Rapid preparation of triazolyl substituted NHheterocyclic kinase inhibitors via one-pot Sonogashira coupling–TMS-deprotection–CuAAC sequence**

Eugen Merkul,^[a] Fabian Klukas,^[a] Dieter Dorsch,^[b] Ulrich Grädler,^[b] Hartmut E. Greiner,^[b] and Thomas J. J. Müller^[a]*

 [*] [a] Dipl.-Chem. Eugen Merkul, Fabian Klukas, Prof. Dr. Thomas J. J. Müller Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf
 Universitätsstr. 1, D-40225 Düsseldorf
 Fax: (+)49 (0)211 81 14324
 E-mail: ThomasJJ.Mueller@uni-duesseldorf.de

[b] Dr. Dieter Dorsch, Dr. Ulrich Gr\u00e4dler, Dr. Hartmut E. Greiner Merck Serono Research and Development, Merck KGaA Frankfurter Str. 250, D-64293 Darmstadt

[**] This work was supported by Merck Serono, Darmstadt

Supporting Information

Table of Contents

1. General Considerations				
2. Preparation of Starting Materials 1a-I and 1n	7			
2.1. Preparation of N-Boc 3-iodo (aza)indoles 1a, 1d-k, and 1n (shown for				
tert-butyl 3-iodo-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (1f)) ^[1]	7			
2.2. Preparation of tert-butyl 3-iodo-1H-indazole-1-carboxylate (1b)	8			
2.3. Preparation of tert-butyl 3-iodo-1H-pyrrolo[3,2-b]pyridine-1-				
carboxylate (1c) ^[2]	9			
2.4. Spectroscopic data of compounds 1a-k and 1n	14			
2.4.1. tert-Butyl 3-iodo-1 <i>H</i> -indole-1-carboxylate (1a)	14			
2.4.2. tert-Butyl 3-iodo-1 <i>H</i> -indazole-1-carboxylate (1b)	15			
2.4.3. tert-Butyl 3-iodo-1 <i>H</i> -pyrrolo[3,2- <i>b</i>]pyridine-1-carboxylate (1c)	16			
2.4.4. tert-Butyl 3-iodo-1 <i>H</i> -pyrrolo[3,2- <i>c</i>]pyridine-1-carboxylate (1d)	17			
2.4.5. tert-Butyl 3-iodo-1 <i>H</i> -pyrrolo[2,3- <i>c</i>]pyridine-1-carboxylate (1e)	18			
2.4.6. tert-Butyl 3-iodo-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine-1-carboxylate (1f)	19			
2.4.7. tert-Butyl 3-iodo-4-methoxy-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine-				
1-carboxylate (1g)	20			
2.4.8. tert-Butyl 3-iodo-2-methyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine-				
1-carboxylate (1h)	21			
<i>2.4.9. tert</i> -Butyl 7-iodo-5 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyrazine-5-carboxylate (1i)	22			
2.4.10. tert-Butyl 5-iodo-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine-7-				
carboxylate (1j)	23			
2.4.11. tert-Butyl 4-(2-methoxyethoxy)-5-iodo-7H-pyrrolo[2,3-d]pyrimidine-	•			
7-carboxylate (1k)	24			
2.4.12. tert-Butyl 4-iodo-1 <i>H</i> -imidazole-1-carboxylate (1n)	25			
2.5. Preparation of tert-butyl 4-iodo-2-(4-methoxy-phenyl)-				
1H-pyrrole-1-carboxylate (11) ^[3]	26			

3 Multicomponent Syntheses of Triazolyl Substituted	
N-Boc Protected NH-Heterocycles 2a-s	28
3.1. Three-component Sonogashira coupling – TMS-deprotection –	
CuAAC sequence	28
3.1.1. General procedure for the preparation of compounds 2a-o	28
3.2. Four-component Sonogashira coupling – TMS-deprotection –	
Azide-Halide exchange – CuAAC sequence	35
3.2.1. General procedure for the preparation of compounds 2p-s	35
3.3. Four-component Boc-protection – Sonogashira coupling –	
TMS-deprotection – CuAAC sequence	38
3.3.1. General procedure for the preparation of compounds 7a-b	38
4. Deprotection of <i>N</i> -Boc Protected Triazolyl <i>NH</i> -Heterocycles	41
4.1. General procedure for the preparation of compounds 8a-s and 9a-b	41
4.2. Spectroscopic data of compounds 8a-s and 9a-b	50
<i>4.2.1.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -indole (8a)	50
<i>4.2.2.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -indazole (8b)	51
<i>4.2.3.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[3,2- <i>b</i>]pyridine (8c)	52
<i>4.2.4.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[3,2- <i>c</i>]pyridine (8d)	53
<i>4.2.5.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>c</i>]pyridine (8e)	54
<i>4.2.6.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8f)	55
<i>4.2.7.</i> 3-(1-Phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8g)	56
<i>4.2.8.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-4-methoxy-	
1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8h)	57
<i>4.2.9.</i> 3-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-2-methyl-	
1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8i)	58
<i>4.2.10.</i> 7-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-5 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyrazine (8j)	59
<i>4.2.11.</i> 5-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-4-methoxy-7 <i>H</i> -	
pyrrolo[2,3- <i>d</i>]pyrimidine (8k)	60
<i>4.2.12.</i> 4-(2-Methoxyethoxy)-5-(1-benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-	
7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidine (8I)	61
4.2.13. 1-Benzyl-4-(5-(4-methoxyphenyl)-1H-pyrrol-3-yl)-	
1 <i>H</i> -1,2,3-triazole (8m)	62
<i>4.2.14.</i> 1-Benzyl-4-(1 <i>H</i> -pyrazol-4-yl)-1 <i>H</i> -1,2,3-triazole (8n)	63

<i>4.2.15.</i> 1-Benzyl-4-(1 <i>H</i> -imidazol-4-yl)-1 <i>H</i> -1,2,3-triazole (8o)	64
<i>4.2.16.</i> 3-(1-(4-Chlorobenzyl)-1 <i>H</i> -1,2,3-triazol-4-yl)-	
1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8p)	65
4.2.17. 3-(1-(4-Methoxybenzyl)-1H-1,2,3-triazol-4-yl)-	
1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8q)	66
<i>4.2.18.</i> 3-(1-Phenethyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (8r)	67
<i>4.2.19.</i> 3-(1-(1-Phenylethyl)-1 <i>H</i> -1,2,3-triazol-4-yl)-	
1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridin (8s)	68
<i>4.2.20.</i> 4-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (9a)	69
<i>4.2.21.</i> 5-(1-Benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (9b)	70
5. Preparation of 3-(4-Benzyl-1 <i>H</i> -1,2,3-triazol-1-yl)-1 <i>H</i> -pyrrolo[2,	3-
<i>b</i>]pyridine (10) by the One-Pot Synthesis of 1-Aryl 1,2,3-Triazole	es
from Aryl Halides and Terminal Alkynes in the Presence of Sod	ium
Azide ^[4]	71
6. Preparation of 3-(1-Benzyl-1 <i>H</i> -pyrazol-4-yl)-1 <i>H</i> -pyrrolo[2,3-	
<i>b</i>]pyridine (11) by the <i>Masuda</i> Borylation – <i>Suzuki</i> Coupling	
Sequence ^[5]	74
7. ¹ H and ¹³ C NMR Spectra of Compounds 8f, 8g, 8r, 9a, 10,	
and 11	76
8. Appendix	88
8.1. HT-LC-MS Spectra and UV purity of the obtained compounds	
8a-s, 9a-b, 10, and 11	88
8.2. HT-LC-MS Methods for the control of identity and purity of	
compounds 8a-s, 9a-b, 10, and 11	140
8.3. Determination of Cu and Pd contents in compound 8f	142
9. References	143

1. General Considerations

All cross coupling reactions were carried out in oven-dried Schlenk glassware using septa and syringes under nitrogen or argon atmosphere. THF and 1,4-dioxane were dried using *MBraun* system MB-SPS-800, and triethylamine was refluxed under argon atmosphere over ketyl sodium, distilled and stored in a Schlenk flask over potassium hydroxide pellets under argon atmosphere. Dry methanol was purchased from *Sigma-Aldrich Chemie GmbH*.

7-, 6-, and 5-Azaindoles were obtained commercially from *Biosynth*. 4-Azaindole, 4chloro-7-azaindole, and 4-chloro-deazapurine were synthesized in laboratories of *Merck Serono*, Darmstadt. 4,7-Diazaindole and 2-methyl-7-azaindole were obtained from *Ark Pharm, Inc.* 4(5)-lodo-1*H*-imidazole and *tert*-butyl 4-iodo-1*H*-pyrazole-1carboxylate (**1m**) were purchased from *ABCR GmBH* & *Co.* 4-Bromo-7-azaindole (**6a**) and 5-bromo-7-azaindole (**6b**) were obtained from *Sigma-Aldrich Chemie GmbH.*

Trimethylsilylacetylene was obtained from *Sigma-Aldrich Chemie GmbH*. Tetrabutylammonium fluoride (1 M in THF) was obtained from *Sigma-Aldrich Chemie GmbH*. Benzyl azide (**5a**) was obtained from *ABCR GmBH* & Co. Azidobenzene solution (~ 0.5 M in *tert*-butylmethylether) was obtained from *Sigma-Aldrich Chemie GmbH*. Cesium azide was obtained from *Sigma-Aldrich Chemie GmbH*. Cp*RuCl(PPh₃)₂ was obtained from *ABCR GmBH* & Co.

Commercial grade reagents were used as supplied without further purification and were purchased from *Acros Organics*, *Sigma-Aldrich Chemie GmbH*, *Fluka AG*, *ABCR GmBH* & *Co. KG*, *AppliChem*, and *Merck KGaA*.

The purification of products was performed on silica gel 60 (0.015-0.040 mm) from *Merck KGaA* using flash technique and under pressure of 2 bar. The crude mixtures were adsorbed on Celite 545 (0.02-0.10 mm) from *Merck KGaA* before chromatographic purification.

The reaction progress was monitored qualitatively using TLC Silica gel 60 F_{254} 5 x 7.5 cm aluminium sheets obtained by *Merck KGaA*. The spots were detected with UV light at 254 nm and using aqueous potassium permanganate solution.

¹H, ¹³C, and 135-DEPT NMR spectra were recorded on Bruker DRX 500 spectrometer. CDCl₃ and DMSO-d₆ were used as deuterated solvents. TMS was used as reference (δ = 0.0) or the resonances of the solvents were locked as internal standards (CDCl₃: ¹H δ 7.26, ¹³C δ 77.0; DMSO-d₆: ¹H δ 2.50, ¹³C δ 39.4). The multiplicities of signals were abbreviated as follows: s: singlet; d: doublet; t: triplet; dd: doublet of doublets, q: quartet, m: multiplet and br: broad signal. The type of carbon atoms was determined on the basis of 135-DEPT NMR spectra.

El mass spectra were measured on Finnigan MAT 8200 spectrometer. IR spectra were obtained on Bruker Vector 22 FT-IR. The solids were measured as KBr pellets and oils as films on KBr plates. The intensity of signals is abbreviated as follows: s (strong), m (medium) and w (weak). The melting points (uncorrected) were measured on Reichert-Jung Thermovar. Combustion analyses were carried out on Perkin Elmer Series II Analyser 2400 in the microanalytical laboratory of Institut für Pharmazeutische und Medizinische Chemie der Heinrich-Heine-Universität Düsseldorf. HT-LC-MS spectra were measured in the Molecule Analytics laboratory of Central Analytical Services, Merck KGaA Darmstadt. The content of Pd and Cu in the compound 8f was determined in the Element Analytics laboratory of Central Analytical Services, Merck KGaA Darmstadt.

2. Preparation of Starting Materials 1a-I and 1n

2.1. Preparation of N-Boc 3-iodo (aza)indoles 1a, 1d-k, and 1n (shown for tertbutyl 3-iodo-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (1f))^[1]

A solution of iodine (25.7 g, 101 mmol, 1.01 equiv) in 180 mL of DMF was dropped to the solution of 7-azaindole (12.1 g, 100 mmol) and potassium hydroxide (16.5 g, 250 mmol, 2.50 equiv) in 180 mL of DMF at room temperature and the mixture was stirred for 45 min. The reaction mixture was then poured on 1 L ice water containing 1 % ammonia and 0.2 % sodium disulfite. The precipitate was filtered, washed with ice water and dried in vacuo to obtain 23.7 g (97.2 mmol, 97 % yield) of a yellow solid. The obtained iodide was used without further purification in the next step. It was suspended in 180 mL of dichloromethane, 4-dimethylaminopyridine (1.21 g, 9.72 mmol, 10 mol %) was added and di-tert-butyl dicarbonate (32.8 g, 146 mmol, 1.50 equiv), dissolved in 180 mL of dichloromethane, was added dropwise over 30 min. The mixture was stirred for 30 min at room temperature, washed with 200 mL of 0.1 N HCl, and the aqueous phase was extracted with dichloromethane (2 x 100 mL). The combined organic layers were dried with sodium sulphate, the solvents were removed under reduced pressure and the residue was adsorbed onto Celite® and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl acetate (PE-EtOAc = 20:1, R_f (PE-EtOAc = 20:1): 0.14) to give 31.6 g (91.8) mmol, 94 % yield; 92 % total yield over two steps) of *tert*-butyl 3-iodo-1*H*-pyrrolo[2,3b]pyridine-1-carboxylate (1f) as an orange oil, which solidifies upon storage in refrigerator.

Compounds 1a, 1d-e, 1g-k, and 1n were obtained analogously.

The experimental details are depicted in Table 1.

2.2. Preparation of tert-butyl 3-iodo-1H-indazole-1-carboxylate (1b)

A solution of iodine (13.8 g, 54.3 mmol, 2.00 equiv) in 50 mL of DMF was dropped to the solution of 1*H*-indazole (3.34 g, 27.1 mmol) and potassium hydroxide (5.70 g, 102 mmol, 3.76 equiv) in 50 mL of DMF at room temperature and the mixture was stirred for 4 h. The reaction mixture was then poured onto 200 mL of saturated sodium silfite solution and extracted with diethylether (2 x 50 mL). The combined organic layers were washed with water and brine and dried with sodium sulphate. After the solvents were removed under reduced pressure, 6.09 g (24.9 mmol, 92 % yield) of a yellow solid were obtained.

