Palladium-Catalyzed Three-Component Domino Reaction for the

Preparation of Benzo[*b*]**thiophene and Related Compounds**

Huanan Huang, Jing Li, Weining Zhao, Yanbo Mei, Zheng Duan*

Chemistry Department, the Key Lab of Chemical Biology and Organic Chemistry of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China. Fax:86 371 67783391; Tel: 86 371 67783391; E-mail: duanzheng@zzu.edu.cn

Supporting Information

Table of Contents

Experimental Procedures and Spectra Data	2-10
¹ H NMR, ¹³ C NMR	.11-38
UV spectra	.41-52

General Information

All reagents were used as received and used directly without further purification. Silica gel (200-300 mesh) for purification and silica gel TLC (F254) were purchased from Qing Dao Hai Yang Chemical Industry Co. of China. 1H NMR and 13C NMR spectra were recorded on a Bruker DPX-300 spectrometer. Mass spectra were obtained on a Waters Q-Tof MicroTM spectrometer. Element analytic data were obtained on a Thermo Electron Corporation flash EA 1112 element spectrometer. Melting points (uncorrected) were obtained on a X-4 micro-melting point apparatus. IR spectra were recorded on a Thermo Nicolet IR 200 spectrometer.Ultraviolet data were recorded in a Varian Cary 100 UV-visible spectrophotometer at room temperature in diluted dichloromethane solution (*ca.* 10^{-5} mol L⁻¹).

Reaction procedure :

General procedure: a reaction vessel was charged with 3 mmol diphenylacetylene, 10 mol% $Pd(OAc)_2$, 20 mol % Cy_3P , 2 mmol Na₂CO₃, 0.7 mmol LiBr in 5 mL DMF under N₂. Then 1mmol 3-bromothiophene was added to the vessel. The mixture was stirred at 120 °C for 20 hours. The suspension was cooled down to r.t., diluted with 20 mL EtOAc and washed with 60 mL H₂O. The aqueous layer was extracted twice with EtOAc (10 mL) and the combined organic layers were dried over Na₂SO₄. After evaporation of the solvents the residue

was subjected to silica gel chromatography or thin layer chromatography (TLC) (hexane).

3aa: 4,5,6,7-Tetraphenylbenzo[b]thiophene

Yield: 82%. Purple solid. m.p.: 206-207 °C. ¹H NMR (300M Hz, CDCl3): 6.82~6.90 (m, 10H), 7.15~7.32 (m, 11H), 7.36 (d , *J*=5.7Hz, 1H).¹³C NMR (75MHz, CDCl₃): 124.68(CH), 125. 44(CH), 125.55(CH), 126.50(CH), 126.73(CH), 126.76(CH), 127.13(CH), 1 27.16(CH), 127.61(CH), 128.02(CH), 129.99(CH), 130.64(CH), 131.70(CH) , 131.73(CH), 135.02, 135.97, 137.00, 137.78, 138.47, 139.93, 139.99, 140.1 2, 140.21, 140.65. IR (KBr): 3056, 3022, 1600, 1503, 1490, 1441, 1415, 127 9, 1109, 1072, 1026, 914, 835, 735, 699, 660, 587, 555, 543 cm⁻¹.HRMS m/z (M⁺+H) Calcd for $C_{32}H_{22}S$: 439.1521, Found: 439.1518.

3ab: 4,5,6,7-Tetrap-tolylbenzo[b]thiophene

Yield: 54%. Purple solid. m.p.: 230-231 °C. ¹H NMR (300 MHz, CDCl₃): 2.10 (s, 6H,CH₃), 2.29 (s, 6H,CH₃), 6.66~6.73 (m, 8H), 6.99~7.18 (m, 9H), 7.30 (d, *J*=5.7Hz, 1H). ¹³C NMR (75MHz, CDCl₃): 21.15(CH₃), 21.27(CH₃), 21.36(CH₃), 124.83(CH), 12 6.65(CH), 127.45(CH), 127.47(CH), 128.29(CH), 128.73(CH), 129.80(C H), 130.50(CH), 131.52(CH), 131.54(CH), 134.47, 134.59, 134.90, 135.7 2, 135.90, 136.43, 137.11, 137.25, 137.30, 137.55, 137.89, 138.46, 140.6 7. IR (KBr): 3021, 2920, 1890, 1611, 1516, 1448, 1421, 1373, 1182, 111

1, 1020, 819, 738, 665, 543 cm⁻¹ .HMRS m/z(M⁺+Na) Calcd for C₃₆H₃₀S: 517.1965, found: 517.1962.

