30.7, 29.9, 26.1, 25.4, 25.3, 22.5, 14.2; m/z (ES+) 324 ([M+Na]⁺, 100%), 625 ([2M+Na]⁺, 65); HRMS: Found: 302.1782 C₁₅H₂₈NO₃S 302.1782.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-p-methoxyphenylaziridine 2-carboxylate (2c)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-*p*methoxybenzaldimine (110 mg, 0.46 mmol) but after two hours solution was allowed to reach room temperature to give the crude product (535 mg, >98% dr, 98:2 cis/trans) as a yellow oil. Purification by column chromatography over alumina (eluting with 10:1 petroleum ether / ethyl acetate) gave the *title compound* 2c (104 mg, 69%) as pale yellow crystals. [a]_D²⁵+71 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3008, 2963, 1742, 1516, 1252, 1076; ¹H NMR (300 MHz, CDCl₃) 7.26 (2H, d, J 8.8), 6.78 (2H, d, J 8.8), 3.93 (2H, q, J 7.1), 3.72 (3H, s), 3.56 (1H, d, J7.2), 3.41 (1H, d, J7.2), 1.27 (9H, s), 0.97 (3H, t, J7.1); ¹ ¹³C NMR (75 MHz, CDCl₃) 166.2, 159.5, 128.7, 125.1, 113.5, 61.1, 57.7, 55.2, 39.5, 36.6, 22.5, 13.9; m/z (ES+) 673 $([2M+Na]^+, 100\%)$, 348 $([M+Na]^+, 12)$; HRMS: Found: 326.1419 $C_{16}H_{24}NO_4S$ 326.1421.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-p-nitrophenylaziridine 2-carboxylate (2d)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-*p*-nitrobenzaldimine (96 mg, 0.38 mmol) at room temperature gave the crude product (163 mg, >98% dr, 71:29 cis/trans) as a yellow oil. Purification by preparative TLC (eluting with 2:1 petroleum ether / ethyl acetate) gave the *title compound* **2d** (73 mg, 56%) as a pale yellow oil. $[\alpha]_D^{25}$ +67 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3008, 2987, 1744, 1525, 1348, 1192, 1081; ¹H NMR (300 MHz,

CDCl₃) 8.19 (2H, d, *J* 8.8), 7.59 (2H, d, *J* 8.8), 3.99 (2H, q, *J* 7.1), 3.72 (1H, d, *J* 7.3), 3.59 (1H, d, *J* 7.3), 1.35 (9H, s), 1.03 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 165.5, 147.8, 140.5, 128.7, 123.3, 61.6, 58.0, 39.1, 36.5, 22.5, 14.0; m/z (ES+) 723 ($[2M+Na]^+$, 100%), 363 ($[M+Na]^+$, 46); HRMS: Found: 341.1168 C₁₅H₂₁N₂O₅S 341.1168.

(3R)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-[(2)-pyridyl]aziridine 2-carboxylate (2e)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)(2-pyridyl)aldimine (96 mg, 0.38 mmol) and gave the crude product (254 mg, >98% dr, 83:17 cis/trans) as an orange oil. Purification by column chromatography over alumina (eluting with 10:1 petroleum ether / ethyl acetate) gave the *title compound* **2e** (100 mg, 65% as an inseparable mixture of diastereomers (major diastereomer shown)) as an orange oil. Major diastereomer: IR (CHCl₃) 3008, 2987, 1742, 1476, 1192, 1081; ¹H NMR (300 MHz, CDCl₃) 8.56 (1H, d, *J* 4.9), 7.71-7.61 (1H, m), 7.52 (1H, d, *J* 8.0), 7.25-7.20 (1H, m), 4.16 (1H, d, *J* 7.4), 4.02 (2H, q, *J* 7.1), 3.26 (1H, d, *J* 7.4), 1.26 (9H, s), 1.08 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.2, 150.0, 149.3, 136.2, 123.0, 122.9, 61.4, 57.5, 38.9, 38.3, 22.7, 14.0; m/z (ES+) 615 ([2M+Na]⁺, 100%), 319 ([M+Na]⁺, 12); HRMS: Found: 297.1266 C₁₄H₂₁N₂O₃S 297.1267.