The obtained iodide was used without further purification for the next step. 3-lodo-1*H*indazole (5.09 g, 20.9 mmol) was dissolved in 100 mL of dichloromethane, then triethylamine (27.2 mL, 196 mmol, 9.39 equiv) and 4-dimethylaminopyridine (261 mg, 2.09 mmol, 10 mol %) were added, and di-*tert*-butyl dicarbonate (14.1 g, 62.6 mmol, 3.00 equiv), dissolved in 50 mL of dichloromethane, was slowly added dropwise. The mixture was stirred for 4 h at room temperature, washed with saturated sodium sulfite solution (3 x 20 mL), dried with sodium sulphate, and the solvents were removed under reduced pressure. The residue was adsorbed onto Celite[®] and purified chromatographically on basic Alox with petroleum ether (boiling range 40-60 °C)/ethyl acetate (PE-EtOAc = 20:1, R_f (PE-EtOAc = 20:1): 0.31) to give 6.26 g (18.2 mmol, 87 % yield; 80 % total yield over two steps) of *tert*-butyl 3-iodo-1*H*-indazole-1carboxylate (**1b**) as a pale yellow solid.

2.3. Preparation of tert-butyl 3-iodo-1H-pyrrolo[3,2-b]pyridine-1-carboxylate (1c)^[2]

4-Azaindole (11.8 g, 100 mmol) was dissolved in 200 mL of pyridine and the solution was cooled with an ice bath. Then, 220 mL of a 0.5 M solution of iodomonochloride (17.9 g, 110 mmol, 1.10 equiv) in dichloromethane was added over 5 min. After 15 min the cooling bath was removed, and after another 30 min the solution was diluted with 2 L of ethyl acetate. The mixture was washed successively with 1 N HCL and 1 N NaOH, dried with sodium sulphate, and the solvents were removed in vacuo. The residue was dried in vacuo to give 18.3 g (75.0 mmol, 75 %) of an orange solid.

The obtained iodide was used without further purification for the next step. 3-lodo-1*H*-pyrrolo[3,2-*b*]pyridine (1.82 g, 7.45 mmol) was dissolved in 30 mL of dichloromethane, then triethylamine (6.62 mL, 47.8 mmol, 6.41 equiv) and 4-dimethylaminopyridine (91 mg, 0.75 mmol, 10 mol %) were added, and di-*tert*-butyl dicarbonate (3.25 g, 14.9 mmol, 2.00 equiv), dissolved in 25 mL of dichloromethane, was slowly added dropwise. The mixture was stirred for 4 h at room temperature, washed with saturated sodium sulfite solution (2 x 20 mL), dried with sodium sulphate, and the solvents were removed under reduced pressure. The residue was adsorbed onto Celite[®] and purified chromatographically on neutral Alox with petroleum ether (boiling range 40-60 °C)/ethyl acetate (PE-EtOAc = 5:1, R_f (PE-EtOAc = 5:1): 0.41) to give 1.88 g (5.45 mmol, 73 % yield; 55 % total yield over two steps) of *tert*-butyl 3-iodo-1*H*-pyrrolo[3,2-*b*]pyridine-1-carboxylate (**1c**) as a colorless solid.

Entry	(Aza)Indole	3-lodo (aza)indole	<i>N</i> -Boc 3-lodo (aza)indole 1 (isolated yield %)	Chromatographic purification (eluent) R _f (eluent)
1	20.0 g (171 mmol) 1 <i>H</i> -Indole (<i>Acros</i>)	Yellow solid 32.8 g (135 mmol, 79 %) For Boc- protection: 10.0 g (41.1 mmol)	Brown oil 11.3 g (32.9 mmol, 80 %) Total yield: 63 %	PE-EtOAc = 50:1 R _f (PE-EtOAc = 50:1): 0.38
2	3.34 g (27.1 mmol) 1 <i>H</i> -Indazole (<i>ABCR</i>)	Yellow solid 6.09 g (24.9 mmol, 92 %) For Boc- protection: 5.09 g (20.9 mmol)	Colorless solid 6.26 g (18.2 mmol, 87 %) Total yield: 80 %	PE-EtOAc = 20:1 R _f (PE-EtOAc = 20:1): 0.31
3	11.8 g (100 mmol) 1 <i>H</i> - Pyrrolo[3,2- <i>b</i>]pyridine (4-Azaindole) (<i>Biosynth</i>)	Orange solid 18.3 g (75.0 mmol, 75 %) For Boc- protection: 1.82 g (7.45 mmol)	Colorless solid 1.88 g (5.45 mmol, 73 %) Total yield: 55 % Interpret of the solution of th	PE-EtOAc = 5:1 R _f (PE-EtOAc = 5:1): 0.41

Table 1. Experimental details for the synthesis of N-Boc 3-iodo (aza)indoles **1a-k** and N-Boc 4-iodo imidazole **1n**.

Entry	Azaindole	3-lodo azaindole	<i>N</i> -Boc 3-lodo azaindole 1 (isolated yield %)	Chromatographic purification (eluent) R _f (eluent)
4	1.00 g (8.47 mmol) 1 <i>H</i> - Pyrrolo[3,2- <i>c</i>]pyridine (5-Azaindole) (<i>Biosynth</i>)	Pale yellow solid 1.50 g (6.14 mmol, 73 %)	Colorless solid 1.85 g (5.36 mmol, 87 %) Total yield: 64 % N Boc 1d	PE-EtOAc = 2:1 R _f (PE-EtOAc = 2:1): 0.37
5	5.00 g (42.3 mmol) 1 <i>H</i> - Pyrrolo[2,3- <i>c</i>]pyridine (6-Azaindole) (<i>Biosynth</i>)	Yellow solid 8.10 g (33.2 mmol, 78 %) For Boc- protection: 7.11 g (29.1 mmol)	Pale yellow solid 7.52 g (21.9 mmol, 75 %) Total yield: 59 % interproduct for the solution of the solution o	PE-EtOAc = 2:1 R _f (PE-EtOAc = 2:1): 0.36
6	12.1 g (100 mmol) 1 <i>H</i> - Pyrrolo[2,3- <i>b</i>]pyridine (7-Azaindole) (<i>ABCR</i>)	Yellow solid 23.7 g (97.2 mmol, 97 %)	Yellow-orange oil ^[a] 31.6 g (91.8 mmol, 94 %) Total yield: 92 %	PE-EtOAc = 20:1 R _f (PE-EtOAc = 20:1): 0.14

Table 1 (continuation). Experimental details for the synthesis of N-Boc 3-iodo (aza)indoles **1a-k** and N-Boc 4-iodo imidazole **1n**.

[a] Solidifies upon storage in refrigerator.

Table	1	(continuation).	Experimental	details	for	the	synthesis	of	N-Boc	3-iodo
(aza)ind	do	les 1a-k and N-B	oc 4-iodo imid	azole 1 1	1 .					

Entry	Azaindole	3-lodo azaindole	<i>N</i> -Boc 3-lodo azaindole 1	Chromatographic purification (eluent)
			(isolated yield %)	R_f (eluent)
7	284 mg (1.92 mmol)	Yellow solid 420 mg	Colorless solid 428 mg	PE-EtOAc = 1:1 R_f (PE-EtOAc = 1:1):
	4-Methoxy-́ 1 <i>H</i> -	(1.53 mmol, 80 %)	(1.14 mmol, 82 %) Total yield: 65 %	0.51
	pyrrolo[2,3- blovridine ^[a]	For Boc-	OMe	
	bjpyname	protection: 385 mg		
		(1.40 mmol)	1g	
8	2.50 g	Beige solid	Yellow oil ^[b]	PE-EtOAc = 20:1 →
	(18.0 mmol)	4.33 g	5.58 g	15:1
	2-Methyl-1 <i>H</i> -	(16.8 mmol,	(15.6 mmol, 95 %)	R_f (PE-EtOAC =
	pyrroio[2,3-	93 %)		15.1). 0.44
	(Ark Pharm)	For Boc- protection:		
		4.25 g	Boc	
		(16.5 mmol)	1h	
9	1.25 g (10.0 mmol)	Yellow solid	Pale yellow solid	PE-EtOAc = 5:1
	(10.0 mmor) 5 <i>H</i> -	2.00 g (8 18 mmol	(7.33 mmol 92 %)	$1 \times f(F = -1) = 0.31$
	Pvrrolo[2.3-	82 %)	Total vield: 75 %	0.01
	<i>b</i>]pyrazine		N. /	
	(4,7-Diaza-	For Boc-		
	(Ark Pharm)	1 96 a	N	
		(7.99 mmol)	1i	

[a] Preparation from 4-chloro-1*H*-pyrrolo[2,3-*b*]pyridine is described in S. Benoit, S. Gingras, N. Soundararajan, PCT Int. Appl. 2003, WO 2003082289 A1 20031009. The beige solid was obtained in 78 % yield.

[b] Solidifies upon storage in refrigerator.

Table	1	(continuation).	Experimental	details	for	the	synthesis	of	N-Boc	3-iodo
(aza)in	do	les 1a-k and N-B	loc 4-iodo imida	azole 1 r	1.					

Entry	Azaindole	3-lodo azaindole	<i>N</i> -Boc 3-lodo azaindole 1 (isolated yield %)	Chromatographic purification (eluent) R _f (eluent)
10	611 mg (4.10 mmol) 4-Methoxy-7 <i>H</i> - pyrrolo[2,3- <i>d</i>]pyrimidine ^[a]	Pale yellow solid 897 mg (3.26 mmol, 80 %)	Colorless solid 1.12 g (2.98 mmol, 91 %) Total yield: 73 %	PE-EtOAc = 5:1 R _f (PE-EtOAc = 5:1): 0.38
11	966 mg (5.00 mmol) 4-(2- Methoxyethoxy)- 7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidine ^[b]	Pale yellow solid 1.33 g (4.15 mmol, 83 %) For Boc- protection: 1.26 g (3.95 mmol)	Pale yellow oil 1.55 g (3.70 mmol, 94 %) Total yield: 78 %	PE-EtOAc = 5:1 → 4:1 R _f (PE-EtOAc = 5:1): 0.22
12		2.06 g (10.0 mmol) 4(5)-lodo-1 <i>H</i> - imidazole (<i>ABCR</i>)	Yellow oil 2.71 g (9.23 mmol, 92 %) ^[c]	PE-EtOAc = 20:1 R _f (PE-EtOAc = 20:1): 0.16

[a] Preparation from 4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidine as described for 4-methoxy-7-azaindole in S. Benoit, S. Gingras, N. Soundararajan, PCT Int. Appl. 2003, WO 2003082289 A1 20031009. The colorless solid was obtained in 76 % yield.

[b] Preparation from 4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidine upon refluxing with 2.5 equivs of Cs_2CO_3 in 2-methoxyethanol (*c* = 0.2 M) as a colorless solid in 85 % yield.

[c] The isomer, *tert*-butyl 5-iodo-1*H*-imidazole-1-carboxylate, was obtained along with **1n** as a yellow solid in 4 % yield (123 mg, 0.42 mmol).

2.4. Spectroscopic data of compounds 1a-k and 1n

2.4.1. tert-Butyl 3-iodo-1H-indole-1-carboxylate (1a)

11.3 g (32.9 mmol, 63 % yield over two steps) as a pale brown oil. ¹H NMR (CDCl₃, 500 MHz): δ 1.66 (s, 9 H), 7.28-7.32 (m, 1 H), 7.33-7.36 (m, 1 H), 7.36-7.40 (m, 1 H), 7.72 (s, 1 H), 8.12 (d, *J* = 7.3 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.1 (CH₃), 65.4 (C_{quat}), 84.2 (C_{quat}), 115.0 (CH), 121.4 (CH), 123.3 (CH), 125.3 (CH), 130.0 (CH), 132.0 (C_{quat}), 134.8 (C_{quat}), 148.6 (C_{quat}). EI + MS (*m*/*z* (%)): 343 (M⁺, 14), 287 ((M-C₄H₉+H)⁺, 59), 270 ((M-C₄H₉O+H)⁺, 6), 243 ((M-C₅H₉O₂+H)⁺, 79), 116 (C₈H₆N⁺, 30), 115 (C₈H₅N⁺, 22), 88 (10), 57 (C₄H₉⁺, 100), 41 (13). Anal. calcd for C₁₃H₁₄INO₂ (343.2): C 45.50, H 4.11, N 4.08. Found: C 45.24, H 4.30, N 3.89.

Data reported in the literature:

B. Witulski, N. Buschmann, U. Bergsträßer, Tetrahedron 2000, 56, 8473-8480.

Colorless solid (*n*-pentane). Mp 36-40 °C. ¹H NMR (400 MHz): δ 1.68 (s, 9 H), 7.29-7.43 (m, 3 H), 7.73 (s, 1 H), 8.13 (d, *J* = 8.1 Hz, 1 H). ¹³C NMR (100 MHz): δ 28.1 (q), 65.4 (s), 115.1 (d), 121.5 (d), 123.3 (d), 125.3 (d), 130.1 (d), 132.1 (s), 134.9 (s), 148.7 (s). EI + MS (*m*/*z* (%)): 343 (M⁺, 69), 287 (100), 270 (13), 243 (98), 116 (28), 57 (98). Anal. calcd for C₁₃H₁₄INO₂ (343.2): C 45.50, H 4.11, N 4.08. Found: C 45.37, H 3.66, N 3.96.

T. A. Kelly, D. W. McNeil, J. M. Rose, E. David, C.-K. Shih, P. M. Grob, *J. Med. Chem.* **1997**, *40*, 2430-2433.

¹H NMR (CDCl₃): δ 1.69 (s, 9 H), 7.20-7.41 (m, 3 H), 7.72 (s, 1 H), 8.15 (d, *J* = 5.0 Hz, 1 H).

2.4.2. tert-Butyl 3-iodo-1H-indazole-1-carboxylate (1b)

6.26 g (18.2 mmol, 80 % yield over two steps) as a colorless solid. Mp 117 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.73 (s, 9 H), 7.34-7.39 (m, 1 H), 7.47-7.51 (m, 1 H), 7.56-7.61 (m, 1 H), 8.11 (d, *J* = 8.5 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.1 (CH₃), 85.4 (C_{quat}), 102.9 (C_{quat}), 114.5 (CH), 121.9 (CH), 124.1 (CH), 129.9 (CH), 130.1 (C_{quat}), 139.5 (C_{quat}), 148.3 (C_{quat}). EI + MS (*m*/*z* (%)): 344 (M⁺, 21), 244 ((M-C₄H₉+H-CO₂)⁺, 100), 117 (C₇H₅N₂⁺, 13), 58 (11), 57 (C₄H₉⁺, 61), 43 (14). Anal. calcd for C₁₂H₁₃IN₂O₂ (344.2): C 41.88, H 3.81, N 8.14. Found: C 42.11, H 4.03, N 8.01.

