Electronic Supplementary Information: Pyrazole analogues of porphyrins and oxophlorins

Alexandra M. Young, Amber L. Von Ruden and Timothy D. Lash,

Department of Chemistry, Illinois State University, Normal, Illinois 61790-6160, U.S.A.

Figure 1. UV-vis spectra of pyrazoloporphyrin **25a** in 1% Et₃N-chloroform (top spectrum) and 1% TFA-chloroform (bottom spectrum).

Figure 2. UV-vis spectrum of pyrazoloporphyrin **25a** in 0.5% Et₃N-chloroform.

Figure 3. UV-vis spectra of pyrazoloporphyrin **25a** in chloroform with 0 equiv (red line), 1 equiv (orange line), 2 equiv (green line), 3 equiv (blue line) and 5 equiv (purple line) showing the formation of a monoprotonated species.

Figure 4. UV-vis spectrum of pyrazoloporphyrin monocation $25aH^+$ in 1% Et₃N-chloroform (top spectrum) and 1% TFA-chloroform (bottom spectrum).

Figure S5. UV-visible spectra of methyl pyrazoloporphyrin **91b** in 1% triethylaminechloroform (blue line) and 5% TFA-chloroform (green line).

Figure 6. UV-vis spectrum of pyrazoloporphyrin **25c** in 1% Et₃N-chloroform.

Figure 7. UV-vis spectra of pyrazoloporphyrin **25c** with 20 equiv TFA in chloroform.

Figure 8. UV-vis spectra of pyrazoloporphyrin **25c** in 0.5% Et₃N-chloroform (red line), chloroform (orange line), 1 equiv TFA in chloroform (green line), 2 equiv TFA in chloroform (blue line) and 5 equiv TFA in chloroform. The chloroform was deacidified by running it through basic alumina, but the chloroform spectrum still shows a small degree of protonation..

Figure 9. UV-visible spectra of ethyl pyrazoloporphyrin **25c** in 1% triethylamine-chloroform (blue line) and 5% TFA-chloroform (red line).

Figure 10. UV-vis spectra of nickel(II) pyrazoloporphyrin **31a** in chloroform (green line) and 1% TFA-chloroform (blue line).

Figure 11. UV-vis spectra of palladium(II) pyrazoloporphyrin **32a** in chloroform (blue line) and 1% TFA-chloroform (green line).

Figure 12. UV-vis spectra of nickel(II) pyrazoloporphyrin **31b** in chloroform (green line) and 1% TFA-chloroform (blue line).

Figure 13. UV-vis spectra of palladium(II) pyrazoloporphyrin **32b** in chloroform (blue line) and 1% TFA-chloroform (green line).

Figure 14. UV-vis spectra of nickel(II) pyrazoloporphyrin **31c** in chloroform (blue line) and with 500 equiv TFA in chloroform (green line).

Figure 15. UV-vis spectra of palladium(II) pyrazoloporphyrin **32c** in chloroform (blue line) and with 500 equiv TFA in chloroform (blue line).

Figure 16. UV-vis spectra of oxophlorin analogue **28a** in 1% Et₃N-chloroform (blue line) and 1% TFA-chloroform (red line).

Figure 17. UV-vis spectra of oxophlorin analogue **28a** in 1% TFA-chloroform (red line), 5% TFA chloroform (green line) and 10% TFA-chloroform (blue line).

Figure 18. UV-vis spectra of oxophlorin analogue **28a** in chloroform with 2 equiv (red line), 5 equiv (green line) and 10 equiv of TFA in chloroform (blue line).

Figure 19. UV-vis spectrum of oxophlorin analogue 28b in 0.5% Et₃N-chloroform.

Figure 20. UV-vis spectra of oxophlorin analogue **28b** in 0.5% TEA-chloroform (red line), chloroform (orange line), 1 equiv TFA in chloroform (green line), 2 equiv TFA in chloroform (blue line) and 5 eqiv TFA in chloroform (purple line).

Figure 21. UV-vis spectra of pyrazoloporphyrin **28b** in 1% TFA-chloroform (blue line) and 5% TFA-chloroform (red line).

Figure 22. UV-vis spectra of oxophlorin analogue **28a** in 1% Et₃N-chloroform (blue line) and 1% TFA-chloroform (red line).

Figure 23. UV-vis spectra of oxophlorin analogue **28c** in chloroform and with 2-50 equiv TFA in chloroform.