3ac:4,5,6,7-Tetrakis(4-methoxyphenyl)benzo[b]thiophene

Yield: 61%. White solid. m.p.: 259-261 °C. ¹H NMR (300M Hz, CDCl₃): 3.53 (s, 6H,CH₃), 3.66~3.67 (d, 6H,CH₃), 6.35 ~6.37 (m, 3H), 6.61~6.70(m, 9H), 6.99~7.14 (m, 5H), 7.23 (

d, J=5.7Hz, 1H). ¹³C NMR (75MHz, CDCl₃): 54.91(CH₃), 55.09(CH₃), 5 5.12(CH₃), 112.34(CH), 113.07(CH), 113.44(CH), 124.81(CH), 126.68(C H), 131.10(CH), 131.69(CH), 132.65, 132.69(CH), 132.89, 132.91, 134.6 7, 135.66, 137.04, 137.80, 138.59, 140.84, 157.04, 157.12, 157.95, 158.3 2. IR (KBr): 2996, 2931, 2834, 2361, 1608, 1514, 1461, 1423, 1373, 128 7, 1245, 1177, 1033, 833, 806, 766, 551 cm⁻¹.HMRS m/z (M⁺+Na) Calcd for C₃ $_{6}$ H₃₀O₄S: 587.1762, found: 581.1766.

3ad: 4,5,6,7-Tetrakis(4-fluorophenyl)benzo[b]thiophene

Yield: 73%. White solid. m.p.: 232-233 °C. ¹H NMR (300M Hz, CDCl₃): 6.61~6.79 (m, 8H), 6.91~6.99 (m, 4H), 7.12~7.2
6 (m, 5H), 7.42 (d, *J*=5.4Hz, 1H). ¹³C NMR (75MHz, CDCl₃)
: 114.01(*J_{C-F}*=2.6Hz,CH), 114.3(*J_{C-F}*=2.7Hz,CH), 114.86(*J_{C-F}*

=21.2Hz,CH), 115.3(J_{C-F} =21.4Hz,CH),124.44(CH), 127.74(CH), 131.5(J_{C-F} =8Hz,CH), 132.0(J_{C-F} =8Hz,CH), 132.94(J_{C-F} =7.9Hz,CH), 134.38, 13 5.28, 135.5(J_{C-F} =3.5Hz,2C), 135.7(J_{C-F} =3.1Hz), 135.71(J_{C-F} =4.1Hz), 13 6.12, 136.95, 138.68, 140.92, 160.8(J_{C-F} =244Hz,CF), 160.9(J_{C-F} =244Hz, CF), 161.6(J_{C-F} =245Hz,CF), 161.9(J_{C-F} =245Hz,CF). HMRS m/z(M⁺+H) IR (KBr): 3072, 1886, 1687, 1603, 1514, 1454, 1426, 1399, 1326, 1297, 1227, 1156, 1095, 1014, 934, 856, 838, 816, 765, 740, 708, 667, 542, 53 3, 515 cm⁻¹. Calcd for C₃₂H₁₈F₄S:511.1144, found: 511.1106. Anal. Calc d. For C₃₂H₁₈F₄S: C, 75.28; H, 3.55. Found: C, 74.84; H. 3.44.