Data reported in the literature:

J. Vazquez, S. K. De, L.-H. Chen, M. Riel-Mehan, A. Emdadi, J. Cellitti, J. L. Stebbins, M. F. Rega, M. Pellecchia, *J. Med. Chem.* **2008**, *51*, 3460-3465.

¹H NMR (CDCl₃, 300 MHz): δ 1.72 (s, 9 H), 7.37 (t, *J* = 8.1 Hz, 1 H), 7.49 (d, *J* = 8.1 Hz, 1 H), 7.58 (t, *J* = 7.5 Hz, 1 H), 8.11 (d, *J* = 8.7 Hz, 1 H). MS (*m/z*): 367 (M+Na)⁺, 345 (M+H)⁺, 310, 289, 244, 124, 74, 56. HRMS calcd for C₁₂H₁₄IN₂O₂ (M+H): 345.0100. Found 345.0095.

2.4.3. tert-Butyl 3-iodo-1H-pyrrolo[3,2-b]pyridine-1-carboxylate (1c)

1.88 g (5.45 mmol, 55 % yield over two steps) as a colorless solid. Mp 125 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.68 (s, 9 H), 7.30 (dd, J = 8.5 Hz, J = 4.7 Hz, 1 H), 7.98 (s, 1 H), 8.4 (br, 1 H), 8.62 (dd, J = 4.7 Hz, J = 1.6 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.1 (CH₃), 67.7 (C_{quat}), 85.2 (C_{quat}), 119.9 (CH), 122.6 (CH), 128.3 (C_{quat}), 132.8 (CH), 146.4 (CH), 147.9 (C_{quat}), 148.2 (C_{quat}). EI + MS (m/z (%)): 344 (M⁺, 33), 288 ((M-C₄H₉+H)⁺, 85), 244 ((M-C₄H₉+H-CO₂)⁺, 81), 57 (C₄H₉⁺, 100). Anal. calcd for C₁₂H₁₃IN₂O₂ (344.2): C 41.88, H 3.81, N 8.14. Found: C 42.04, H 4.06, N 8.04.

2.4.4. tert-Butyl 3-iodo-1H-pyrrolo[3,2-c]pyridine-1-carboxylate (1d)

1.85 g (5.36 mmol, 64 % yield over two steps) as a colorless solid. Mp 119 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.68 (s, 9 H), 7.73 (s, 1 H), 7.95 (br, 1 H), 8.54 (d, *J* = 5.7 Hz, 1 H), 8.71 (s, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.0 (CH₃), 62.1 (C_{quat}), 85.5 (C_{quat}), 109.5 (CH), 128.1 (C_{quat}), 130.8 (CH), 139.7 (C_{quat}), 144.5 (CH), 145.1 (CH), 148.0 (C_{quat}). EI + MS (*m*/*z* (%)): 344 (M⁺, 11), 288 ((M-C₄H₉+H)⁺, 36), 244 ((M-C₄H₉+H-CO₂)⁺, 65), 117 (C₇H₅N₂⁺, 15), 116 (C₇H₄N₂⁺, 7), 57 (C₄H₉⁺, 100), 41 (13). Anal. calcd for C₁₂H₁₃IN₂O₂ (344.2): C 41.88, H 3.81, N 8.14. Found: C 42.13, H 3.82, N 8.13.

Data reported in the literature:

M. Lefoix, J.-P. Daillant, S. Routier, J.-Y. Mérour, I. Gillaizeau, G. Coudert, *Synthesis* **2005**, 3581-3588.

White solid. R_f (PE-EtOAc = 6:4): 0.3. Mp 127-128 °C. ¹H NMR (CDCl₃, 250 MHz): δ 1.68 (s, 9 H, C(CH₃)₃), 7.73 (s, 1 H, H-2), 7.95 (dd, J = 5.7 Hz, J = 0.9 Hz, 1 H, H-6), 8.55 (d, J = 5.7 Hz, 1 H, H-7), 8.71 (d, J = 0.9 Hz, 1 H, H-4). ¹³C NMR (CDCl₃, 62.5 MHz): δ 28.2 (C(CH₃)₃), 62.2 (C-I), 85.7 (C(CH₃)₃), 109.7 (CH-6), 128.3 (C_{quat}), 131.0 (CH-2), 139.8 (C_{quat}), 144.6 (CH-4), 145.1 (CH-7), 148.2 (*t*-BuOOC). EI + MS (*m*/*z* (%)): 345 (MH⁺, 92), 289 ((MH-*t*-Bu)⁺, 100), 245 ((MH-Boc)⁺, 29). IR (KBr): \tilde{v} 2982 cm⁻¹, 1746, 1168. HRMS (EI) *m*/*z* calcd for C₁₂H₁₃IN₂O₂: 344.00218; found: 344.0021.

2.4.5. tert-Butyl 3-iodo-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1e)

7.52 g (21.9 mmol, 59 % yield over two steps) as a pale yellow solid. Mp 149-150 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.70 (s, 9 H), 7.38 (d, *J* = 5.4 Hz, 1 H), 7.90 (s, 1 H), 8.51 (d, *J* = 5.4 Hz, 1 H), 9.37 (s, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.0 (CH₃), 63.4 (C_{quat}), 85.9 (C_{quat}), 115.8 (CH), 131.8 (C_{quat}), 133.5 (CH), 136.8 (CH), 138.3 (C_{quat}), 141.8 (CH), 147.7 (C_{quat}). EI + MS (*m*/*z* (%)): 344 (M⁺, 13), 288 ((M-C₄H₉+H)⁺, 27), 244 ((M-C₄H₉+H-CO₂)⁺, 100), 117 (C₇H₅N₂⁺, 22), 116 (C₇H₄N₂⁺, 11), 90 (10), 57 (C₄H₉⁺, 100), 41 (13). Anal. calcd for C₁₂H₁₃IN₂O₂ (344.2): C 41.88, H 3.81, N 8.14. Found: C 42.13, H 3.93, N 8.01.

2.4.6. tert-Butyl 3-iodo-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (1f)

31.6 g (91.8 mmol, 92 % yield over two steps) as a yellow oil (solidified upon storage in refrigerator). Mp 79 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.66 (s, 9 H), 7.22 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.61 (dd, *J* = 7.9 Hz, *J* = 1.6 Hz, 1 H), 7.78 (s, 1 H), 8.50 (dd, *J* = 4.7 Hz, *J* = 1.6 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 27.4 (CH₃), 61.3 (C_{quat}), 83.8 (C_{quat}), 118.5 (CH), 124.3 (C_{quat}), 128.9 (CH), 129.9 (CH), 145.3 (CH), 146.0 (C_{quat}), 146.6 (C_{quat}). EI + MS (*m*/*z* (%)): 344 (M⁺, 4), 245 (8), 244 ((M-C₅H₉O₂+H)⁺, 100), 117 (C₇H₅N₂⁺, 23), 116 (C₇H₄N₂⁺, 10), 90 (10), 57 (C₄H₉⁺, 26).

Data reported in the literature:

T. A. Kelly, D. W. McNeil, J. M. Rose, E. David, C.-K. Shih, P. M. Grob, *J. Med. Chem.* **1997**, *40*, 2430-2433.

¹H NMR (CDCl₃): δ 1.70 (s, 9 H), 7.28 (dd, *J* = 8.5 Hz, 1 H), 7.72 (dd, *J* = 8.1 Hz, 1 H), 7.80 (s, 1 H), 8.49 (dd, *J* = 5.1 Hz, 1 H).

2.4.7. tert-Butyl 3-iodo-4-methoxy-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (1g)

428 mg (1.14 mmol, 65 % yield over two steps) as a colorless solid. Mp 122 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.65 (s, 9 H), 3.99 (s, 3 H), 6.67 (d, *J* = 5.7 Hz, 1 H), 7.63 (s, 1 H), 8.40 (d, *J* = 5.7 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.0 (CH₃), 54.6 (C_{quat}), 55.5 (CH₃), 84.6 (C_{quat}), 101.0 (CH), 112.8 (C_{quat}), 129.7 (CH), 146.8 (C_{quat}), 147.8 (CH), 149.0 (C_{quat}), 160.1 (C_{quat}). EI + MS (*m*/*z* (%)): 374 (M⁺, 5), 301 ((M-C₄H₉O)⁺, 2), 274 ((M-C₅H₉O₂+H)⁺, 61), 273 ((M-C₅H₉O₂)⁺, 13), 259 ((M-C₅H₉O₂+H-CH₃)⁺, 9), 243 ((M-C₅H₉O₂+H-OCH₃)⁺, 2), 231 ((M-I-CH₃)⁺, 8), 131 (C₇H₃N₂O⁺, 15), 117 (C₇H₅N₂⁺, 18), 116 (C₇H₄N₂⁺, 21), 77 (11), 57 (C₄H₉⁺, 100), 43 (C₂H₃O⁺, 12), 41 (C₂H₃N⁺, 53), 39 (C₃H₃⁺, 13). Anal. calcd for C₁₃H₁₅IN₂O₃ (374.2): C 41.73, H 4.04, N 7.49. Found: C 41.89, H 3.91, N 7.23.

2.4.8. tert-Butyl 3-iodo-2-methyl-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (1h)

5.58 g (15.6 mmol, 88 % yield over two steps) as a yellow oil (solidified upon storage in refrigerator). Mp 47 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.69 (s, 9 H), 2.69 (s, 3 H), 7.21 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.61 (dd, *J* = 7.9 Hz, *J* = 1.9 Hz, 1 H), 8.43 (dd, *J* = 5.0 Hz, *J* = 1.6 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 17.9 (CH₃), 28.1 (CH₃), 67.1 (C_{quat}), 84.8 (C_{quat}), 119.1 (CH), 124.4 (C_{quat}), 128.7 (CH), 138.3 (C_{quat}), 145.0 (CH), 148.1 (C_{quat}), 148.8 (C_{quat}). EI + MS (*m*/*z* (%)): 358 (M⁺, 19), 285 ((M-C₄H₉O)⁺, 4), 258 ((M-C₅H₉O₂+H)⁺, 100), 158 ((M-C₄H₉O-I)⁺, 2), 131 (C₈H₇N₂⁺, 13), 57 (C₄H₉⁺, 55), 41 (C₂H₃N⁺, 11). Anal. calcd for C₁₃H₁₅IN₂O₂ (358.2): C 43.59, H 4.22, N 7.82. Found: C 43.59, H 4.45, N 7.63.

2.4.9. tert-Butyl 7-iodo-5H-pyrrolo[2,3-b]pyrazine-5-carboxylate (1i)

2.53 g (7.33 mmol, 75 % yield over two steps) as a pale yellow solid. Mp 128 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.69 (s, 9 H), 8.12 (s, 1 H), 8.46 (d, *J* = 2.5 Hz, 1 H), 8.60 (d, *J* = 2.5 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 28.0 (CH₃), 64.2 (C_{quat}), 85.8 (C_{quat}), 134.4 (CH), 139.8 (CH), 141.1 (C_{quat}), 141.3 (CH), 141.8 (C_{quat}), 146.4 (C_{quat}). EI + MS (*m*/*z* (%)): 345 (M⁺, 23), 245 ((M-C₄H₉+H-CO₂)⁺, 100), 57 (C₄H₉⁺, 85), 41 (13). Anal. calcd for C₁₁H₁₂IN₃O₂ (345.1): C 38.28, H 3.50, N 12.17. Found: C 38.31, H 3.62, N 12.11.

2.4.10. tert-Butyl 5-iodo-4-methoxy-7*H*-pyrrolo[2,3-*d*]pyrimidine-7-carboxylate (1j)

1.12 g (2.98 mmol, 73 % yield over two steps) as a colorless solid. Mp 98-99 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.67 (s, 9 H), 4.15 (s, 3 H), 7.63 (s, 1 H), 8.65 (s, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 27.9 (CH₃), 53.9 (CH₃), 54.9 (C_{quat}), 85.6 (C_{quat}), 109.1 (C_{quat}), 129.4 (CH), 146.2 (C_{quat}), 152.4 (C_{quat}), 153.6 (CH), 163.1 (C_{quat}). EI + MS (*m/z* (%)): 375 (M⁺, 7), 276 (9), 275 ((M-C₅H₉O₂+H)⁺, 100), 274 ((M-C₅H₉O₂)⁺, 15), 246 (10), 234 (10), 148 (C₇H₆N₃O⁺, 7), 118 (C₆H₄N₃⁺, 8), 57 (C₄H₉⁺, 50). Anal. calcd for C₁₂H₁₄IN₃O₃ (375.2): C 38.42, H 3.76, N 11.20. Found: C 38.46, H 3.85, N 11.32.

2.4.11. tert-Butyl 4-(2-methoxyethoxy)-5-iodo-7*H*-pyrrolo[2,3-*d*]pyrimidine-7-carboxylate (1k)

1.55 g (3.70 mmol, 78 % yield over two steps) as a pale yellow oil. ¹H NMR (CDCl₃, 500 MHz): δ 1.67 (s, 9 H), 3.49 (s, 3 H), 3.84-3.88 (m, 2 H), 4.67-4.71 (m, 2 H), 7.62 (s, 1 H), 8.62 (s, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 27.9 (CH₃), 55.1 (C_{quat}), 59.3 (CH₃), 66.0 (CH₂), 70.4 (CH₂), 85.6 (C_{quat}), 109.0 (C_{quat}), 129.4 (CH), 146.2 (C_{quat}), 152.5 (C_{quat}), 153.5 (CH), 162.6 (C_{quat}). EI + MS (*m*/*z* (%)): 419 (M⁺, 1), 319 ((M-C₅H₉O₂+H)⁺, 3), 261 (C₆H₄IN₃O⁺, 6), 88 (13), 70 (13), 61 (16), 45 (C₂H₅O⁺, 15), 43 (100). Anal. calcd for C₁₄H₁₈IN₃O₄ (419.2): C 40.11, H 4.33, N 10.02. Found: C 40.41, H 4.55, N 9.81.

