Supplementary information

Title: Highly Enantioselective Aldol Reaction of Acetone with β, γ-Unsaturated α-Keto Ester Promoted by Simple Chiral Primary-tertiary Diamine Catalysts

Author(s): Lin Peng, Liang-Liang Wang, Jian-Fei Bai, Li-Na Jia, Yun-Long Guo, Xi-Ya Luo, Fei-Ying Wang, Xiao-Ying Xu* and Li-Xin Wang*

Contents

A. General Information and Starting Materials.
B. General Procedure for the Asymmetric Aldol Reaction.
C. Characterization Data of the Products.
D. HPLC Analysis of the Products.
E. NMR Analysis of the Products.
F. References.

A. General Information and Starting Materials.

General Information.

NMR spectra were recorded with tetramethylsilane as the internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz (Bruker Avance). Chemical shifts (δ) were reported in ppm downfield from $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and relative to the central CDCl_{3} resonance $(\delta=77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectroscopy. IR spectra were recorded on a ThermoFisher Nicolet 6700 FTIR spectrometer on a KBr beamsplitter. High-resolution mass spectra were obtained with the Bruker Q TOF mass spectrometer. Optical rotations were measured at 589 nm at $20^{\circ} \mathrm{C}$ on a Polarimeter 341 optical rotation spectrometer. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light. Enantiomeric excess was determined by HPLC analysis on Chiral OD-H, chiralpak AD-H and chiralpakl AS-H column.

Starting Materials.

All solvents and inorganic reagents were of p.a. quality and used without purification. All the β, γ-unsaturated- α-keto esters were prepared following the literature procedures. ${ }^{[1]}$ Unless otherwise noted, materials were obtained from commercial sources and used without purification.

B. General Procedure for the Asymmetric Aldol Reaction.

Unless noted, the reaction was carried out as following: catalyst $\mathbf{1 a}(20 \mathrm{~mol} \%)$ and 3,5-dinitrobenzoic acid ($20 \mathrm{~mol} \%$) were added to a stirred solution of β, γ-unsaturated- α-keto ester 2 $(0.2 \mathrm{mmol})$ in cyclohexane $(0.6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under an atmosphere of air. The resulting solution was stirred for 10 min prior to the addition of acetone (4.0 mmol). After stirring for the indicated reaction time at $-20^{\circ} \mathrm{C}$ (monitored by TLC), the solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel to yield the desired Aldol adducts.

C. Characterization Data of the Products.

(S)-methyl 2-hydroxy-4-oxo-2-styrylpentanoate (3a). ${ }^{[2]}$

Prepared according to general procedure. The product was obtained in 95% yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{20}=-93.3$ ($\mathrm{c}=0.65$ in $\mathrm{CHCl}_{3}, 94 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , CDCl_{3}): $\delta=206.9,174.2,135.8,130.7,128.6,128.1,128.0,126.7,75.2,53.2,51.7,30.6$; $\operatorname{IR}\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right): v=3439$, $3029,2960,1745,1716,1435,1366,1252,1220,1141 ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 271.0941 , found: 271.0947; The enantiomeric excess was determined by HPLC analysis [OD-H, i-PrOH/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 13.97 (major), 21.67 min (minor).

(S)-ethyl 2-hydroxy-4-oxo-2-styrylpentanoate (3b). ${ }^{[2]}$

Prepared according to general procedure. The product was obtained in 91% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-79.7(\mathrm{c}=0.80$ in $\mathrm{CHCl}_{3}, 92 \%$ ee $) ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.38-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.28$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.5,173.6,135.8,130.4,128.4,128.3,127.9,126.6,75.0,62.1$, 51.5, 30.5, 13.9; IR (film, cm^{-1}): $v=3497,3026,2982,1735,1365,1256,1214,1140$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 285.1097$, found: 285.1101; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 11.64 (major), 20.64 min (minor).

(S)-isopropyl 2-hydroxy-4-oxo-2-styrylpentanoate (3c). ${ }^{[2]}$

Prepared according to general procedure. The product was obtained in 90% yield, colorless oil, $[\alpha]_{D}{ }^{20}=-81.7$ (c $=0.80$ in $\mathrm{CHCl}_{3}, 91 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.4,173.1,136.0,130.5,128.5,127.9,126.6,75.1,70.1,51.7,30.6,21.6,21.5$; IR (film, cm^{-1}): $v=3495,3059,2981,2936,1728,1449,1375,1258,1218,1158,1106$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 299.1254$, found: 299.1261; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}$]: 9.57 (major), 17.83 min (minor).

(S)-butyl 2-hydroxy-4-oxo-2-styrylpentanoate (3d).