3ca: 2-Methyl-4,5,6,7-tetraphenylbenzo[b]thiophene

Yield: 71%. Purple solid. m.p.: 190-191 °C. ¹H NMR (300 MHz, CDCl₃): 2.35 (s, 3H,CH₃), 6.70~6.76 (m, 11H), 7.04~ 7.20 (m, 10H), ¹³C NMR (75MHz, CDCl₃): 16.24(CH₃), 122

.26(CH), 125.39(CH), 125.48(CH), 126.41(CH), 126.72(CH), 126.75(CH), 127.07(CH), 127.61(CH), 127.99(CH), 129.98(CH), 130.67(CH), 131. 80(2CH), 134.66, 135.05, 136.16, 137.69, 139.22, 140.09, 140.29, 140.31, 140.39, 140.42, 141.76. IR (KBr): 3055, 3024, 2916, 1600, 1496, 1442, 1418, 1375, 1128, 1073, 1027, 758, 702, 574, 543 cm⁻¹. HMRS m/z (M⁺ +Na) Calcd for $C_{33}H_{24}S$: 475.1496,found: 475.1495.

3cc: 2-Methyl -4,5,6,7-tetrakis(4-methoxyphenyl)benzo[b]thiophene

Yield: 57%. White solid. m.p.: 200-203 °C. ¹H NMR (30 0MHz, CDCl₃): 2.46(s, 3H,CH₃), 3.62 (s, 6H,OCH₃), 3.7 6 (s, 6H,OCH₃), 6.42~6.46 (m, 4H), 6.70~6.78(m, 9H), 7.

08 (d, J=8.7Hz, 2H), 7.18 (d, J=8.7Hz, 2H). ¹³C NMR (75MHz, CDCl₃): 16.16(CH₃),54.91(OCH₃), 55.08(OCH₃), 55.10(OCH₃), 112.26(CH), 112. 29(CH), 113.01(CH), 113.37(CH), 122.36(CH), 131.03(CH), 131.65(CH) , 132.69(CH), 132.71(CH), 132.78, 132.88, 133.03, 133.04, 134.24, 134.6 9, 136.14, 137.65, 139.27, 140.51, 141.15, 156.97, 157.04, 157.85, 158.2 6. IR (KBr): 2924, 2835, 1608, 1514, 1461, 1378, 1286, 1245, 1175, 1107 , 1032, 833, 768, 620, 551 cm⁻¹.HMRS m/z (M⁺+Na) Calcd for C₃₇H₃₂O₄ S: 595.1918,found: 595.1923.

3da: 3-Methyl 4,5,6,7-tetrakis(4-methoxyphenyl) benzo[b]thiophene

Yield: 64%. Purple solid. m.p.: 251-252 °C. ¹H NMR (300M Hz, CDCl₃): 1.80(s, 3H,CH₃), 6.92~6.94 (m, 10H), 7.09 (d, J= 0.9Hz, 1H), 7.21~7.34 (m, 8H), 7.39~7.42 (m, 2H). ¹³C NMR

(75MHz, CDCl₃): 17.78(CH₃), 124.35(CH), 125.30(CH), 125. 52(CH), 126.50(CH), 126.60(CH), 126.72(CH), 126.87(CH), 127.15(CH), 128.01(CH), 130.16(CH), 131.24(CH), 131.59(CH), 131.63(CH), 134.43, 135.39, 136.01, 136.58, 136.65, 138.90, 139.90, 140.04, 140.11, 140.20, 142.09. IR (KBr): 3055, 3024, 2960, 2920, 2851, 1600, 1497, 1442, 1369 , 1277, 1144, 1063, 1024, 913, 851, 771, 732, 698, 590, 557 cm⁻¹. HMRS m/z (M⁺+H) Calcd for $C_{33}H_{24}S$: 453.1678, found: 453.1669.