2.4.12. tert-Butyl 4-iodo-1H-imidazole-1-carboxylate (1n)

2.71 g (9.23 mmol, 92 % yield) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz): δ 1.62 (s, 9 H), 7.47 (d, *J* = 1.3 Hz, 1 H), 7.95 (d, *J* = 1.3 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 27.8 (CH₃), 84.3 (C_{quat}), 86.5 (C_{quat}), 122.8 (CH), 138.1 (CH), 145.7 (C_{quat}). EI + MS (*m*/*z* (%)): 295 (8), 294 (M⁺, 62), 238 ((M-C₄H₉+H)⁺, 12), 221 ((M-C₄H₉O)⁺, 28), 194 ((M-C₅H₉O₂+H)⁺, 64), 166 ((M-I+H)⁺, 18), 59 (10), 58 (19), 57 (C₄H₉⁺, 100), 41 (64). Anal. calcd for C₈H₁₁IN₂O₂ (294.1): C 32.67, H 3.77, N 9.53. Found: C 32.95, H 4.07, N 9.35.

2.5. Preparation of tert-butyl 4-iodo-2-(4-methoxy-phenyl)-1H-pyrrole-1carboxylate (11)^[3]

PdCl₂(PPh₃)₂ (425 mg, 0.60 mmol, 2 mol %) and Cul (233 mg, 1.20 mmol, 4 mol %) were placed under argon atmosphere in a dry screw-cap vessel. Then, 150 mL of dry THF were added and the mixture was degassed with argon. Dry triethylamine (4.16 mL, 30.0 mmol, 1.00 equiv), 4-methoxybenzoyl chloride (5.28 g, 30.0 mmol), and tertbutyl prop-2-ynylcarbamate (4.66 g, 30.0 mmol, 1.00 equiv) were successively added to the mixture which was stirred at room temperature for 1 h (monitored by TLC). Then, sodium iodide (22.7 g, 150 mmol, 5.00 equiv), toluene-4-sulfonic acid monohydrate (11.6 g, 60.0 mmol, 2.00 equiv) and 30 ml of tert-butanol were successively added to the mixture which was stirred at room temperature for 1 h (monitored by TLC). The reaction mixture was diluted with 300 mL brine, the phases were separated and the aqueous phase was extracted with dichloromethane (3 x 150 mL). The combined organic layers were dried with anhydrous sodium sulfate. After removal of the solvents in vacuo the residue was absorbed onto Celite® and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl acetate (PE-EtOAc = 100:1) to give 9.23 g (23.1 mmol, 77 % yield) of the desired product (11) as a colorless solid.

tert-Butyl 4-iodo-2-(4-methoxyphenyl)-1H-pyrrole-1-carboxylate (11)

1.46 g (3.66 mmol, 73 % yield) as a colorless solid. Mp 71-72 °C. ¹H NMR (CDCl₃, 500 MHz): δ 1.39 (s, 9 H), 3.82 (s, 3 H), 6.20 (d, *J* = 1.9 Hz, 1 H), 6.88 (d, *J* = 8.8 Hz, 1 H), 7.24 (d, *J* = 8.8 Hz, 1 H), 7.39 (d, *J* = 1.9 Hz, 1 H). ¹³C NMR (CDCl₃, 125 MHz): δ 27.6 (CH₃), 55.3 (CH₃), 64.4 (C_{quat}), 84.2 (C_{quat}), 113.1 (CH), 120.3 (CH), 125.3 (C_{quat}), 126.7 (CH), 130.4 (CH), 136.5 (C_{quat}), 147.9 (C_{quat}), 159.3 (C_{quat}). EI + MS (*m*/*z* (%)): 399 (M⁺, 3), 343 ((M-C₄H₉+H)⁺, 11), 299 ((M-C₅H₉O₂+H)⁺, 16), 298 ((M-C₅H₉O₂)⁺, 13), 171 ((M-C₅H₉O₂-I)⁺, 6), 156 (12), 128 (11), 57 (C₄H₉⁺, 100), 41 (34). IR (KBr): $\tilde{\nu}$ 3145 (m) cm⁻¹, 2986 (m), 2934 (w), 2832 (w), 1734 (s), 1609 (m), 1576 (w), 1557 (w), 1511 (s), 1476 (m), 1460 (m), 1435 (w), 1370 (s), 1337 (s), 1293 (s), 1251 (s), 1180 (s), 1151 (s), 1108 (m), 1032 (s), 985 (m), 904 (m), 847 (s), 833 (m), 808 (s), 771 (m), 675 (w), 629 (w), 615 (w), 594 (m), 528 (w), 511 (w). Anal. calcd for C₁₆H₁₈INO₃ (399.2): C 48.14, H 4.54, N 3.51. Found: C 48.36, H 4.37, N 3.34.

3 Multicomponent Syntheses of Triazolyl Substituted *N*-Boc protected *NH*-Heterocycles 2a-s

3.1. Three-component Sonogashira coupling – TMS-deprotection – CuAAC sequence

3.1.1. General procedure for the preparation of compounds 2a-o

PdCl₂(PPh₃)₂ (14 mg, 0.02 mmol, 2 mol %) and Cul (8 mg, 0.04 mmol, 4 mol %) were placed in a dry screw-cap Schlenk vessel with septum. Then, 1.00 mmol of *N*-Boc iodo *NH*-heterocycle **1** was added in 5 mL of dry tetrahydrofuran under argon atmosphere and the reaction mixture was degassed with argon. After that, trimethylsilylacetylene (0.21 mL, 1.50 mmol, 1.50 equiv) and dry triethylamine (0.28 mL, 2.00 mmol, 2.00 equiv) were added and the mixture was stirred at room temperature (water bath) until the complete consumption of the starting material (monitored by TLC). Then, 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran (1.50 mL, 1.50 mmol, 1.50 equiv) was added dropwise and the mixture was stirred at room temperature for 0.5 h until the deprotection was complete (monitored by TLC). After that, benzyl azide (**5a**) (136 mg, 1.00 mmol, 1.00 equiv) in 1 mL of dry methanol* was added and the mixture was stirred at room temperature until the complete conversion to the product (monitored by TLC). After removal of the solvents in vacuo the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl

acetate to give the *N*-Boc protected triazoles **2**. The obtained compounds were not characterized but directly deprotected in the next step.

* For the synthesis of compound 2g 2 mL of phenyl azide solution (~ 0.5 *M* in TBME)
(5b) (1.00 mmol, 1.00 equiv) were added, followed by the addition of 1 mL of dry methanol.

The experimental details are depicted in Table 1.

Table 1. Experimental details of the three-component *Sonogashira*-CuAAC sequence for the synthesis of *N*-Boc protected (aza)indolyl triazoles **2a-b**.

Table 1 (continuation). Experimental details of the three-component Sonogashira-CuAAC sequence for the synthesis of *N*-Boc protected (aza)indolyl triazoles **2c**-**e**.

Table 1 (continuation). Experimental details of the three-component Sonogashira-CuAAC sequence for the synthesis of *N*-Boc protected (aza)indolyl triazoles **2f-h**.

[a] The reaction times are not optimized and might be shorter than indicated.

[b] On a 1.00 mmol scale, 295 mg (0.79 mmol, 79 % yield) of a yellow foam were obtained.

Table 1 (continuation). Experimental details of the three-component *Sonogashira*-CuAAC sequence for the synthesis of *N*-Boc protected (aza)indolyl triazoles **2i-k**.

Entry	<i>N</i> -Boc iodo <i>NH</i> - heterocycle 1	Reaction time ^[a] 1 st step 2 nd step	<i>N</i> -Boc protected (aza)indolyl triazole 2	Chromatographic purification (eluent)
9	716 mg (2.00 mmol) () N N Boc 1h	23 h 119 h	Pale yellow solid 462 mg (1.19 mmol, 59 %) Bn N N N N N N N Boc 2i	PE-EtOAc = 3:1
10	345 mg (1.00 mmol) N N Boc 1 i	1 h 48 h	Colorless solid 211 mg (0.56 mmol, 56 %) Bn N N N N N N N Boc 2j	PE-EtOAc = 2:1
11	375 mg (1.00 mmol)	1 h 72 h	Yellow solid 297 mg (0.73 mmol, 73 %)	PE-EtOAc = 1:1

Table 1 (continuation). Experimental details of the three-component Sonogashira-CuAAC sequence for the synthesis of *N*-Boc protected (aza)indolyl triazole **2I** and pyrrolyl triazole **2m**.

Entry	<i>N</i> -Boc iodo <i>NH</i> - heterocycle 1	Reaction time ^[a] 1 st step 2 nd step	<i>N</i> -Boc protected (aza)indolyl or pyrrolyl triazole 2	Chromatographic purification (eluent)
12	720 mg (1.72 mmol)	1 h 87 h	Pale yellow foam 341 mg (0.97 mmol, 57 %) MeO N N N N N N N N N N N N N N N N Boc 2 I	PE-EtOAc = 1:1
13	399 mg (1.00 mmol) MeO 1I	2 h 115 h	Yellow oil 224 mg (0.52 mmol, 52 %) Bn N N N Boc Boc 2m	PE-EtOAc = 3:1

Table 1 (continuation). Experimental details of the three-component Sonogashira-CuAAC sequence for the synthesis of *N*-Boc protected azolyl triazoles **2n-o**.

Entry	<i>N</i> -Boc iodo <i>NH</i> - heterocycle 1	Reaction time ^[a] 1 st step 2 nd step	<i>N</i> -Boc protected azolyl triazole 2	Chromatographic purification (eluent)
14	294 mg (1.00 mmol) <i>tert</i> -Butyl 4-iodo-1 <i>H</i> - pyrazole-1- carboxylate (<i>ABCR</i>)	3 h 63 h	Yellow-orange oil 208 mg (0.64 mmol, 64 %) Bn N-N N N N N Boc 2n	PE-EtOAc = 1:1
15	294 mg (1.00 mmol)	15 d 23 h	Yellow oil 99 mg (0.30 mmol, 30 %) Bn N N N N N N N Boc 20	PE-EtOAc = 1:1

3.2. Four-component Sonogashira coupling – TMS-deprotection – Azide-Halide exchange – CuAAC sequence

3.2.1. General procedure for the preparation of compounds 2p-s

PdCl₂(PPh₃)₂ (14 mg, 0.02 mmol, 2 mol %) and Cul (8 mg, 0.04 mmol, 4 mol %) were placed in a dry screw-cap Schlenk vessel with septum. Then, tert-butyl 3-iodo-1Hpyrrolo[2,3-b]pyridine-1-carboxylate (1f) (344 mg, 1.00 mmol) was added in 5 mL of dry tetrahydrofuran under argon atmosphere and the reaction mixture was degassed with argon. After that, trimethylsilylacetylene (0.21 mL, 1.50 mmol, 1.50 equiv) and dry triethylamine (0.28 mL, 2.00 mmol, 2.00 equiv) were added and the mixture was stirred at room temperature (water bath) until the complete consumption of the starting material (monitored by TLC). Then, 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran (1.50 mL, 1.50 mmol, 1.50 equiv) was added dropwise and the mixture was stirred at room temperature for 0.5 h until the deprotection was complete (monitored by TLC). After that, cesium azide (175 mg, 1.00 mmol, 1.00 equiv) and an organic halide (1.00 mmol, 1.00 equiv) in 1 mL of dry methanol were added and the mixture was stirred at room temperature until the complete conversion to the product (monitored by TLC). After removal of the solvents in vacuo the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl acetate to give the N-Boc protected 7azaindolyl triazoles 2p-s. The obtained compounds were not characterized but used as obtained in the subsequent deprotection step.

The experimental details are depicted in Table 3.

Table 3. Experimental details of the four-component *Sonogashira* coupling – TMSdeprotection – azide-halide exchange – CuAAC sequence for the synthesis of indolyl triazoles **2p-s**.

Table 3. Experimental details of the three-component *Sonogashira*-CuAAC sequence for the synthesis of indolyl triazoles **2p-s**.

[a] The reaction times are not optimized and might be shorter than indicated.

3.3. Four-component Boc-protection – Sonogashira coupling – TMSdeprotection – CuAAC sequence

3.3.1. General procedure for the preparation of compounds 7a-b

1.00 mmol of a bromo-7-azaindole 6 was placed under argon atmosphere in a dry screw-cap Schlenk vessel with septum. Then, di-tert-butyl dicarbonate (338 mg, 1.50 mmol, 1.50 equiv) in 1 mL of dry 1,4-dioxane and 4-dimethylaminopyridine (12 mg, 0.10 mmol, 10 mol %) were added under argon atmosphere and the reaction mixture was stirred at room temperature (water bath) for 15 min until the complete consumption of the starting material (evolution of a gas ceased, monitored by TLC). After that, 1 mL of dry methanol was added and the mixture was degassed with argon. Then, PdCl₂(PhCN)₂ (8 mg, 0.02 mmol, 2 mol %), [^tBu₃PH]BF₄ (12 mg, 0.04 mmol, 4 mol %), Cul (8 mg, 0.04 mmol, 4 mol %), trimethylsilylacetylene (0.21 mL, 1.50 mmol, 1.50 equiv), and dry triethylamine (0.28 mL, 2.00 mmol, 2.00 equiv) were added subsequently and the mixture was stirred at room temperature until the complete consumption of the starting material (monitored by TLC). Then, 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran (1.50 mL, 1.50 mmol, 1.50 equiv) was added dropwise and the mixture was stirred at room temperature for 0.5 h until the deprotection was complete (monitored by TLC). After that, benzyl azide (5a) (136 mg, 1.00 mmol, 1.00 equiv) in 1 mL of dry methanol was added and the mixture was stirred at room temperature until the complete conversion to the product (monitored by TLC). After removal of the solvents in vacuo the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl acetate to give the N-Boc protected 7-azaindolyl triazole 7. The obtained compound was not characterized but used as obtained in the subsequent deprotection step.

The experimental details are depicted in Table 4.

Table 4. Experimental details for the four-component Boc-protection - Sonogashira coupling – TMS-deprotection – CuAAC sequence for the synthesis of N-Boc protected 7-azaindolyl triazoles 7a-b.

Entry	Bromo-7- azaindole 6	Reaction time ^[a] 2 nd step ^[b]	<i>N</i> -Boc protected 7- azaindolyl triazole 7 (isolated yield %)	Chromatographic purification (eluent)
		3 rd step ^{roj}		
1	205 mg (1.00 mmol) \downarrow_{N}^{Br} (4-Bromo-7- azaindole) (<i>Aldrich</i>) 6a	1 h 18 h	Yellow oil 311 mg (0.83 mmol, 83 %) Bn V V N-N V N N-N V N N N N N N N N	PE-EtOAc = 1:1
2	203 mg (1.00 mmol) ^{Br} (5-Bromo-7- azaindole) (<i>Aldrich</i>) 6b	5 h 4 d	Yellow oil 373 mg (0.99 mmol, 99 %) Bn-N, Bn-N, Boc 7b	PE-EtOAc = 2:1

[a] The reaction times are not optimized and might be shorter than indicated.
[b] 2nd step: Sonogashira coupling with TMSA.
[c] 3rd step: CuAAC with benzyl azide (5a).