Figure 24. UV-vis spectra of pyrazoloporphyrin **25a** in chloroform, 50 equiv TFA in chloroform, 5% TFA-chloroform and 10% TFA-chloroform.

Figure 25. UV-vis spectrum of oxophlorin analogue **29** in chloroform.

ethylpyrazole dimethyl ester 22.

Figure 27. 500 MHz Proton NMR spectrum of 1-ethyl-3,5-bis(hydroxymethyl)pyrazole in CDCl₃.

Figure 28. 125 MHz carbon-13 NMR spectrum of 1-ethyl-3,5-bis(hydroxymethyl)pyrazole in CDCl₃.

Figure 29. 500 MHz proton NMR, DEPT-135 and 125 MHz carbon-13 NMR spectra of *N*-ethylpyrazole dialdehyde **20c**.

Figure 30. HSQC NMR spectrum of 1-ethylpyrazole-3,5-dicarbaldehyde in CDCl₃.

Figure 31. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin **25b** in CDCl₃.

Figure 32. ¹H-¹H COSY NMR spectrum of pyrazoloporphyrin **25b** in CDCl₃.

Figure 33. HSQC NMR spectrum of pyrazoloporphyrin **25b** in CDCl₃.

Figure 34. Selected nOe difference proton NMR spectra for pyrazoloporphyrin **25b** in CDCl₃.

Figure 35. NOE correlations and partial proton NMR assignments for pyrazoloporphyrin **25b**.

Figure 36. 500 MHz proton NMR spectrum of pyrazoloporphyrin **25b** in trace TFA-CDCl_{3.}

Figure 37. 500 MHz proton NMR spectrum of pyrazoloporphyrin **25b** in TFA-CDCl₃.

Figure 38. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin **31b** in CDCl₃.

Figure 39. 500 MHz proton NMR spectrum of nickel(II) pyrazoloporphyrin **31b** in TFA-CDCl₃.

Figure 40. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin **31b** in CDCl₃.

Figure 41. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin **31b** in TFA-CDCl₃.

Figure 42. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of oxophlorin analogue **28b** in CDCl₃.

Figure 43. 500 MHz proton NMR spectrum of oxophlorin **28b** in trace TFA-CDCl₃.

Figure 44. 500 MHz proton NMR spectrum of **28b** in TFA-CDCl₃.

37

Figure 45. Selected nOe difference proton NMR spectra of *N*-methylpyrazole oxophlorin **28b** in CDCl₃.

Figure 46. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin **25c** in trace CDCl₃.

Figure 47. Partial 500 MHz proton NMR spectra of pyrazoloporphyrins **25b** and **25c** in CDCl₃.

Figure 48. 500 MHz proton NMR spectrum of pyrazoloporphyrin **25c** in trace TFA-CDCl₃.

Figure 49. Partial 500 MHz proton NMR spectra of pyrazoloporphyrins **25b** and **25c** in TFA-CDCl₃.

42

Figure 50. 500 MHz proton NMR and carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin **31c** in CDCl₃.

Figure 51. 500 MHz proton NMR spectrum of nickel(II) pyrazoloporphyrin **31c** in TFA-CDCl₃.

Figure 52. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin **32c** in CDCl₃.

Figure 53. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin **32c** in TFA-CDCl₃.

Figure 54. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazolooxophlorin **28c** in CDCl₃.

Figure 55. Partial 500 MHz proton NMR spectrum of oxophlorin analogue **28c** in CDCl₃ showing details of the downfield region.

Figure 56. ¹H-¹H COSY NMR spectrum of **28c** in CDCl₃.

Figure 57. HSQC NMR spectrum of pyrazolo-oxophlorin **28c** in CDCl₃.

Figure 58. Selected nOe difference proton NMR spectra of oxophlorin analogue **28c** in CDCl₃.

Figure 59. 500 MHz proton NMR spectrum of **28c** in trace TFA-CDCl₃.

Figure 60. 500 MHz proton NMR spectrum of **28c** in TFA-CDCl₃.

Figure 61. Selected nOe difference proton NMR spectra of **29** in CDCl₃.

53

Figure 62. Further nOe difference proton NMR spectra, nOe correlations and partial proton NMR assignments for pyrazolo-oxophlorin 29 in CDCl₃.

2.65-2.71 & 1.25

Figure 63. ¹H-¹H COSY NMR spectrum of pyrazolo-oxophlorin **29** in CDCl₃.