Prepared according to general procedure. The product was obtained in 84% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-76.1(\mathrm{c}=0.82$ in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.39-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, 1.69-1.60 (m, 2H), 1.43-1.27(m, 2H), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.5,173.7$, 135.9, $130.5,128.5,128.4,127.9,126.6,75.1,66.0,51.6,30.5,30.3,18.9,13.5$; IR (film, cm^{-1}): $v=3503,3026,2961,1736$, 1496, 1449, 1364, 1256, 1212, 1140; HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 313.1410$, found: 313.1425; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}]: 10.13$ (major), 18.66 min (minor).

(S)-methyl 2-(4-fluorostyryl)-2-hydroxy-4-oxopentanoate (3e).

Prepared according to general procedure. The product was obtained in 96% yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{20}=-78.6$ (c $=0.54$ in $\mathrm{CHCl}_{3}, 91 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.8,174.1, \quad 162.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.0 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 129.5,128.3$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 75.1,53.2,51.7,30.6 ; \mathrm{IR}\left(\mathrm{film}, \mathrm{cm}^{-1}\right): v=3550$, 3072, 2963, 1743, 1713, 1599, 1510, 1442, 1371, 1226, 1136; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 289.0847, found: 289.0853; The enantiomeric excess was determined by HPLC analysis [OD-H, i-PrOH/hexane $=$ 10/90, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 10.82 (major), 9.50 min (minor).
(S)-methyl 2-(4-chlorostyryl)-2-hydroxy-4-oxopentanoate (3f).

Prepared according to general procedure. The product was obtained in 64% yield, white solid, $[\alpha]_{D}{ }^{20}=-78.5$ (c = 0.42 in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.7,174.0,134.4,133.7,129.5,128.7,127.9,75.2,53.2,51.6,30.6$; $\mathrm{IR}\left(\mathrm{film}, \mathrm{cm}^{-1}\right): v=3511$, 3005, 2956, 1732, 1493, 1440, 1367, 1220, 1140; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{Na}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right): 305.0551\right.$, found: 305.0559; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 11.34 (major), 9.60 min (minor).

(S)-methyl 2-hydroxy-2-(4-nitrostyryl)-4-oxopentanoate (3g). ${ }^{[2]}$

Prepared according to general procedure. The product was obtained in 85% yield, yellow solid, $[\alpha]_{D}{ }^{20}=-70.0(c=0.84$ in $\mathrm{CHCl}_{3}, 95 \%$ ee $){ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.4,173.6,147.2,142.3,132.8,128.9,127.3,124.0,75.3,53.4,51.5,30.6$; IR (film, $\left.\mathrm{cm}^{-1}\right): v=3452,3066,2960,1753,1725,1595,1521,1509,1341,1218,1142 ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 316.0792 , found: 316.0804 ; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 24.76 (major), 21.97 min (minor).

(S)-methyl 2-hydroxy-2-(4-methylstyryl)-4-oxopentanoate (3h).

Prepared according to general procedure. The product was obtained in 90% yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{20}=-85.4$ (c=0.56 in $\mathrm{CHCl}_{3}, 92 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.0,174.3,138.0,133.1,130.6,129.3,127.1$, 126.6, 75.2, 53.1, 51.7, 30.7, 21.2; IR (film, cm^{-1}): $v=3446,3027,2951,1747,1706,1430,1389,1360,1258,1197,1148 ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 285.1097, found: 285.1101; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 12.15 (major), 10.22 min (minor).
(S)-methyl 2-(3-fluorostyryl)-2-hydroxy-4-oxopentanoate (3i).

Prepared according to general procedure. The product was obtained in 99% yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{20}=-87.0(\mathrm{c}=0.64$ in $\mathrm{CHCl}_{3}, 92 \%$ ee $) ;{ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.7,174.0,162.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.1 \mathrm{~Hz}\right)$, $138.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 130.1,130.0,129.7,129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 122.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.3\right.$ $\mathrm{Hz}), 113.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.8 \mathrm{~Hz}\right), 75.1,53.2,51.7,30.6$; $\mathrm{IR}\left(\mathrm{film}, \mathrm{cm}^{-1}\right): v=3438,3035,2960,1742,1716,1161,1579$, 1429, 1365, 1229, 1141; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FO}_{4} \mathrm{Na}$ ($[\mathrm{M}+\mathrm{Na}]^{+}$): 289.0847, found: 289.0849; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 10.65 (major), 11.83 min (minor).

(S)-methyl 2-(3-chlorostyryl)-2-hydroxy-4-oxopentanoate (3j).