4. Deprotection of N-Boc Protected Triazolyl NH-Heterocycles

4.1. General procedure for the preparation of compounds 8a-s and 9a-b

N-Boc protected triazolyl heterocycle **2** or **7** was placed in methanol (c = 0.2 M). Then, 2.50 equiv of potassium carbonate were added and the mixture was stirred at room temperature (water bath) or 50 °C (for compounds **2a** and **2i**, preheated oil bath) for 1 h* (monitored by TLC). Frequently, a precipitate was formed. The mixture was adsorbed on Celite[®] and purified chromatographically on silica gel with dichloromethane-methanol-aqueous ammonia. After drying in vacuo at 70 °C overnight, analytically pure triazoles **8** or **9** were obtained. The products can be further purified by suspension in dichloromethane and sonication in ultrasound bath for 0.5-1 h, filtration and drying in vacuo at 70 °C overnight.

* 5 h for compound 2m.

The experimental details are given in *Table 5*, *Table 6*, and *Table 7*.

Table 5. Experimental details for the deprotection of *N*-Boc (aza)indolyl triazoles **8a**-**c**.

[a] Deprotection was performed at 50 °C for 1 h.

[b] Additionally purified by suspension in DCM and sonication in ultrasound bath.

Table 5 (continuation). Experimental details for the deprotection of *N*-Boc (aza)indolyl triazoles **8d-f**.

[a] Additionally purified by suspension in DCM and sonication in ultrasound bath.

[b] On a 1.00 mmol scale, 179 mg (0.65 mmol, 65 % yield over two steps) were obtained as a colorless solid.

Table 5 (continuation). Experimental details for the deprotection of *N*-Boc (aza)indolyl triazoles **8g-i**.

[a] Additionally purified by suspension in DCM and sonication in ultrasound bath.

[b] Deprotection was performed at 50 °C for 1 h.

Table 5 (continuation). Experimental details for the deprotection of *N*-Boc (aza)indolyl triazoles **8j-I**.

[a] Additionally purified by suspension in DCM and sonication in ultrasound bath.

Table 5 (continuation). Experimental details for the deprotection of *N*-Boc azolyl triazoles **8m-o**.

[a] Deprotection was performed at room temperature for 5 h.

Table 6. Experimental details for the deprotection of *N*-Boc 7-azaindolyl triazoles **8p**-**q**.

[a] Additionally purified by suspension in DCM and sonication in ultrasound bath.

Table 6 (continuation). Experimental details for the deprotection of *N*-Boc 7-azaindolyl triazoles **8r-s**.

Entry	<i>N</i> -Boc protected 7- azaindolyl triazole 2	7-Azaindolyl triazole 8 (isolated yield %)	Chromatographic purification (eluent) UV purity
18	269 mg (0.69 mmol) Ph N N Boc 2r	Colorless solid 179 mg (0.62 mmol, 90 %) Total yield: 62 % Ph V N H 8r	DCM-MeOH-NH ₃ = 100:1:1 → 100:2:1 → 100:3:1 → 100:4:1 → 100:5:1 → 100:6:1 → 100:7:1 HT-LC-MS: 100 % ^[a]
19	250 mg (0.64 mmol) Ph N N Boc 2s	Pale yellow solid 160 mg (0.55 mmol, 86 %) Total yield: 55 % Ph	DCM-MeOH-NH ₃ = 100:1:1 → 100:2:1 → 100:3:1 → 100:4:1 HT-LC-MS: 100 % ^[a]

[a] Additionally purified by suspension in DCM and sonication in ultrasound bath.

Entry	<i>N</i> -Boc protected 7- azaindolyl triazole 7	7-Azaindolyl triazole 9 (isolated yield %)	Chromatographic purification (eluent) UV purity
20	311 mg (0.83 mmol) Bn N-N V N Boc 7a	Colorless solid 207 mg (0.75 mmol, 91 %) Total yield: 75 % ^{Bn} V V V H 9a	DCM-MeOH-NH ₃ = 100:1:1 → 100:2:1 → 100:3:1 → 100:4:1 → 100:5:1 HT-LC-MS: 100 %
21	373 mg (0.99 mmol) Bn-N, N=N (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	Colorless solid 182 mg (0.66 mmol, 66 %) Total yield: 66 % Bn - N + F 9b	DCM-MeOH-NH ₃ = 100:1:1 → 100:2:1 → 100:3:1 → 100:4:1 HT-LC-MS: 100 %

Table 7. Experimental details for the Boc-deprotection of 7-azaindolyl triazoles 9a-b.

4.2. Spectroscopic data of compounds 8a-s and 9a-b

4.2.1. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-indole (8a)

147 mg (0.54 mmol, 54 % yield over two steps) as a pale yellow solid. Mp 171 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.64 (s, 2 H), 7.08-7.12 (m, 1 H), 7.13-7.18 (m, 1 H), 7.31-7.36 (m, 1 H), 7.36-7.41 (m, 4 H), 7.42-7.45 (m, 1 H), 7.79 (d, *J* = 2.5 Hz, 1 H), 8.03 (d, *J* = 7.9 Hz, 1 H), 8.49 (s, 1 H), 11.3 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.8 (CH₂), 106.1 (C_{quat}), 111.8 (CH), 119.5 (CH), 119.6 (CH), 119.9 (CH), 121.6 (CH), 123.1 (CH), 124.6 (C_{quat}), 127.9 (CH), 128.1 (CH), 128.8 (CH), 136.3 (C_{quat}), 142.9 (C_{quat}). EI + MS (*m*/*z* (%)): 275 (9), 274 (M⁺, 44), 246 (47), 245 (100), 219 (11), 218 (50), 217 (16), 169 (C₁₀H₇N₃⁺, 31), 155 (46), 129 (10), 128 (43), 127 (10), 117 (16), 115 (12), 101 (26), 91 (C₇H₇⁺, 43), 77 (C₆H₅⁺, 14), 65 (C₅H₅⁺, 12). IR (KBr): \tilde{v} 3397 (s) cm⁻¹, 1624 (w), 1601 (w), 1497 (w), 1456 (m), 1337 (w), 1221 (m), 1099 (w), 1053 (w), 939 (w), 776 (w), 749 (m), 727 (m), 586 (w), 522 (w). Anal. calcd for C₁₇H₁₄N₄ (274.3): C 74.43, H 5.14, N 20.42. Found: C 74.31, H 4.91, N 20.36.

4.2.2. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-indazole (8b)

264 mg (0.96 mmol, 64 % yield over two steps) as a colorless solid. Further purified by suspension in DCM and sonication in ultrasound bath. Mp 164 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.70 (s, 2 H), 7.19-7.23 (m, 1 H), 7.31-7.43 (m, 6 H), 7.55-7.59 (m, 1 H), 8.29 (d, *J* = 8.2 Hz, 1 H), 8.69 (d, *J* = 0.9 Hz, 1 H), 13.24 (s, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.9 (CH₂), 110.2 (CH), 120.2 (C_{quat}), 120.9 (CH), 121.4 (CH), 121.7 (CH), 126.4 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 136.0 (C_{quat}), 136.1 (C_{quat}), 140.9 (C_{quat}), 142.2 (C_{quat}). EI + MS (*m*/*z* (%)): 275 (M⁺, 79), 246 ((M-HN₂)⁺, 84), 219 (16), 156 (C₉H₆N₃⁺, 79), 102 (21), 91 (C₇H₇⁺, 100), 65 (C₅H₅⁺, 20). IR (KBr): \tilde{v} 3181 (s) cm⁻¹, 1624 (w), 1597 (w), 1497 (w), 1478 (w), 1457 (m), 1431 (w), 1348 (m), 1299 (w), 1241 (m), 1228 (w), 1217 (w), 1152 (w), 1133 (w), 1098 (w), 1062 (m), 1046 (w), 1003 (w), 965 (w), 904 (w), 819 (w), 773 (w), 750 (s), 715 (s), 584 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.68, H 4.63, N 25.50.

4.2.3. 3-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrrolo[3,2-*b*]pyridine (8c)

137 mg (0.50 mmol, 50 % yield over two steps) as a colorless solid. Mp 246 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.69 (s, 2 H), 7.18 (dd, J = 8.2 Hz, J = 4.7 Hz, 1 H), 7.30-7.36 (m, 1 H), 7.36-7.41 (m, 4 H), 7.83 (dd, J = 8.2 Hz, J = 1.3 Hz, 1 H), 8.1 (br, 1 H), 8.40 (dd, J = 4.7 Hz, J = 1.3 Hz, 1 H), 8.61 (s, 1 H), 11.6 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.7 (CH₂), 106.5 (C_{quat}), 116.9 (CH), 119.1 (CH), 120.5 (CH), 125.6 (CH), 128.0 (CH), 128.1 (CH), 128.8 (CH), 129.0 (C_{quat}), 136.4 (C_{quat}), 140.9 (C_{quat}), 142.5 (C_{quat}), 142.8 (CH). EI + MS (m/z (%)): 275 (M⁺, 21), 247 (20), 246 ((M-HN₂)⁺, 100), 219 (19), 156 (C₉H₆N₃⁺, 76), 149 (23), 143 (20), 129 (26), 102 (16), 97 (11), 91 (C₇H₇⁺, 46), 89 (13), 85 (11), 84 (14), 83 (11), 77 (C₆H₅⁺, 15), 71 (14), 69 (10), 65 (C₅H₅⁺, 11), 57 (18), 55 (11), 43 (13). IR (KBr): \tilde{v} 3163 (s) cm⁻¹, 3047 (m), 1628 (s), 1561 (w), 1497 (w), 1457 (w), 1413 (s), 1362 (m), 1335 (w), 1314 (w), 1277 (w), 1221 (w), 1200 (w), 1123 (w), 1106 (w), 1085 (w), 1051 (s), 943 (w), 889 (w), 776 (s), 718 (s), 697 (w), 613 (w), 580 (w), 508 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.85, H 4.94, N 25.34.

4.2.4. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[3,2-c]pyridine (8d)

95 mg (0.35 mmol, 48 % yield over two steps) as a colorless solid. Mp 195 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.66 (s, 2 H), 7.31-7.37 (m, 1 H), 7.37-7.41 (m, 4 H), 7.43 (d, J = 5.7 Hz, J = 0.6 Hz, 1 H), 7.89 (s, 1 H), 8.24 (d, J = 5.7 Hz, 1 H), 8.60 (s, 1 H), 9.33 (s, 1 H), 11.7 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.9 (CH₂), 106.0 (C_{quat}), 107.0 (CH), 120.3 (CH), 121.7 (C_{quat}), 124.0 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 136.1 (C_{quat}), 139.7 (C_{quat}), 140.5 (CH), 141.9 (C_{quat}), 143.0 (CH). EI + MS (m/z (%)): 276 (19), 275 (M⁺, 100), 248 (14), 247 (86), 246 ((M-HN₂)⁺, 87), 220 (19), 219 (53), 170 (27), 156 (C₉H₆N₃⁺, 61), 129 (38), 102 (13), 91 (C₇H₇⁺, 99), 75 (13), 65 (C₅H₅⁺, 22). IR (KBr): \tilde{v} 3088 (s) cm⁻¹, 2975 (s), 2694 (s), 1627 (s), 1597 (s), 1578 (s), 1494 (w), 1464 (s), 1341 (m), 1299 (w), 1244 (m), 1212 (m), 1167 (w), 1117 (w), 1053 (m), 1026 (m), 938 (w), 901 (w), 854 (w), 806 (m), 769 (w), 716 (s), 693 (m), 650 (w), 631 (w), 596 (w), 505 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.85, H 4.77, N 25.31.

4.2.5. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-c]pyridine (8e)

93 mg (0.34 mmol, 50 % yield over two steps) as a pale yellow solid. Further purified by suspension in DCM and sonication in ultrasound bath. Mp 226 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.66 (s, 2 H), 7.31-7.42 (m, 5 H), 7.98 (d, *J* = 5.4 Hz, 1 H), 8.03 (s, 1 H), 8.20 (d, *J* = 5.4 Hz, 1 H), 8.55 (s, 1 H), 8.80 (s, 1 H), 11.8 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.9 (CH₂), 105.9 (C_{quat}), 114.6 (CH), 120.0 (CH), 126.9 (CH), 127.9 (CH), 128.1 (CH), 128.8 (CH), 128.8 (C_{quat}), 133.5 (C_{quat}), 134.8 (CH), 136.2 (C_{quat}), 138.3 (CH), 142.0 (C_{quat}). EI + MS (*m*/*z* (%)): 276 (7), 275 (M⁺, 34), 247 (47), 246 ((M-HN₂)⁺, 100), 220 (14), 219 (55), 170 (28), 156 (C₉H₆N₃⁺, 50), 129 (39), 102 (21), 91 (C₇H₇⁺, 68), 75 (13), 65 (C₅H₅⁺, 18). IR (KBr): \tilde{v} 3068 (m) cm⁻¹, 2901 (m), 1655 (w), 1628 (m), 1560 (w), 1543 (w), 1499 (m), 1459 (s), 1340 (w), 1296 (w), 1225 (s), 1173 (w), 1125 (m), 1061 (m), 1041 (m), 1028 (m), 887 (w), 810 (m), 722 (m), 711 (w), 670 (w), 596 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.88, H 4.96, N 25.24.

4.2.6. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (8f)

930 mg (3.38 mmol, 67 % yield over two steps) as a pale yellow solid. After suspension in dichloromethane, sonication in ultrasonic bath, filtration, and drying, a colorless solid was obtained. Mp 234-237 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.66 (s, 2 H), 7.17 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.32-7.43 (m, 5 H), 7.92 (d, *J* = 2.5 Hz, 1 H), 8.29 (dd, *J* = 4.7 Hz, *J* = 1.6 Hz, 1 H), 8.44 (dd, *J* = 7.9 Hz, *J* = 1.6 Hz, 1 H), 8.54 (s, 1 H), 11.9 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.8 (CH₂), 105.0 (C_{quat}), 115.9 (CH), 116.9 (C_{quat}), 119.8 (CH), 123.2 (CH), 127.8 (CH), 128.1 (CH), 128.3 (CH), 128.7 (CH), 136.1 (C_{quat}), 142.4 (C_{quat}), 143.1 (CH), 148.5 (C_{quat}). EI + MS (*m*/*z* (%)): 275 (M⁺, 100), 248 (13), 247 (74), 246 (87), 220 (11), 219 (35), 170 (15), 156 (24), 142 (10), 129 (17), 91 (C₇H₇⁺, 19), 44 (19). IR (KBr): \tilde{v} 3133 (w) cm⁻¹, 1655 (w), 1626 (w), 1584 (s), 1498 (w), 1458 (m), 1420 (m), 1327 (w), 1286 (w), 1220 (m), 1130 (w), 1111 (w), 1058 (w), 941 (m), 897 (w), 799 (m), 771 (s), 722 (s), 587 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.71, H 5.02, N 25.44.