Figure 64. 400 MHz proton NMR spectrum of pyrazolophlorin **24a** in CDCl_{3.}

Figure 65. 100 MHz proton NMR spectrum of pyrazolophlorin 24a in CDCl₃.

Figure 66. ¹H-¹H COSY NMR spectrum of pyrazolophlorin **24a** in CDCl₃.

Figure 67. Selected nOe difference proton NMR spectra of pyrazolophlorin 24a in CDCl₃.

Figure 68. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin **25a** in CDCl₃.

Figure 69. 500 MHz proton NMR spectrum of pyrazoloporphyrin **25b** in CDCl₃.

Figure 70. HSQC NMR spectrum of pyrazoloporphyrin 25a in CDCl₃.

Figure 71. Selected nOe difference proton NMR spectra of pyrazoloporphyrin 25a in CDCl₃.

Figure 72. NOE correlations and partial proton NMR assignments for pyrazoloporphyrin **25a** in CDCl₃.

Figure 73. 500 MHz proton NMR spectrum of pyrazoloporphyrin **25a** in TFA-CDCl₃.

Figure 74. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin **31a** in CDCl₃.

Figure 75. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin **31a** in TFA-CDCl₃.

Figure 76. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin **32a** in CDCl₃.

Figure 77. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin **32a** in TFA-CDCl₃.

Figure 78. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of oxophlorin analogue **28a** in CDCl₃.

Figure 79. 500 MHz proton NMR spectrum **28a** in trace TFA-CDCl₃.

Figure 80. 500 MHz proton NMR spectrum of **28a** in TFA-CDCl₃.

Figure 81. ¹H-¹H COSY NMR spectrum of pyrazolo-oxophlorin **28a** in CDCl₃.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Figure 82. Selected nOe difference proton NMR spectra of **28a** in CDCl₃.

Figure 83. Further nOe difference proton NMR spectra, nOe correlations, and partial proton NMR assignments for pyrazolo-oxophlorin **28a** in CDCl₃.

Figure 84. FAB MS of 2-phenyl phlorin analogue **24a**.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -50.0, max = 200.0 Selected filters: None								
Monoisotopic Mass, Even Electron Ions 50 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 1-100 N: 3-5 O: 0-1								
Timothy Lash, AY 02e Mass Spectrometry Center, SCS, University of Illinois Qtof_21712 39 (2.794) AM (Cen,3, 80.00, Ar,14000.0,558.36,0.70,LS 3); Sm (SG, 2x3.00); Cm (39:42)								QTOF 1: TOF MS ES+
100 100								1.47e3
451.3	452.3 453.4 455.4	457.4	459.3 460.3 46	31.2463.3	464.3 467.3	468.3	474.1 476.1 478.3	479.3 480.3 481.3
450.0	452.5 455.0	457.5	460.0	462.5	465.0 467.5	470.0 472.5	475.0 477.5	480.0
Minimum: Maximum:		5.0	10.0	-50.0 200.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
466.2970	466.2971	-0.1	-0.2	15.5	21.0	C30 H36 N5		

Figure 85. ESI MS of 2-methyl pyrazoloporphyrin **25b**.

Figure 86. ESI MS of 2-ethyl pyrazoloporphyrin **25c**.

Figure 87. EI MS of 2-phenyl pyrazoloporphyrin **25a**.

Figure 88. EI MS of nickel(II) pyrazoloporphyrin **31b**. The peak at 446 is due to pump oil.

Figure 89. EI MS of palladium(II) pyrazoloporphyrin **32b**. The peak at 446 is due to pump oil.

79

Figure 90. EI MS of nickel(II) pyrazoloporphyrin **31c**.

Figure 91. EI MS of palladium(II) pyrazoloporphyrin **32c**.

Figure 92. EI MS of nickel(II) 2-phenylpyrazoloporphyrin **31a**. The peak at 446 is due to pump oil.

Figure 93. ESI MS of palladium(II) 2-phenylpyrazoloporphyrin **32a**. The peak at 446 is due to pump oil.

Figure 94. ESI MS of oxophlorin analogue **28b**.

Figure 95. ESI MS of 2-ethyl pyrazolo-oxophlorin **28c**.

Figure 96. ESI MS of 2-phenyl pyrazolo-oxophlorin **28a**.

Figure 97. EI MS of the minor 2-ethyl pyrazolo-oxophlorin isomer **29**.