Prepared according to general procedure. The product was obtained in 95% yield, white solid, $[\alpha]_{D}{ }^{20}=-63.8$ (c $=0.35$ in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6,174.0,137.7,134.5,129.8,129.7,129.5,127.9,126.4,125.1,75.1,53.2,51.6,30.6$; IR (film, cm^{-1}): $v=3430,2994,2953,1746,1713,1593,1563,1437,1393,1363,1261,1206,1145$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 305.0551$, found: 305.0549 ; The enantiomeric excess was determined by HPLC analysis [AD-H, $i-\mathrm{PrOH} /$ hexane $=5 / 95$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 23.94 (major), 22.67 min (minor).
(S)-methyl 2-(3-bromostyryl)-2-hydroxy-4-oxopentanoate (3k).

Prepared according to general procedure. The product was obtained in 54% yield, white solid, $[\alpha]_{D}{ }^{20}=-64.3(\mathrm{c}=0.53$ in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.6,173.9,138.0,130.8,130.1,129.7$, 129.3, 125.5, 122.7, 75.1, 53.2, 51.5, 30.6; IR (film, cm^{-1}): $v=3429,2993,2952,1747,1711,1558,1436,1393,1363$, 1259, 1205, 1145; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{Na}$ ($[\mathrm{M}+\mathrm{Na}]^{+}$): 349.0046, found: 349.0054; The enantiomeric excess was determined by HPLC analysis [AS-H, i-PrOH $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}]: 13.00$ (major), 18.20 min (minor).

(S)-ethyl 2-hydroxy-2-(3-nitrostyryl)-4-oxopentanoate (3I). ${ }^{[2]}$

Prepared according to general procedure. The product was obtained in 98% yield, colorless oil, $[\alpha]_{D}{ }^{20}=-73.9(c=0.98$ in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.3,173.2$, $148.5,137.7,132.9,131.6,129.5,128.6,122.5,120.9,75.1,62.6,51.5,30.6,14.0$; $\operatorname{IR}\left(f i l m, \mathrm{~cm}^{-1}\right): v=3496,3079,2990$, $1731,1525,1352,1221,1152$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 330.0948$, found: 330.0955 ; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254$ $\mathrm{nm}]: 16.39$ (major), 14.71 min (minor).

(S)-methyl 2-hydroxy-2-(3-methylstyryl)-4-oxopentanoate (3m).

Prepared according to general procedure. The product was obtained in 98% yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{20}=-84.2$ ($\mathrm{c}=0.60$ in $\mathrm{CHCl}_{3}, 93 \%$ ee); ${ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.27-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.8,174.2,138.1,135.8,130.8,128.8,128.4,128.0$, 127.3, 123.9, 75.2, 53.1, 51.7, 30.6, 21.3; IR (film, $\left.\mathrm{cm}^{-1}\right): v=3434,3026,2957,1743,1716,1435,1365,1267,1224$, 1141; HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 285.1097, found: 285.1096; The enantiomeric excess was determined by HPLC analysis [OD-H, i - $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 12.87 (major), 18.80 min (minor).

(S)-methyl 2-hydroxy-2-(3-methoxystyryl)-4-oxopentanoate (3n).

Prepared according to general procedure. The product was obtained in 98% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-77.6(\mathrm{c}=1.0$ in $\mathrm{CHCl}_{3}, 90 \%$ ee); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$, $6.80-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7,174.1,159.6,137.2,130.5,129.5,128.4$, $119.2,113.6,111.8,75.1,55.1,53.0,51.5,30.5$; IR (film, $\left.\mathrm{cm}^{-1}\right): v=3497,3003,2954,1740,1599,1581,1435,1365$, 1269, 1241, 1157; HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 301.1046$, found: 301.1052; The enantiomeric excess was determined by HPLC analysis [OD-H, i-PrOH/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}$]: 19.62 (major), 32.76 min (minor).
(S)-methyl 2-(2-chlorostyryl)-2-hydroxy-4-oxopentanoate (3o).

Prepared according to general procedure. The product was obtained in 91% yield, colorless oil, $[\alpha]_{D}{ }^{20}=-64.3(\mathrm{c}=0.94$ in $\mathrm{CHCl}_{3}, 91 \%$ ee); ${ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H})$, $6.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6,174.0,131.2,129.7,129.5,129.0,128.6,127.2,126.9,126.8,75.3,53.2$, 51.5, 30.6; IR (film, cm^{-1}): $v=3497,3002,2953,1740,1438,1365,1218,1144 ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 305.0551$, found: 305.0559; The enantiomeric excess was determined by HPLC analysis [AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 16.42 (major), 11.87 min (minor).

(S)-methyl 2-(2-bromostyryl)-2-hydroxy-4-oxopentanoate (3p).