4.2.7. 3-(1-Phenyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (8g)

143 mg (0.55 mmol, 55 % yield over two steps) as a yellow solid. Mp 260 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 7.23 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.50-7.55 (m, 1 H), 7.63-7.68 (m, 2 H), 8.01-8.04 (m, 3 H), 8.34 (dd, *J* = 4.4 Hz, *J* = 0.9 Hz, 1 H), 8.58 (d, *J* = 7.9 Hz, 1 H), 9.18 (s, 1 H), 12.0 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 104.6 (C_{quat}), 116.1 (CH), 116.9 (C_{quat}), 117.5 (CH), 119.9 (CH), 123.6 (CH), 128.3 (CH), 128.4 (CH), 129.8 (CH), 136.7 (C_{quat}), 142.9 (C_{quat}), 143.3 (CH), 148.6 (C_{quat}). EI + MS (*m*/*z* (%)): 261 (M⁺, 11), 234 (14), 233 (C₅H₁₁N₃⁺, 88), 232 (100), 205 (31), 156 (43), 130 (15), 129 (15), 103 (29), 102 (19), 77 (C₆H₅⁺, 13), 76 (11), 51 (C₄H₃⁺, 10). IR (KBr): \tilde{v} 3440 (s) cm⁻¹, 3080 (s), 2924 (w), 2852 (w), 1656 (w), 1623 (w), 1585 (s), 1545 (w), 1495 (m), 1460 (w), 1423 (s), 1322 (m), 1281 (m), 1236 (w), 1215 (m), 1157 (w), 1129 (w), 1113 (w), 1074 (w), 1044 (s), 993 (w), 933 (w), 895 (w), 832 (w), 799 (m), 757 (s), 692 (s), 647 (w), 626 (w), 584 (s), 538 (w), 518 (w). Anal. calcd for C₁₅H₁₁N₅ (261.3): C 68.95, H 4.24, N 26.80. Found: C 68.71, H 4.43, N 26.90.

4.2.8. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-4-methoxy-1H-pyrrolo[2,3-b]pyridine (8h)

109 mg (0.36 mmol, 48 % yield over two steps) as a yellow solid. Mp 253-258 °C (dec.). ¹H NMR (DMSO-d₆, 500 MHz): δ 3.92 (s, 3 H), 5.65 (s, 2 H), 6.68 (d, *J* = 5.4 Hz, 1 H), 7.32-7.43 (m, 5 H), 7.74 (d, *J* = 2.2 Hz, 1 H), 8.12 (d, *J* = 5.4 Hz, 1 H), 8.24 (s, 1 H), 11.8 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.6 (CH₂), 55.3 (CH₃), 98.2 (CH), 104.7 (C_{quat}), 106.4 (C_{quat}), 121.5 (CH), 122.1 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 136.4 (C_{quat}), 142.0 (C_{quat}), 145.2 (CH), 150.3 (C_{quat}), 159.6 (C_{quat}). EI + MS (*m*/*z* (%)): 306 (21), 305 (M⁺, 100), 278 (17), 277 (83), 276 (86), 262 (27), 261 (11), 250 (12), 249 (38), 234 (10), 200 (16), 186 (31), 159 (14), 156 (18), 131 (12), 129 (11), 91 (C₇H₇⁺, 58), 65 (C₅H₅⁺, 12). IR (KBr): $\tilde{\nu}$ 3091 (w) cm⁻¹, 3007 (w), 2940 (w), 2842 (w), 1578 (s), 1512 (w), 1498 (w), 1459 (w), 1430 (w), 1410 (w), 1321 (m), 1308 (m), 1279 (m), 1222 (w), 1150 (w), 1098 (m), 1051 (w), 974 (w), 939 (w), 852 (w), 801 (m), 726 (m), 653 (w). Anal. calcd for C₁₇H₁₅N₅O (305.3): C 66.87, H 4.95, N 22.94. Found: C 66.74, H 5.15, N 22.96.

4.2.9. 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-methyl-1H-pyrrolo[2,3-b]pyridine (8i)

300 mg (1.04 mmol, 52 % yield over two steps) as a colorless solid. Mp 263 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 2.63 (s, 3 H), 5.67 (s, 2 H), 7.10 (dd, J = 7.9 Hz, J = 4.7 Hz, 1 H), 7.32-7.37 (m, 1 H), 7.38-7.41 (m, 4 H), 8.18 (dd, J = 4.7 Hz, J = 1.3 Hz, 1 H), 8.28 (dd, J = 7.6 Hz, J = 0.9 Hz, 1 H), 8.51 (s, 1 H), 11.8 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 13.0 (CH₃), 52.8 (CH₂), 101.0 (C_{quat}), 115.7 (CH), 118.5 (C_{quat}), 120.4 (CH), 126.9 (CH), 127.8 (CH), 128.0 (CH), 128.7 (CH), 134.1 (C_{quat}), 136.2 (C_{quat}), 141.8 (CH), 142.2 (C_{quat}), 147.8 (C_{quat}). EI + MS (*m/z* (%)): 289 (M⁺, 64), 262 (18), 261 ((M-N₂)⁺, 100), 260 (45), 246 (54), 233 (45), 232 (25), 231 (18), 219 (35), 184 (54), 170 (71), 157 (17), 156 (38), 155 (37), 143 (23), 132 (24), 131 (17), 130 (17), 129 (14), 116 (15), 103 (15), 102 (43), 91 (C₇H₇⁺, 55), 65 (C₅H₅⁺, 17). IR (KBr): \tilde{v} 3425 (m) cm⁻¹, 3103 (w), 3035 (w), 2921 (w), 2850 (w), 1625 (w), 1585 (s), 1527 (m), 1494 (w), 1457 (m), 1417 (s), 1390 (w), 1279 (s), 1217 (s), 1138 (w), 1117 (w), 1070 (m), 1046 (w), 969 (w), 931 (s), 824 (w), 796 (m), 771 (s), 715 (s), 693 (w), 673 (m), 650 (w), 582 (w). Anal. calcd for C₁₇H₁₅N₅ (289.3): C 70.57, H 5.23, N 24.21. Found: C 70.33, H 5.20, N 24.25.

4.2.10.7-(1-Benzyl-1H-1,2,3-triazol-4-yl)-5H-pyrrolo[2,3-b]pyrazine (8j)

93 mg (0.34 mmol, 47 % yield over two steps) as a colorless solid. Mp 248-249 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.70 (s, 2 H), 7.31-7.37 (m, 1 H), 7.37-7.41 (m, 4 H), 8.31-8.35 (m, 2 H), 8.47 (d, *J* = 2.5 Hz, 1 H), 8.59 (s, 1 H), 12.3 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.7 (CH₂), 105.4 (C_{quat}), 120.8 (CH), 127.1 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 135.6 (C_{quat}), 136.2 (C_{quat}), 137.5 (CH), 138.3 (CH), 139.8 (C_{quat}), 141.7 (C_{quat}). EI + MS (*m*/*z* (%)): 276 (M⁺, 50), 248 ((M-N₂)⁺, 44), 247 ((M-HN₂)⁺, 100), 220 (14), 157 (C₈H₅N₄⁺, 48), 130 (12), 91 (C₇H₇⁺, 39), 65 (C₅H₅⁺, 8). IR (KBr): \tilde{v} 3151 (s) cm⁻¹, 1632 (m), 1590 (m), 1544 (w), 1492 (m), 1456 (s), 1409 (m), 1364 (m), 1336 (s), 1221 (s), 1180 (m), 1119 (m), 1054 (m), 1038 (m), 944 (m), 908 (w), 849 (w), 799 (m), 721 (s), 694 (w), 673 (w), 628 (w), 586 (m), 540 (w). Anal. calcd for C₁₅H₁₂N₆ (276.3): C 65.21, H 4.38, N 30.42. Found: C 65.00, H 4.68, N 30.35.

4.2.11. 5-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)-4-methoxy-7*H*-pyrrolo[2,3-*d*]pyrimidine (8k)

165 mg (0.54 mmol, 54 % yield over two steps) as a colorless solid. Mp 249 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 4.07 (s, 3 H), 5.70 (s, 2 H), 7.34-7.45 (m, 5 H), 7.84 (s, 1 H), 8.38 (s, 1 H), 8.42 (s, 1 H), 12.3 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.6 (CH₂), 53.4 (CH₃), 101.4 (C_{quat}), 105.1 (C_{quat}), 121.4 (CH), 122.1 (CH), 127.9 (CH), 128.0 (CH), 128.7 (CH), 136.2 (C_{quat}), 141.0 (C_{quat}), 150.7 (CH), 152.7 (C_{quat}), 162.3 (C_{quat}). EI + MS (*m*/*z* (%)): 307 (7), 306 (M⁺, 32), 278 ((M-N₂)⁺, 54), 277 (90), 250 (26), 201 (13), 187 (46), 146 (14), 132 (12), 130 (22), 103 (14), 91 (C₇H₇⁺, 100), 65 (C₅H₅⁺, 20), 42 (11). IR (KBr): \tilde{v} 3449 (w) cm⁻¹, 3084 (w), 2969 (w), 2923 (w), 2851 (w), 1581 (s), 1566 (s), 1476 (m), 1455 (m), 1433 (m), 1406 (w), 1376 (w), 1312 (s), 1219 (w), 1143 (w), 1091 (m), 1049 (m), 1031 (w), 962 (w), 936 (w), 880 (m), 851 (w), 798 (w), 771 (w), 720 (w), 691 (w), 671 (w), 633 (w), 575 (w). Anal. calcd for C₁₆H₁₄N₆O (306.3): C 62.74, H 4.61, N 27.44. Found: C 62.78, H 4.53, N 27.67.

4.2.12. 4-(2-Methoxyethoxy)-5-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-7*H*-pyrrolo[2,3*d*]pyrimidine (8l)

141 mg (0.40 mmol, 41 % yield over two steps) as a colorless solid. Mp 240 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.23 (s, 3 H), 3.68-3.71 (m, 2 H), 4.57-4.60 (m, 2 H), 5.65 (s, 2 H), 7.29-7.36 (m, 3 H), 7.37-7.42 (m, 2 H), 7.85 (s, 1 H), 8.37 (s, 1 H), 8.43 (s, 1 H), 12.3 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.9 (CH₂), 57.9 (CH₃), 64.7 (CH₂), 69.8 (CH₂), 101.3 (C_{quat}), 105.2 (C_{quat}), 121.5 (CH), 122.1 (CH), 127.4 (CH), 128.0 (CH), 128.8 (CH), 136.2 (C_{quat}), 141.3 (C_{quat}), 150.7 (CH), 152.8 (C_{quat}), 161.8 (C_{quat}). EI + MS (*m*/*z* (%)): 351 (24), 350 (M⁺, 97), 322 (18), 321 (46), 264 (39), 263 (100), 236 (20), 231 (13), 201 (18), 173 (15), 161 (12), 148 (19), 146 (18), 111 (15), 109 (10), 97 (21), 95 (14), 91 (C₇H₇⁺, 97), 85 (17), 83 (20), 81 (12), 71 (24), 69 (22), 65 (C₅H₅⁺, 12), 59 (14), 57 (36), 55 (17), 43 (22). IR (KBr): \tilde{v} 1578 (s) cm⁻¹, 1446 (m), 1321 (m), 1207 (w), 1143 (w), 1091 (m), 1028 (w), 905 (w), 721 (m), 629 (w). Anal. calcd for C₁₈H₁₈N₆O₂ (350.4): C 61.70, H 5.18, N 23.99. Found: C 61.59, H 5.22, N 24.10.

4.2.13. 1-Benzyl-4-(5-(4-methoxyphenyl)-1H-pyrrol-3-yl)-1H-1,2,3-triazole (8m)

147 mg (0.44 mmol, 44 % yield over two steps) as a pale yellow solid. Mp 238 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.76 (s, 3 H), 5.60 (s, 2 H), 6.70-6.72 (m, 1 H), 6.93-6.97 (m, 2 H), 7.18-7.20 (m, 1 H), 7.32-7.36 (m, 3 H), 7.37-7.41 (m, 2 H), 7.56-7.60 (m, 2 H), 8.16 (s, 1 H), 11.3 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.7 (CH₂), 55.0 (CH₃), 102.3 (CH), 114.1 (CH), 115.2 (C_{quat}), 115.8 (CH), 119.1 (CH), 124.7 (CH), 125.4 (C_{quat}), 127.8 (CH), 128.0 (CH), 128.7 (CH), 131.9 (C_{quat}), 136.2 (C_{quat}), 143.7 (C_{quat}), 157.5 (C_{quat}). EI + MS (*m*/*z* (%)): 331 (16), 330 (M⁺, 66), 302 (40), 301 (100), 286 (11), 274 (34), 258 (12), 225 (11), 211 (36), 184 (21), 169 (13), 168 (17), 167 (13), 141 (10), 140 (12), 134 (23), 91 (C₇H₇⁺, 48), 65 (C₅H₅⁺, 10). IR (KBr): \tilde{v} 3429 (s) cm⁻¹, 1655 (w), 1638 (w), 1560 (w), 1543 (w), 1501 (m), 1458 (w), 1290 (w), 1256 (m), 1051 (m), 1022 (m), 835 (m), 798 (m), 718 (m), 548 (m). Anal. calcd for C₂₀H₁₈N₄O (330.4): C 72.71, H 5.49, N 16.96. Found: C 72.45, H 5.68, N 17.08.