(2S,3R)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-[(2)-furfuryl]aziridine 2-carboxylate (2f)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)(2-furfuryl)aldimine (89 mg, 0.45 mmol) and gave the crude product (248 mg, >98% dr, 86:14 cis/trans) as a brown oil. Purification by column chromatography over alumina (eluting with 5:1 petroleum ether / ethyl acetate) gave the *title compound* **2f** (110 mg, 86%) as a brown oil. $[\alpha]_D^{25}$ +12 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2984, 2965, 1728, 1264, 1192, 1020; ¹H NMR (300 MHz, CDCl₃) 7.29 (1H, dd, *J* 1.5, 0.9), 6.27 (2H, d, *J* 1.4), 4.08 (2H, q, *J* 7.1), 3.58 (1H, d, *J* 7.1), 3.42 (1H, d, *J* 7.1), 1.24 (9H, s), 1.11 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.1, 147.8, 142.8, 110.5, 109.0, 61.5, 57.8, 35.3, 34.0, 22.4, 14.0; m/z (ES+) 593 ([2M+Na]⁺, 100%), 308 ([M+Na]⁺, 16); HRMS: Found: 286.1108 C₁₃H₂₀NO₄S 286.1113.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-cyclopropylaziridine 2-carboxylate (2g)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-cyclopropaldimine (100 mg, 0.58 mmol) and gave the crude product (148 mg, >98% dr, 90:10 cis/trans) as a colourless oil. Purification by column chromatography over alumina (eluting with 10:1 petroleum ether / ethyl acetate) gave the *title compound* **2**g (84 mg, 56%) as a colourless oil.

 $[\alpha]_D^{25}$ +28 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3087, 3007, 2871, 1741, 1379, 1191, 1073; ¹H NMR (300 MHz, CDCl₃) 4.22 (2H, q, *J* 7.2), 3.30 (1H, d, *J* 7.1), 2.02 (1H, t, *J* 7.1), 1.26 (3H, t, *J* 7.1) (9H, s), 1.04-0.92 (1H, m), 0.55-0.26 (4H, m); ¹³C NMR (75 MHz, CDCl₃) 167.6, 61.2, 57.4, 41.6, 33.5, 22.4, 22.2, 14.1, 7.9; m/z (ES+) 541 ([2M+Na]⁺, 100%), 282 ([M+Na]⁺, 23); HRMS: Found 260.1315 C₁₂H₂₂NO₃S 260.1315.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-octylaziridine 2-carboxylate (2h)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-nonaldimine (117 mg, 0.45 mmol) and gave the crude product (153 mg, >98% dr, 80:20 cis/trans) as a colourless oil. Purification by column chromatography over alumina (eluting with 20:1 petroleum ether / ethyl acetate) gave the *title compound* **2h** (99 mg, 66%) as a colourless oil. $[\alpha]_D^{25}$ +27 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2929, 2857, 1740, 1461, 1379, 1192, 1074; ¹H NMR (400 MHz, CDCl₃) 4.20 (2H, q, *J* 7.2), 3.30 (1H, d, *J* 7.1), 2.37 (1H, q, *J* 7.1), 1.64-1.55 (2H, m), 1.46-1.24 (15H, m), 1.22 (9H, s), 0.86 (3H, t, *J* 6.9); ¹³C NMR (100 MHz, CDCl₃) 167.8, 61.2, 57.3, 38.9, 33.0, 31.8, 29.4, 29.1, 29.0, 27.1, 26.9, 22.6, 22.5, 14.2, 14.1; m/z (ES+) 685 ([M+Na]⁺, 100%), 332 ([M+H]⁺, 9); HRMS: Found: 332.2254 C₁₇H₃₄NO₃S 332.2254.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-methylaziridine 2-carboxylate (2i)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-acetaldimine (94 mg, 0.64 mmol) and gave the crude product (158 mg, >98% dr, 90:10 cis/trans) as a colourless oil. Purification by column chromatography over alumina (eluting with 20:1 petroleum ether / ethyl acetate) gave the *title compound* **2i** (73 mg, 49%) as a colourless oil. $[\alpha]_D^{25}$ +32 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3007, 1740, 1192, 1076; ¹H NMR (400 MHz, CDCl₃) 4.20 (2H, q, *J* 7.1), 3.30 (1H, d, *J* 7.2), 2.48 (1H, m), 1.32 (3H, d, *J* 5.7), 1.27 (3H, t, *J* 7.1), 1.22 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 167.7, 61.3, 57.3, 34.2, 33.0, 22.5, 14.2, 12.7; m/z (ES+) 256 ([M+Na]⁺, 100%), 489 ([2M+Na]⁺, 70); HRMS: Found: 234.1160 C₁₀H₂₀NO₃S 234.1158.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-tert-butylaziridine 2-carboxylate (2j)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-*tert*-butylaldimine (102 mg, 0.54 mmol) and gave the crude product (191 mg, >98% dr, 95:5 cis/trans) as a colourless oil. Purification by column chromatography over alumina (eluting with 20:1 petroleum ether / ethyl acetate) gave the *title compound* **2j** (115 mg, 77%) as a colourless oil. $[\alpha]_D^{25}$ +29 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2963, 2908, 1743, 1392, 1192, 1072; ¹H NMR (400