3ea: 1, 2, 3, 4-Tetraphenyldibenzothiophene

Yield: 52%. Purple solid. m.p.: 215-217 °C ¹H NMR (300 MHz, CDCl₃): 6.62 (d, *J*=8.1Hz, 1H), 6.84~6.90 (m, 10H), 6.97~7.03 (m, 2H),7.23~7.34 (m, 10H), 7.36 (d, *J*=1.8Hz,

1H). ¹³C NMR (75MHz, CDCl₃): 122.30(CH), 123.76(CH), 125.14(CH), 125.40(CH), 125.62(CH), 125.97(CH), 126.54(CH), 126.72(CH), 127.05(CH), 127.26(CH), 128.07(CH), 128.27(CH), 130.06(CH), 130.23(CH), 1 31.37(CH), 131.53(CH), 132.46, 135.18, 136.28, 137.35, 138.76, 139.00, 139.71, 139.74, 139.90, 140.11, 140.45. IR (KBr): 3055, 2921, 2362, 16 33, 1441, 1382, 1071, 1028, 734, 699, 569 cm⁻¹.HMRS m/z (M⁺+Na) Cal cd for $C_{36}H_{24}S$: 511.1496, found: 511.1494.

3fa: 4,5,6,7-Tetraphenylbenzo[b]thiophene-2-carbaldehyde

Yield: 47%. yellow solid. m.p.: 269-270 °C ¹H NMR (30 0MHz, CDCl₃): 6.73~6.82 (m, 10H), 7.10~7.19 (m, 10H), 7.73 (s, 1H), 9.83 (s, 1H,CHO), ¹³C NMR (75MHz, CDC l₃): 125.83(CH), 126.01(CH), 126.94(CH), 127.09(CH), 1

27.57(CH), 127.89(CH), 128.27(CH), 129.80(CH), 130.47(CH), 131.28(CH), 131.50(CH), 135.37(CH), 135.77, 137.81, 138.50, 138.92, 138.95, 1 39.10, 139.27, 139.31, 140.89, 143.54, 143.86, 184.75(CHO).IR (KBr): 3053, 3023, 2809, 1670, 1599, 1546, 1486, 1422, 1344, 1245, 1177, 1144 , 1106, 856, 779, 740, 699, 655, 568cm⁻¹.HMRS m/z(M⁺+Na) Calcd for C ₃₃H₂₂OS:489.1288,found:489.1250. Anal.Calcd. For C₃₃H₂₂OS: C, 84.95; H, 4.75. Found: C, 84.79; H. 4.83.

3ga: 4,5,6,7-Tetraphenylbenzo[b]thiophene-2-carbonitrile

Yield: 43%. Yellow solid. m.p.: 298-299 °C. ¹H NMR (300 MHz, CDCl₃): 6.80~6.91 (m, 10H), 7.14~7.23 (m, 10H), 7. 69 (s, 1H). ¹³C NMR (75MHz, CDCl₃): 110.10(CN), 114.6

0, 125.91(CH), 126.09(CH), 126.96(CH), 126.98(CH), 127

.21(CH), 127.80(CH), 127.94(CH), 128.41(CH), 129.59(CH), 130.35(C
H), 131.24(CH), 131.42(CH), 135.02, 136.09(CH), 136.71, 137.60, 138.
63, 138.94, 139.02, 139.07, 139.37, 140.55, 142.64. R (KBr): 3026, 221
5, 1598, 1485, 1443, 1417, 1230, 1101, 1073, 1026, 882, 777, 761, 735,
713, 698, 572, 556, 535cm⁻¹.HMRS m/z(M⁺+Na) Calcd for C₃₃H₂₁NS: 4
86.1293, found: 486.1254.Anal. Calcd. For C₃₃H₂₁NS: C, 85.50; H, 4.57;
N, 3.02; Found: C, 84.98; H. 4.41; N, 2.70.

5aa: 1-Methyl-4,5,6,7-tetraphenyl-1*H*-indole

Yield: 66%. White solid. m.p.: 189-190 °C. ¹H NMR (300MHz , CDCl₃): 3.17 (s, 3H,CH₃), 6.38~6.39 (m, 1H), 6.83~6.84 (m, 1 0H), 6.98(d, *J*=3Hz, 1H), 7.14~7.25 (m, 10H). ¹³C NMR (75M

Hz, CDCl₃): 36.62(CH₃), 100.98(CH), 124.88(CH), 124.92(CH), 125.96(CH), 126.26(CH), 126.44(CH), 126.63(CH), 126.95(CH), 127.39(CH), 128.42, 130.75(CH), 131.71(CH), 131.88(CH), 132.17(CH), 132.76, 1

33.38, 136.24, 138.57, 140.18, 140.72, 140.98. IR (KBr): 3055, 3019, 1600 , 1518, 1494, 1469, 1440, 1425, 1391, 1374, 1334, 1069, 1027, 761, 744, 73 3, 694, 594, 574cm⁻¹. HRMS m/z(M⁺+H) Calcd for $C_{33}H_{25}N$: 436.2066, Fou nd: 436.2060.