4.2.14. 1-Benzyl-4-(1H-pyrazol-4-yl)-1H-1,2,3-triazole (8n)

86 mg (0.38 mmol, 38 % yield over two steps) as a colorless solid. Mp 218 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.60 (s, 2 H), 7.31-7.35 (m, 3 H), 7.36-7.41 (m, 2 H), 7.7-8.2 (br, 2 H), 8.25 (s, 1 H), 13.0 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.8 (CH₂), 111.8 (C_{quat}), 120.2 (CH), 127.9 (CH), 128.1 (CH), 128.8 (CH), 136.0 (C_{quat}), 140.6 (C_{quat}). EI + MS (*m*/*z* (%)): 225 (M⁺, 18), 196 ((M-HN₂)⁺, 72), 169 (27), 167 (10), 143 (16), 106 (C₇H₈N⁺, 96), 104 (10), 91 (C₇H₇⁺, 100), 79 (C₄H₃N₂⁺, 15), 65 (C₅H₅⁺, 24), 51 (C₄H₃⁺, 10). IR (KBr): \tilde{v} 3122 (s) cm⁻¹, 3064 (m), 2952 (m), 2878 (m), 1630 (m), 1544 (w), 1496 (w), 1458 (m), 1390 (w), 1360 (m), 1270 (w), 1215 (m), 1142 (w), 1111 (w), 1077 (w), 1049 (m), 1018 (w), 965 (w), 934 (m), 885 (m), 830 (s), 812 (s), 717 (s), 707 (s), 669 (w), 650 (w), 624 (m), 590 (w). Anal. calcd for C₁₂H₁₁N₅ (225.3): C 63.99, H 4.92, N 31.09. Found: C 63.75, H 5.05, N 31.10.

4.2.15. 1-Benzyl-4-(1H-imidazol-4-yl)-1H-1,2,3-triazole (80)

46 mg (0.20 mmol, 20 % yield over two steps) as a colorless solid. Mp 188 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.62 (s, 2 H), 7.29-7.41 (m, 5 H), 7.5 (br, 1 H), 7.70 (s, 1 H), 8.2 (br, 1 H), 12.2 & 12.7 (br, 1 H, N<u>H</u>). EI + MS (*m/z* (%)): 225 (M⁺, 30), 197 ((M-N₂)⁺, 18), 196 ((M-HN₂)⁺, 100), 169 (37), 149 (13), 143 (10), 142 (12), 120 (16), 115 (11), 106 (C₇H₈N⁺, 86), 105 (11), 93 (11), 92 (18), 91 (C₇H₇⁺, 90), 85 (10), 77 (C₆H₅⁺, 18), 71 (12), 65 (C₅H₅⁺, 25), 57 (13), 55 (10), 52 (C₄H₄⁺, 11), 44 (10), 43 (10), 41 (11). IR (KBr): \tilde{v} 3113 (s) cm⁻¹, 3032 (m), 2925 (m), 2832 (m), 1655 (w), 1625 (m), 1535 (m), 1498 (w), 1458 (s), 1354 (w), 1215 (s), 1162 (w), 1121 (w), 1097 (w), 1054 (w), 1016 (w), 945 (s), 833 (m), 787 (w), 715 (s), 693 (m), 660 (w), 627 (w), 583 (w). Anal. calcd for C₁₂H₁₁N₅ (225.3): C 63.99, H 4.92, N 31.09. Found: C 64.08, H 5.08, N 30.85.

4.2.16. 3-(1-(4-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (8p)

218 mg (0.70 mmol, 45 % yield over two steps) as a colorless solid. Mp 225 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.67 (s, 2 H), 7.18 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.38-7.43 (m, 2 H), 7.45-7.50 (m, 2 H), 7.92 (d, *J* = 2.2 Hz, 1 H), 8.29 (d, *J* = 4.4 Hz, 1 H), 8.44 (d, *J* = 7.9 Hz, 1 H), 8.53 (s, 1 H), 11.9 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.0 (CH₂), 104.9 (C_{quat}), 115.9 (CH), 116.9 (C_{quat}), 119.8 (CH), 123.3 (CH), 128.2 (CH), 128.7 (CH), 129.8 (CH), 132.8 (C_{quat}), 135.1 (C_{quat}), 142.4 (C_{quat}), 143.1 (CH), 148.5 (C_{quat}). EI + MS (*m*/*z* (%)): 311 (M(³⁷Cl)⁺, 26), 310 (14), 309 (M(³⁵Cl)⁺, 80), 283 (27), 282 (44), 281 (75), 280 (100), 253 (20), 246 (20), 219 (16), 218 (19), 170 (26), 156 (54), 129 (35), 127 (15), 125 (45), 118 (11), 102 (18), 89 (17), 57 (12), 44 (24). IR (KBr): \tilde{v} 3139 (m) cm⁻¹, 2895 (w), 1625 (w), 1584 (s), 1493 (s), 1418 (m), 1326 (w), 1286 (w), 1222 (w), 1130 (w), 1091 (w), 1054 (w), 1016 (w), 941 (w), 897 (w), 801 (m), 771 (s), 653 (w), 619 (w), 586 (w). Anal. calcd for C₁₆H₁₂ClN₅ (309.8): C 62.04, H 3.90, N 22.61. Found: C 61.92, H 3.90, N 22.54.

4.2.17. 3-(1-(4-Methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrrolo[2,3-*b*]pyridine (8q)

179 mg (0.58 mmol, 58 % yield over two steps) as a pale yellow solid. After suspension in dichloromethane, sonication in ultrasonic bath, filtration, and drying, a colorless solid was obtained. Mp 185 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.74 (s, 3 H), 5.57 (s, 2 H), 6.94-6.97 (m, 2 H), 7.17 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.34-7.38 (m, 2 H), 7.90 (d, *J* = 2.5 Hz, 1 H), 8.28 (dd, *J* = 4.7 Hz, *J* = 1.6 Hz, 1 H), 8.44 (dd, *J* = 7.9 Hz, *J* = 1.3 Hz, 1 H), 8.48 (s, 1 H), 11.9 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 52.4 (CH₂), 55.0 (CH₃), 105.0 (C_{quat}), 114.0 (CH), 115.9 (CH), 116.9 (C_{quat}), 119.4 (CH), 123.2 (CH), 128.0 (C_{quat}), 128.2 (CH), 129.5 (CH), 142.3 (C_{quat}), 143.1 (CH), 148.5 (C_{quat}), 159.0 (C_{quat}). EI + MS (*m*/z (%)): 306 (7), 305 (M⁺, 36), 277 ((M-N₂)⁺, 43), 276 (72), 249 (19), 170 (18), 156 (40), 129 (36), 122 (11), 121 (C₈H₉O⁺, 100), 103 (10), 102 (13), 91 (C₇H₇⁺, 13), 78 (C₆H₆⁺, 19), 77 (C₆H₅⁺, 20). IR (KBr): \tilde{v} 3447 (m) cm⁻¹, 3424 (m), 3136 (w), 2903 (w), 1612 (w), 1584 (m), 1514 (s), 1462 (w), 1419 (m), 1335 (w), 1281 (w), 1249 (s), 1211 (w), 1180 (w), 588 (w), 552 (w). Anal. calcd for C₁₇H₁₅N₅O (305.3): C 66.87, H 4.95, N 22.94. Found: C 66.68, H 5.20, N 23.03.

4.2.18. 3-(1-Phenethyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (8r)

179 mg (0.62 mmol, 62 % yield over two steps) as a colorless solid. Mp 228 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.26 (t, J = 7.3 Hz, 2 H), 4.68 (t, J = 7.3 Hz, 2 H), 7.18 (dd, J = 7.9 Hz, J = 4.4 Hz, 1 H), 7.20-7.32 (m, 5 H), 7.89 (d, J = 2.2 Hz, 1 H), 8.30 (dd, J = 4.4 Hz, J = 1.6 Hz, 1 H), 8.40 (dd, J = 7.9 Hz, J = 1.6 Hz, 1 H), 8.44 (s, 1 H), 11.9 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 35.5 (CH₂), 50.4 (CH₂), 105.1 (C_{quat}), 115.9 (CH), 116.9 (C_{quat}), 119.6 (CH), 123.0 (CH), 126.5 (CH), 128.1 (CH), 128.3 (CH), 128.6 (CH), 137.6 (C_{quat}), 141.7 (C_{quat}), 143.1 (CH), 148.5 (C_{quat}). EI + MS (m/z (%)): 289 (M⁺, 40), 261 ((M-N₂)⁺, 13), 260 (13), 234 (16), 233 (36), 171 (12), 170 (100), 157 (15), 156 (18), 144 (11), 143 (80), 142 (28), 132 (12), 131 (20), 130 (14), 129 (13), 116 (20), 115 (18), 105 (C₈H₉⁺, 24), 103 (17), 91 (C₇H₇⁺, 12), 79 (15), 77 (C₆H₅⁺, 18). IR (KBr): \tilde{v} 3449 (w) cm⁻¹, 3089 (m), 3064 (m), 3028 (w), 2932 (w), 2893 (w), 1624 (w), 1584 (s), 1495 (m), 1455 (m), 1416 (s), 1320 (w), 1283 (m), 1218 (m), 1134 (w), 1112 (w), 1058 (w), 1030 (m), 942 (w), 898 (w), 842 (w), 793 (m), 770 (s), 730 (s), 698 (s), 629 (w), 585 (w). Anal. calcd for C₁₇H₁₅N₅ (289.3): C 70.57, H 5.23, N 24.21. Found: C 70.47, H 5.40, N 24.25.

4.2.19. 3-(1-(1-Phenylethyl)-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridin (8s)

160 mg (0.55 mmol, 55 % yield over two steps) as a pale yellow solid. Mp 184 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 1.96 (d, *J* = 7.3 Hz, 3 H), 6.00 (q, *J* = 7.3 Hz, 1 H), 7.18 (dd, *J* = 7.9 Hz, *J* = 4.7 Hz, 1 H), 7.30-7.35 (m, 1 H), 7.37-7.40 (m, 4 H), 7.91 (d, *J* = 2.5 Hz, 1 H), 8.29 (dd, *J* = 4.4 Hz, *J* = 1.6 Hz, 1 H), 8.48 (dd, *J* = 7.9 Hz, *J* = 1.3 Hz, 1 H), 8.62 (s, 1 H), 11.9 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 21.0 (CH₃), 59.2 (CH), 105.1 (C_{quat}), 115.9 (CH), 116.9 (C_{quat}), 118.3 (CH), 123.2 (CH), 126.2 (CH), 127.9 (CH), 128.3 (CH), 128.7 (CH), 141.2 (C_{quat}), 142.1 (C_{quat}), 143.1 (CH), 148.5 (C_{quat}). EI + MS (*m*/*z* (%)): 290 (6), 289 (M⁺, 30), 260 (13), 247 (19), 246 (100), 219 (12), 156 (47), 143 (11), 129 (35), 105 (C₈H₉⁺, 34), 103 (17), 102 (12), 79 (13), 77 (C₆H₅⁺, 17). IR (KBr): \tilde{v} 3457 (w) cm⁻¹, 3120 (m), 3080 (m), 2927 (m), 2874 (m), 1623 (w), 1586 (s), 1495 (w), 1458 (m), 1420 (m), 1383 (w), 1333 (m), 1302 (w), 1279 (m), 1234 (w), 1211 (m), 1196 (m), 1136 (m), 1109 (w), 1058 (w), 1040 (w), 1023 (w), 982 (w), 937 (m), 896 (w), 824 (m), 793 (w), 770 (s), 722 (w), 694 (m), 648 (w), 624 (w), 584 (m), 544 (w), 526 (w). Anal. calcd for C₁₇H₁₅N₅ (289.3): C 70.57, H 5.23, N 24.21. Found: C 70.30, H 5.42, N 24.01.

4.2.20. 4-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (9a)

207 mg (0.75 mmol, 75 % yield over two steps) as a colorless solid. Mp 200 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.73 (s, 2 H), 7.00-7.03 (m, 1 H), 7.33-7.44 (m, 5 H), 7.58-7.61 (m, 2 H), 8.29 (dd, *J* = 5.0 Hz, *J* = 0.6 Hz, 1 H), 9.03 (d, *J* = 0.9 Hz, 1 H), 11.8 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 53.0 (CH₂), 100.1 (CH), 111.6 (CH), 115.5 (C_{quat}), 123.8 (CH), 126.5 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 129.3 (C_{quat}), 135.9 (C_{quat}), 142.6 (CH), 144.8 (C_{quat}), 149.4 (C_{quat}). EI + MS (*m/z* (%)): 276 (10), 275 (M⁺, 48), 247 (14), 246 (64), 219 (14), 170 (10), 157 (11), 156 (100), 149 (20), 130 (14), 129 (30), 109 (10), 102 (10), 91 (C₇H₇⁺, 98), 85 (11), 71 (13), 65 (C₅H₅⁺, 14), 57 (14). IR (KBr): \tilde{v} 3128 (m) cm⁻¹, 2869 (m), 1604 (s), 1543 (w), 1498 (m), 1458 (m), 1391 (w), 1333 (s), 1226 (w), 1050 (m), 897 (w), 824 (s), 723 (m), 645 (w), 601 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.58, H 4.83, N 25.58.

4.2.21. 5-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (9b)

182 mg (0.66 mmol, 66 % yield over two steps) as a colorless solid. Mp 210 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.65 (s, 2 H), 6.50 (dd, *J* = 3.5 Hz, *J* = 1.9 Hz, 1 H), 7.32-7.43 (m, 5 H), 7.49-7.51 (m, 1 H), 8.38 (d, *J* = 1.9 Hz, 1 H), 8.64 (s, 1 H), 8.71 (d, *J* = 1.9 Hz, 1 H), 11.7 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 53.1 (CH₂), 100.2 (CH), 118.9 (C_{quat}), 119.5 (C_{quat}), 120.8 (CH), 124.6 (CH), 127.0 (CH), 128.0 (CH), 128.2 (CH), 128.8 (CH), 136.0 (C_{quat}), 140.4 (CH), 145.7 (C_{quat}), 148.2 (C_{quat}). EI + MS (*m*/*z* (%)): 276 (6), 275 (M⁺, 28), 247 (23), 246 (100), 219 (25), 170 (22), 156 (68), 129 (39), 91 (C₇H₇⁺, 58), 65 (C₅H₅⁺, 11). IR (KBr): \tilde{v} 3125 (m) cm⁻¹, 1608 (w), 1585 (w), 1497 (w), 1454 (w), 1435 (w), 1407 (m), 1340 (m), 1314 (w), 1298 (w), 1228 (w), 1214 (w), 1069 (w), 1051 (w), 919 (w), 905 (w), 805 (m), 781 (w), 734 (s), 693 (w), 621 (w), 505 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.95, H 4.64, N 25.48.