MHz, CDCl₃) 4.24 (1H, dq, *J* 10.8, 7.2), 4.15 (1H, dq, *J* 10.8, 7.2), 3.27 (1H, d, *J* 7.6), 2.14 (1H, d, *J* 7.6), 1.29 (12H, m), 0.95 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 168.1, 61.3, 57.2, 33.6, 31.7, 26.7, 22.3, 14.0; m/z (ES+) 573 ($[2M+H]^+$, 100%), 298 ($[M+Na]^+$, 21); HRMS: Found: 276.1625 C₁₃H₂₆NO₃S 276.1628.

(2S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-di-phenylaziridine 2-carboxylate (4a)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-di-phenylketimine (60 mg, 0.21 mmol) and gave the *title compound* **4a** (74 mg, 95%, 98:2 cis/trans) as an orange solid. M.p. = 123-126 °C; $[\alpha]_D^{25}$ +278 (c 0.5, CH₂Cl₂); IR (CHCl₃) 3007, 1747, 1192, 1074; ¹H NMR (300 MHz, CDCl₃) 7.32-7.07 (10H, m), 4.15 (1H, s), 3.83 (2H, q, *J* 7.1), 1.22 (9H, s), 0.83 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.6, 138.3, 135.7, 129.8, 128.8, 128.5, 127.9, 127.8, 127.6, 61.1, 57.8, 55.0, 39.8, 22.4, 13.8; m/z (ES+) 765 ([2M+Na]⁺, 100%), 394 ([M+Na]⁺, 93); HRMS: Found: 372.1628 C₂₁H₂₆NO₃S 372.1622.

(2S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-1-azaspiro[2.5]octane 2-carboxylate (4b)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-cyclohexylketimine (86 mg, 0.43 mmol) at room temperature and gave the crude product (158 mg, 88:12 cis/trans) as a colourless oil. Purification by column chromatography over neutralised silica gel (eluting with 10:1 petroleum ether / ethyl acetate) gave the *title compound* **4b** (17 mg, 36%) as a colourless oil. $[\alpha]_D^{25}$ +36 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2936, 1739, 1449, 1191, 1069; ¹H NMR (300 MHz, CDCl₃) 4.20 (2H, q, *J* 7.1), 3.18 (1H, s), 1.85-1.44 (10H, m), 1.27 (3H, t, *J* 7.1), 1.23 (9H, s); ¹³C NMR (75 MHz, CDCl₃) 168.3, 61.1, 57.6, 50.5, 39.1, 31.1, 30.7, 25.6, 25.4, 24.7, 22.3, 14.3; m/z (ES+) 597 ([2M+Na]⁺, 100%), 288 ([M+H]⁺, 30); HRMS: Found: 288.1627 C₁₃H₂₄NO₃S 288.1622.

(2S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-1-azaspiro[2.6]nonane 2-carboxylate (4c)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-cycloheptylketimine (99 mg, 0.46 mmol) at room temperature and gave the crude product (315 mg, 81:19 cis/trans) as a colourless oil. Purification by column chromatography over silica gel (eluting with 10:1 petroleum ether / ethyl acetate (5% NEt₃)) gave the *title compound* **4c** (32 mg, 23%) as a colourless oil. $[\alpha]_D^{25}$ +21 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2930, 1739, 1192, 1059; ¹H NMR (300 MHz, CDCl₃) 4.20 (2H, q, *J* 7.1), 3.16 (1H, s), 1.94-1.48 (12H, m), 1.27 (3H, t, *J*