5ba: 1-Benzyl-4,5,6,7-tetraphenyl-1*H*-indole

Yield: 53%. White solid. m.p.: 231-232 °C. ¹H NMR (300MH z, CDCl₃): 4.73 (s, 2H,CH₂), 6.48 (d, *J*=3Hz, 1H), 6.60~6.63 (m, 2H), 6.71~6.87 (m, 10H), 6.91~7.01 (m, 6H), 7.11~7.21 (m, 6H), 7.28~7.31 (m, 2H). ¹³C NMR (75MHz, CDCl₃): 51.62(CH₂), 102.27 (CH), 124.98(CH), 125.00(CH), 125.15, 126.12(CH), 126.22(CH), 126.31(C H), 126.58(CH), 126.65(CH), 127.05(CH), 127.13(CH), 127.54(CH), 128.32 (CH), 128.84, 130.93(CH), 131.24(CH), 131.42(CH), 131.94(CH), 132.26(C H), 132.47, 132.93, 133.10, 136.73, 138.27, 138.93, 140.30, 140.85, 141.09. IR (KBr): 3056, 3022, 1600, 1519, 1494, 1453, 1440, 1380, 1328, 1240, 11 55, 1070, 1028, 760, 744, 704, 697, 593cm⁻¹. HRMS m/z(M⁺+H) Calcd for C₃₉H₂₉N: 512.2379, Found: 512.2374.

5ab: 1-Methyl-4,5,6,7-tetrap-tolyl-1H-indole

Yield: 47%. White solid. m.p.: 232-233 °C. ¹H NMR (300MH z, CDCl₃): 2.08(s, 3H,CH₃), 2.10(s, 3H,CH₃), 2.28(s, 3H,CH₃), 2.29 (s, 3H,CH₃), 3.13 (s, 3H,NCH₃), 6.34 (d, *J*=3.3Hz, 1H), 6

.61~6.73 (m, 8H), 6.92~7.01 (m, 5H), 7.10~7.15 (m, 4H). ¹³C NMR (75MHz , CDCl₃): 21.08(CH₃), 21.24(CH₃), 21.26(CH₃), 36.60(NCH₃), 100.98(CH), 124.93, 126.96(CH), 127.18(CH), 127.63(CH), 128.11(CH), 128.40,130.62(CH),131.43(CH), 131.55(CH), 131.66(CH), 131.96(CH), 132.25, 132.61, 13 3.57, 133.81, 133.83, 135.11, 135.68, 135.89, 136.44, 137.43, 137.89, 138.1 5. IR (KBr): 3018, 2921, 2861, 1897, 1525, 1513, 1452, 1429, 1372, 1331, 1263, 1210, 1180, 1110, 1091, 1019, 854, 818, 803, 771, 750, 736, 697, 676, 543, 530cm⁻¹. HRMS m/z(M⁺+H) Calcd for C₃₇H₃₃N: 492.2692, Found: 492 .268.

5ac: 1-Methyl-4,5,6,7-tetrakis(4-methoxyphenyl)- 1H-indole

18 (m, 4H). ¹³C NMR (75MHz, CDCl₃): 36.69(NCH₃), 54.87(OCH₃), 54.89(OCH₃), 55.08(OCH₃), 100.93(CH), 111.85(CH), 112.06(CH), 112.40(CH), 1 12.88(CH), 124.71, 128.48, 131.02, 131.50(CH), 131.78(CH), 132.14, 132.4 1, 132.61(CH), 132.71(CH), 132.82, 133.04(CH), 133.53, 133.73, 133.77, 1 36.49, 156.60, 156.64, 157.56, 158.09. IR (KBr): 2930, 2834, 1609, 1574, 1 514, 1458, 1429, 1393, 1373, 1333, 1285, 1244, 1176, 1106, 1035, 832, 808, 776, 740, 588, 552cm⁻¹. HRMS m/z(M⁺+H) Calcd for $C_{37}H_{33}NO_4$: 556.2488 , Found: 556.2484.