5. Preparation of 3-(4-Benzyl-1*H*-1,2,3-triazol-1-yl)-1*H*-pyrrolo[2,3*b*]pyridine (10) by the One-Pot Synthesis of 1-Aryl 1,2,3-Triazoles from Aryl Halides and Terminal Alkynes in the Presence of Sodium Azide^[4]

Copper(I) iodide (39 mg, 0.20 mmol, 10 mol %) was placed under argon atmosphere in a dry screw-cap vessel with septum. Then, *tert*-butyl 3-iodo-1*H*-pyrrolo[2,3-*b*]pyridine-1-carboxylate (**1f**) (688 mg, 2.00 mmol) in 5 mL of dimethylsulfoxide and 1mL of water was added and the mixture was degassed with argon. Sodium azide (138 mg, 2.10 mmol, 1.05 equiv), sodium ascorbate (40 mg, 0.20 mmol, 10 mol %), benzylacetylene (0.26 mL, 2.00 mmol, 1.00 equiv), and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.22 mL, 0.30 mmol, 0.15 equiv) were successively added to the mixture which was stirred at room temperature (water bath) for 112 h (monitored by TLC, but the reaction did not go to completion). Then, the mixture was diluted with 10 mL of water (3 x 10 mL), dried with sodium sulphate, and filtered. The solvents were removed in vacuo and the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with petroleum ether (boiling range 40-60 °C)/ethyl acetate (PE-EtOAc = 5:1). After drying in vacuo, 105 mg (0.28 mmol, 14 % yield) of a yellow oil were obtained.

The obtained oil was dissolved in 1.4 mL of methanol, potassium carbonate (98 mg, 0.70 mmol, 2.50 equiv) was added, and the mixture was stirred at room temperature for 1 h. Then, the solvent was removed in vacuo and the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with dichloromethane-methanol-aqueous ammonia DCM-MeOH-NH₃ = 100:1:1 \rightarrow 100:2:1 \rightarrow 100:3:1 \rightarrow 100:4:1 (stepwise gradient). After drying in vacuo at 70 °C overnight, 3-(1-benzyl-1*H*-pyrazol-4-yl)-1*H*-pyrrolo[2,3-*b*]pyridine (**10**) (49 mg, 0.18 mmol, 64 % yield) was obtained as a colorless solid.
3-(4-Benzyl-1H-1,2,3-triazol-1-yl)-1H-pyrrolo[2,3-b]pyridine (10)

49 mg (9 % yield over two steps) as a colorless solid. Mp 177 °C. ¹H NMR (DMSOd₆, 500 MHz): δ 4.11 (s, 2 H), 7.21-7.26 (m, 2 H), 7.30-7.35 (m, 4 H), 8.11 (d, *J* = 2.8 Hz, 1 H), 8.30 (dd, *J* = 7.9 Hz, *J* = 1.6 Hz, 1 H), 8.37 (dd, *J* = 4.4 Hz, *J* = 1.6 Hz, 1 H), 8.46 (s, 1 H), 12.2 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 31.1 (CH₂), 112.2 (C_{quat}), 113.6 (C_{quat}), 116.7 (CH), 117.6 (CH), 121.4 (CH), 126.1 (CH), 127.5 (CH), 128.4 (CH), 128.5 (CH), 139.3 (C_{quat}), 144.3 (CH), 146.1 (C_{quat}), 146.4 (C_{quat}). EI + MS (*m*/*z* (%)): 275 (M⁺, 1), 247 ((M-N₂)⁺, 37), 246 (100), 170 (27), 144 (32), 143 (44), 132 (16), 128 (10), 117 (15), 116 (11), 115 (14), 104 (37), 103 (15), 91 (C₇H₇⁺, 18), 90 (15), 78 (10), 77 (C₆H₅⁺, 14), 65 (C₅H₅⁺, 5). IR (KBr): \tilde{v} 3447 (s) cm⁻¹, 3421 (s), 3144 (w), 3108 (w), 3025 (w), 2920 (w), 2821 (w), 1655 (m), 1613 (s), 1586 (m), 1563 (w), 1515 (w), 1494 (m), 1436 (m), 1409 (s), 1377 (m), 1341 (w), 1288 (s), 1206 (s), 1136 (m), 1103 (m), 1073 (w), 1049 (s), 1021 (w), 947 (m), 895 (m), 830 (w), 790 (m), 766 (s), 721 (s), 691 (m), 665 (w), 616 (w), 586 (m), 531 (w). Anal. calcd for C₁₆H₁₃N₅ (275.3): C 69.80, H 4.76, N 25.44. Found: C 69.63, H 4.96, N 25.20. 6. Preparation of 3-(1-Benzyl-1*H*-pyrazol-4-yl)-1*H*-pyrrolo[2,3*b*]pyridine (11) by the *Masuda* Borylation – *Suzuki* Coupling Sequence^[5]

Tetrakis(triphenylphosphane)-palladium(0) (35 mg, 0.03 mmol, 3 mol %) and tertbutyl 3-iodo-1*H*-pyrrolo[2,3-*b*]pyridine-1-carboxylate (1f) (344 mg, 1.00 mmol) were placed under argon atmosphere in a dry screw-cap vessel with septum. Then, 5 mL of dry dioxane were added and the mixture was degassed with argon. Dry triethylamine (1.39 mL, 10.0 mmol, 10.0 equiv), and 4,4,5,5-tetramethyl-1,3,2dioxaborolane (0.22 mL, 1.50 mmol, 1.50 equiv) were successively added to the mixture which was stirred at 80 °C (preheated oil bath) for 3 h (monitored by TLC). Then, after cooling to room temperature (water bath), 5 mL of dry methanol, 1benzyl-4-bromo-1*H*-pyrazole (237 mg 1.00 mmol, 1.00 equiv), and cesium carbonate (823 mg, 2.50 mmol, 2.50 equiv) were successively added and the mixture was stirred at 100 °C (preheated oil bath) for 24 h. Then, after cooling to room temperature (water bath) the solvents were removed in vacuo and the residue was absorbed onto Celite[®] and purified chromatographically on silica gel with dichloromethane-methanol-aqueous ammonia DCM-MeOH-NH₃ = 100:1:1. After drying in vacuo at 70 °C overnight, 3-(1-benzyl-1H-pyrazol-4-yl)-1H-pyrrolo[2,3*b*]pyridine obtained a yellow solid. (**11**) was as Recrystallization from dichloromethane/n-pentane gave a colorless solid.

3-(1-Benzyl-1*H*-pyrazol-4-yl)-1*H*-pyrrolo[2,3-b]pyridine (11)

41 mg (0.15 mmol, 15 % yield) as a colorless solid (dichloromethane/*n*-pentane). Mp 198 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 5.37 (s, 2 H), 7.12 (dd, *J* = 7.9 Hz, *J* = 4.4 Hz, 1 H), 7.26-7.32 (m, 3 H), 7.33-7.38 (m, 2 H), 7.71 (d, *J* = 2.5 Hz, 1 H), 7.90 (s, 1 H), 8.21 (dd, *J* = 7.9 Hz, *J* = 1.3 Hz, 1 H), 8.24 (dd, *J* = 4.4 Hz, *J* = 1.3 Hz, 1 H), 8.29 (s, 1 H), 11.7 (br, 1 H, N<u>H</u>). ¹³C NMR (DMSO-d₆, 125 MHz): δ 54.8 (CH₂), 106.2 (C_{quat}), 115.4 (CH), 115.6 (C_{quat}), 117.2 (C_{quat}), 121.9 (CH), 126.3 (CH), 127.4 (CH), 127.5 (CH), 127.5 (CH), 128.5 (CH), 136.5 (CH), 137.7 (C_{quat}), 142.7 (CH), 148.6 (C_{quat}). EI + MS (*m*/*z* (%)): 275 (26), 274 (M⁺, 100), 273 ((M-H)⁺, 10), 183 (C₁₀H₇N₄⁺, 9), 142 (C₉H₆N₂⁺, 7), 91 (C₇H₇⁺, 51), 65 (C₅H₅⁺, 6). IR (KBr): \tilde{v} 3449 (w) cm⁻¹, 3103 (m), 3027 (m), 2819 (m), 1655 (w), 1579 (m), 1492 (m), 1459 (w), 1421 (s), 1337 (w), 1288 (m), 1229 (w), 1196 (w), 1149 (w), 1130 (w), 1110 (w), 989 (m), 918 (w), 897 (w), 857 (m), 822 (w), 793 (w), 763 (s), 719 (s), 695 (w), 665 (w), 650 (w), 614 (w), 587 (w), 532 (w). Anal. calcd for C₁₇H₁₄N₄ (274.3): C 74.43, H 5.14, N 20.42. Found: C 74.41, H 5.22, N 20.27.

¹H NMR of **8f** (15 mg) in 0.7 mL DMSO-d₆ at 296 K (δ in ppm).

 ^{13}C NMR of **8f** (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^{13}C DEPT 135-NMR of **8f** (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

¹H NMR of **8g** (20 mg) in 0.7 mL DMSO-d₆ at 297 K (δ in ppm). *Impurities from residual solvents.

 ^{13}C DEPT 135-NMR of 8g (20 mg) in 0.7 mL DMSO-d_6 at 297 K (δ in ppm).

 ^1H NMR of 8r (20 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^{13}C NMR of 8r (20 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^{13}C DEPT 135-NMR of 8r (20 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^1H NMR of 9a (15 mg) in 0.7 mL DMSO-d_6 at 295 K (δ in ppm).

 ^1H NMR of **10** (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^{13}C NMR of 10 (15 mg) in 0.7 mL DMSO-d_6 at 297 K (δ in ppm).

 ^{13}C DEPT 135-NMR of 10 (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

¹H NMR of **11** (15 mg) in 0.7 mL DMSO-d₆ at 296 K (δ in ppm).

 ^{13}C NMR of **11** (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

 ^{13}C DEPT 135-NMR of 11 (15 mg) in 0.7 mL DMSO-d_6 at 296 K (δ in ppm).

8. Appendix

8.1. HT-LC-MS Spectra and UV purity of the obtained compounds 8a-s, 9a-b, 10, and 11

HT-LC-MS Spectrum (SOP 2200) of 8a. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8b. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8c. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8d. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8e. UV purity: 99.9 %

HT-LC-MS Spectrum (SOP 2222) of 8f. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8g. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2222) of 8h. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8i. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8j. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8k. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8I. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8m. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8n. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 80. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2222) of 8p. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8q. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8r. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 8s. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 9a. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2222) of 9b. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2200) of 10. UV purity: 100 %

HT-LC-MS Spectrum (SOP 2222) of 11. UV purity: 100 %

8.2. HT-LC-MS Methods for the control of identity and purity of compounds 8a-s, 9a-b, 10, and 11

Problem definition	Identity and Purity			
SOP (Standard	2200			
Operating Procedure)				
Methods	HT-LC-MS			
System	Waters Acqui	Waters Acquity UPLC [®] with PDA and ELSD		
	Waters SQD (ESI+/- and APCI+/-)			
Software	MassLynx with OpenLynx			
Column	Waters XBridge™ C8 3.5 µm			
	4.6 x 50 mm Column			
	Part No. 186003053			
Eluent	A: 99.9 % acetonitrile + 0.1 % TFA			
	B: 99.9 % water + 0.1 % TFA			
Gradient	time (min)	A %	В %	flow
				(mL/min)
	0	5	95	2.0
	8.00	100	0	2.0
	8.10	10	90	2.0
	8.50	5	95	2.0
	11.00	5	95	2.0
Column temperature	Room temperature			
Injection volume	3 μL			
Sample preparation	Approx. 0.1 mg were dissolved in acetonitrile + water			
	50/50 in an ultrasonic bath, so that the concentration was			
	0.5 mM.			
	If necessary, the sample was additionally diluted: 100 μL			
	in 500 μL acetonitrile + water 5/95.			

Problem definition	Identity and	Purity		
SOP	2222			
Methods	HT-LC-MS			
System	4 x Waters 1525 Binary HPLC Pump			
	2 x Waters In-Line Degasser AF			
	1 x Waters 2777 Sample Manager			
	1 x Waters 2488 Mux-UV Detector			
	4 x Waters 2420 ELS Detector			
	1 x Waters ZQ-MUX			
Software	MassLynx with OpenLynx			
Column	Chromolith [®] Flash RP-18e (25-2mm)			
Eluent	A: 99.9 % acetonitrile + 0.1 % formic acid			
	B: 99.9 % water + 0.1 % formic acid			
Gradient	time (min)	Α%	В%	flow
				(mL/min)
	0	5	95	0.8
	1.7	100	0	0.8
	3.0	100	0	0.8
	3.01	0	100	0.8
	6.25	5	95	0.8
Column temperature	Room temperature			
Throughput	416 samples: approx. 11 h			

8.3. Determination of Cu and Pd contents in compound 8f

Sample preparation:	4.8 mg of compound 8f dissolved in 4.8 mL of DMSO		
Measurement:	ICP-MS		
Sample introduction:	50 μ L/min Meinhard sprayer, quartz cyclone spray		
	chamber, syringe pump		
Internal standard:	Rhodium		
Calibration:	Addition of standard or additions calibration		

Additions [µg/g]:	Cu	Pd
	5	5
	10	10
	15	15
Analytical results:	Cu	Pd
	< 2 µg/g	< 1 µg/g

9. References

[1] B. Witulski, N. Buschmann, U. Bergsträßer, Tetrahedron 2000, 56, 8473-8480.

[2] T. A. Kelly, D. W. McNeil, J. M. Rose, E. David, C.-K. Shih, P. M. Grob, *J. Med. Chem.* **1997**, *40*, 2430-2433.

[3] "Three-component synthesis of *N*-Boc-4-iodopyrroles and sequential one-pot alkynylation" E. Merkul, C. Boersch, W. Frank, T. J. J. Müller, *Org. Lett.* **2009**, *11*, 2269-2272.

[4] "Efficient one-pot synthesis of 1-aryl 1,2,3-triazoles from aryl halides and terminal alkynes in the presence of sodium azide" J. Andersen, S. Bolvig, X. Liang, *Synlett* **2005**, 2941-2947.

[5] "Rapid synthesis of bis(hetero)aryls by one-pot Masuda borylation – Suzuki coupling sequence and its application to concise total syntheses of meridianins A and G" E. Merkul, E. Schäfer, T. J. J. Müller, *Org. Biomol. Chem.* **2011**, DOI: 10.1039/C1OB05310H.