7.1), 1.23 (9H, s); ¹³C NMR (75 MHz, CDCl₃) 168.3, 61.1, 57.6, 52.3, 40.3, 33.3, 33.0, 30.9, 28.5, 28.0, 24.0, 22.3, 14.2; m/z (ES+) 625 ($[2M+Na]^+$, 100%), 302 ($[M+H]^+$, 9); HRMS: Found: 302.1772 C₁₅H₂₈NO₃S 302.1779.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-methyl-3-phenylaziridine 2-carboxylate (4d)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-methylphenylketimine (77 mg, 0.34 mmol) but after two and a half hours solution was allowed to reach room temperature to give the crude product (193 mg, >98% dr, 85:15 cis/trans) as a yellow oil. Purification by column chromatography over neutralised silica gel (eluting with 15:1 petroleum ether / ethyl acetate) gave the *title compound* **4d** (68 mg, 65%) as a pale yellow oil. $[\alpha]_D^{25}$ +17 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2991, 1745, 1446, 1188, 1067; ¹H NMR (300 MHz, CDCl₃) 7.29-7.15 (5H, m), 3.79 (2H, q, *J* 7.1), 3.42 (1H, s), 1.76 (3H, s), 1.27 (9H, s), 0.84 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.9, 139.1, 128.0, 127.5, 126.8, 60.9, 58.0, 49.5, 40.9, 22.4, 20.7, 13.8; m/z (ES+) 641 ([2M+Na]⁺, 100%), 332 ([M+Na]⁺, 20); HRMS: 310.1466 C₁₆H₂₄NO₃S 310.1466.

(2*S*,3*R*)-Ethyl *N*-[*tert*-butyl-(*S*)-sulfinyl]-3-ethyl-3-(thiophen-2-yl)aziridine 2-carboxylate (4e)

The general procedure was followed using *N*-[*tert*-Butyl-(*S*)-sulfinyl]-)-ethyl-(2-thienyl)ketimine (93 mg, 0.38 mmol) at room temperature and gave the crude product (211 mg, >98% dr, 93:7 cis/trans) as a yellow oil. Purification by column chromatography over neutralised silica gel (eluting with 20:1 petroleum ether / ethyl acetate) gave the *title compound* **4e** (54 mg, 43%) as a yellow solid. M.p. = 82-86 °C; $[\alpha]_D^{25}$ +17 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2982, 1745, 1192, 1076; ¹H NMR (300 MHz, CDCl₃) 7.20 (1H, dd, *J* 4.9, 1.3), 6.98-6.93 (2H, m), 4.02-3.94 (2H, m), 3.53 (1H, s), 2.47-2.35 (1H, m), 2.12-1.99 (1H, m), 1.76 (3H, s), 1.35 (9H, s), 1.09 (3H, t, *J* 7.4), 1.03 (3H, t, *J* 7.1); ¹³C NMR (75 MHz, CDCl₃) 166.4, 140.9, 126.6, 125.7, 124.8, 61.0, 58.4, 50.9, 42.1, 27.9, 22.2, 13.8, 10.7; m/z (ES+) 681 ([2M+Na]⁺, 100%), 330 ([M+H]⁺, 20); HRMS: Found: 330.1188 C₁₅H₂₄NO₃S₂ 310.1187.

(2S,3S)-Ethyl N-[tert-butyl-(S)-sulfinyl]-3-heptyl-3-methylaziridine 2-carboxylate (4f)

The general procedure was followed using N-[*tert*-Butyl-(S)-sulfinyl]-)-heptylmethylketimine (100 mg, 0.41 mmol) and gave the crude product (217 mg, >98% dr, 71:29 cis/trans) as a colourless oil. Purification by column chromatography over silica gel (eluting with 20:1 petroleum ether / ethyl acetate (1% NEt₃)) gave the *title compound* **4f** (47 mg, 35%) as a colourless oil. $[\alpha]_D^{25}$ +92 (c 0.5, CH₂Cl₂); IR (CHCl₃) 2960, 1739, 1192, 1073; ¹H NMR (400 MHz, CDCl₃) 4.19 (2H, q, *J* 7.1), 3.13 (1H, s), 1.54 (2H, t, *J* 7.7), 1.46 (3H, s), 1.29-1.22 (13H, m), 1.22 (9H, s), 0.86 (3H, t, *J* 6.7); ¹³C NMR (100 MHz, CDCl₃) 168.3, 61.1, 57.4, 48.2, 39.3, 34.2, 31.7, 29.4, 29.1, 25.3, 22.6, 22.3, 17.4, 14.2, 14.1; m/z (ES+) 354 ([M+Na]⁺, 100%), 685 ([2M+Na]⁺, 75); HRMS: Found: 332.2238 C₁₇H₃₄NO₃S 332.2254.