.

.

ectronic Supplementary Material (ESI) for Organic and Biomolecular is journal is © The Royal Society of Chemistry 2011

Макалариана Караларана Каралара Карала С С С С С С С С С С С С С С С

.

• -

. .

۰. . .

.

. -

.

2

.

.

.

 \circ 00

-

huanghn318p3 C13CPD

lectronic Supplementary Material (ESI) for Organic and Biomolecular Cheminis journal is © The Royal Society of Chemistry 2011

 $\mathcal{T}_{\mathcal{A}} \in \mathbb{R}^{n}$

145

.

140

╶┍┉┥┰╍┨┍╼┨┍╼┨┍╼┨┍╼┫┍╍┫┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨┍╼┨

•

-

· · · ·

.

. •

110

.

-

-

105

100

95

90

904 400 • • • - - 9 Γ Γ Γ

.

. - ·

;

.

85

75

·_ —

8.043

13

5

.

.

-

-

.

.

1.1.1.1.1.1

N. 6 1

المحاد المستخط المستحد الملحد المحدد المحاد الم

3ab

ectronic Supplementary Material (ESI) for Organic and Biomolecular Cher iis journal is $^{\odot}$ The Royal Society of Chemistry 2011

.

huanghn212 p3 C13CPD

140

100

.

205 964 400 • • • P - 2 $\neg \neg \neg$

-

80

.

 $\circ \circ \circ$ 270 5 N N • • • $\square \square \square$

30

20

ppm

<u>, , , , , r</u>

huanghn 228 p3 PROTON

-

.

.

.

• .

.

.

.

-

8

•

990.6

29

5

3

.

.200

2 7

.

5

.

.

.

. .

•

.

.

. . -

. .

..

.

-

-

6

.

6.921 5.000

4

•

.

.

-

-

....

.

.

<u>,</u>

huanghn 228 p3 C13CPD

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

170

**

8080966866708 408 807066866708 408 70808686708 408 7080868867 70808688 7080868 70800 • • • • • • • • • • • • • • • •

.

16

-

40 ppm

1 1 7 1の1 **ЧО**0 • • • 420 വവവ

1 11 12

huanghn317 p3

.

- ·

.

C

-

-

.

-

.

s journal is © The Royal Society of Chemistry 2011

.

• .

.

-

. · . .

1.000 4.042 5.065 O S $|\infty|$

. · · · · · · · · · · · ·

. .

· -· -- · ·

.

1

. . -

. · ·

. · ·

> ι.

. · ·

· · · ·

-

•

•

00 Ο

× .

.

-

.

.

.

.

huanghn317 p3 C13CPD

MVOWOAN004004 500500000 MMNNODDD

ctronic Supplementary Material (ESI) for Organic and Biomolecular Chemist is journal is C The Royal Society of Chemistry 2011

•

.

- 16

ألكان المراطقة والمتناط فالمست المتعادلة aler's p

160

165

170

.

<u> ろうみ 108212067 のち ある 800070 キア</u>

•

155 150

145

•

135

125

18

130

140

.

.

.

70

الله المحمد المراجع المحمد المراجع المراجع المحمد المراجع المحمد المراجع المحمد المحمد المحمد المحمد المحمد ال

പ വ ര Ьω 604 • • • rr9 $\neg \neg \neg$

huanghn230P32

.

Electronic Supplementary Material (ESI) of This journal is © The Royal Society of Che

or Organic and Biomolecular Chemistry emistry 2011

3ca

.

. .

10.196 11.080 6

.

19

.

•

-

.

. .

.

2.353

.

.

•

-

.

.

-

.

.

•

-

.

.

· · ·

.

•

3

0

ppm

a second s

huanghn230P32 C13CPD

journal is © The Royal Society of Chemistry 20

3ca

.

180

170

• • •

· - .

.

160

-

-

· .

130

140

.

.

20

100

.

·

· · · · .

.

10 ppm

~

•

 \mathbf{O} , - 1

huanghn246 p2

ectronic Supplementary Material (ESI) for Organic and Biomolecular Chen is journal is C The Royal Society of Chemistry 2011

21

huanghn246 p2 C13CPD

-

.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistr This journal is © The Royal Society of Chemistry 2011

.

.

170

180

-**1**-1-1-1-

.

0	40	30	ppm
		-	
		•	k
		-	
		·	
			, - - - - - - - - - - - - - - - - - - -

huanghn231P32

.

.

ectronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry is journal is © The Royal Society of Chemistry 2011

.

.

.

~

• • .2

23

.

•

92 91 \Box . . H

.

.

•

.

•

.

-3.000

•

lectronic Supplementary Material (ESI) for Organic and Biomolecular Chernis journal is © The Royal Society of Chemistry 2011

142.085	140.204	140.113	140.041
Ĺ		L	

huanghn231P32 C13CPD

•

.

_ ·

.

. .

24 - **-** · · **- -** ·

. .

. .

.

. . .

-

. .

•

-

24.4

• .

-

. .

-

.

huanghn296 p4 C13CPD

.

3ea

lectronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry his journal is © The Royal Society of Chemistry 2011

150

1 1

1.4.4

155

.

145

-

· ·**-** - · ·

26

80 90 85 95 100 105

.

110

.

.

.

r

.

.

.

-- -

•

• ·

. . .

.

.

-

.

•

•

110

100

80

.

.

· · · ·

MUQ 0 00 H 602 . . . rr9 $\neg \neg \neg$

huanghn311 p2

•

ectronic Supplementary Material (ESI) for Organic and Bic nis journal is © The Royal Society of Chemistry 2011

.

. 1

9

.

÷

-

8

1.000

10.012 10.027

n

5

-

•

-

-

•

-

.

-

.

.

.

-

.

ppm

huanghn261 p3

· .

-

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistr This journal is © The Royal Society of Chemistry 2011

•

.

.

.

. '

.

9

.

10

-, I. - I. -

• • • • • • • • • • • • • • • • 0000000111111

-

.

.

-

10.026 1.057

.098

0

 $|\infty|$

97

0

.

.

.

5aa

· -

--

.

2

-

.

.

 \neg $\mathbf{A} = \mathbf{A} =$

983 Ο 0 **H**

130

• · · ·

120

•

· ·

110

•

.

22 $\mathcal{O}\mathcal{L}$

.

: .

50	40	ppm	
⋳ ⋐∊⋧⋳∊∊∊⋳⋵∊∊⋵⋵⋵⋶⋶ ⋳⋛⋫⋳⋐ _⋻ ⋳⋖⋐⋬⋳⋳∊⋖⋶⋧∊⋍⋳⋳⋚⋲⋳⋎⋍	<mark>₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark>		
		•	
	·		
		_	
		: \$	
			ŗ
	· · ·		
	(0 N	

· · · · · · · · · · · ·

4

 \sim

Q

huanghn300p3

5ba

10

1

700000 **T**

33

2.000

•7

journal is © The Royal Society of Chemistry 2011

5ba

1...1... 150 140 120 130

+

160

34

110

 ∞

-

9

-

ഗ

35

.

.

160

Liectronic Supplementary Material (ESI) for Organic : This journal is © The Royal Society of Chemistry 201

984

•

huanghn279 p3 C13CPD

.

σ

σ

LΩ

317 6 W 00 - - - $\circ \circ \circ$

lectronic Supplementary Material (ESI) for Organic and Biomolecular Che his journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

5ac

*

. 5.0 5.5 6.5 6.0 4.5 7.0 -* 4.004 1.051 8.087 5.078 37

.

2

•

State of the second sec

685 . 9 \mathbb{C}

.

50

40

ppm

45

cm)

cm)

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

cm)