Prepared according to general procedure. The product was obtained in 98% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-69.7(\mathrm{c}=1.2$ in $\mathrm{CHCl}_{3}, 91 \%$ ee); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz} \mathrm{CDCl} 3) \delta(\mathrm{ppm}) 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21$ $(\mathrm{m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.6,173.9,135.8,132.9,131.4,129.7,129.2,127.4$, 127.1, 123.9, 75.3, 53.2, 51.5, 30.6; IR (film, cm^{-1}): $v=3500,3003,2953,1740,1467,1437,1365,1250,1218,1144$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 349.0046, found: 349.0047; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 21.13 (major), 18.57 min (minor).

(S)-methyl 2-hydroxy-2-(2-(naphthalen-1-yl)vinyl)-4-oxopentanoate (3q).

Prepared according to general procedure. The product was obtained in 93% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-87.9$ (c $=0.96$ in $\mathrm{CHCl}_{3}, 96 \%$ ee); ${ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.23(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7,174.2,133.6,133.4,131.3,131.0,128.4,128.3,128.0,126.1$, $125.8,125.4,123.8,123.7,75.4,53.1,51.7,30.6$; $\operatorname{IR}\left(f i l m, \mathrm{~cm}^{-1}\right): v=3500,3047,2953,1739,1591,1509,1436,1394$, 1365, 1270, 1244, 1217, 1171, 1141; HRMS (ESI-TOF) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 321.1097$, found: 321.1101; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 25.49 (major), 35.17 min (minor).

(S)-ethyl 2-hydroxy-4-oxo-2-(2-(thiophen-2-yl)vinyl)pentanoate (3r).

Prepared according to general procedure. The product was obtained in 40% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-59.9$ (c $=0.48$ in $\mathrm{CHCl}_{3}, 90 \%$ ee $) ;{ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.5,173.4,140.9,127.6,127.4,126.7,124.8,123.9,74.7,62.3,51.5$, $30.5,13.9$; IR (film, cm^{-1}): $v=3496,3007,2982,1735,1365,1263,1212,1137$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 291.0662$, found: 291.0669; The enantiomeric excess was determined by HPLC analysis [OD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}$]: 9.95 (major), 12.75 min (minor).
(R)-methyl 2-hydroxy-2-((S)-2-oxocyclopentyl)-4-phenylbut-3-enoate (3t). ${ }^{\text {[3] }}$

Prepared according to general procedure. The product was obtained in 93% yield, white solid, $[\alpha]_{D}{ }^{20}=-146.4(\mathrm{c}=$ 0.34 in $\mathrm{CHCl}_{3}, 95 \%$ ee $) ;{ }^{1} \mathbf{H}$ NMR (300 MHz CDCl 3) $\delta(\mathrm{ppm}) 7.40-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J$ $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.98(\mathrm{~m}, 6 \mathrm{H})$; The enantiomeric excess was determined by HPLC analysis [AS-H, $i-\mathrm{PrOH} / \mathrm{hexane}=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm]: 13.15 (major), 18.08 min (minor).

(R)-methyl 2-hydroxy-2-((S)-4-oxotetrahydro-2H-pyran-3-yl)-4-phenylbut-3-enoate (3u). ${ }^{\text {[3] }}$

Prepared according to general procedure. The product was obtained in 99% yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=-77.7(\mathrm{c}=$ 1.1 in $\mathrm{CHCl}_{3}, 81 \%$ ee $) ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}) 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 2 \mathrm{H})$; The enantiomeric excess was determined by HPLC analysis [AS-H, $i-\mathrm{PrOH} / \mathrm{hexane}=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}]: 19.30$ (major), 34.57 min (minor).

D. HPLC Analysis of the Products.

色谱图（B 11022404 OD0000．org）

色谱图（B 甲酯 11030722 OD0000．org）

色谱图（B 乙酯 OD0000．org）

色谱图（B 乙酯11030701 OD0000．org）

色谱图（B 异丙酯 OD0000．org）

色谱图（B 异丙酯 11030702 OD0000．org）

色谱图（B丁酯 OD0000．org）

Peak	RT (min)	Height $(\mathrm{mV} * \mathrm{sec})$	Area (mV)	Area $(\%)$
1	10.157	408586.719	8393552.000	49.1663
2	18.607	218846.719	8678213.000	50.8337

色谱图（B 丁酯11030703 OD0000．org）

色谱图（B 4－氟，OD0000．org）

色谱图（B 4－氟 11030704 OD0000．org）

色谱图（B 4－氯 OD0000．org）

Peak	RT (min)	Height $(\mathrm{mV} * \mathrm{sec})$	Area (mV)	Area $(\%)$
1	9.473	888632.563	19134014.000	50.3142
2	11.207	732727.688	18895066.000	49.6858

色谱图（B 11030705 0D0000．org）

色谱图（ B 4 －硝基 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	21.440	93075.813	5347599.000	50.9184
2	24.440	78682.594	5154690.500	49.0816

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	21.973	848.857	35962.852	2.3430
2	24.757	22950.367	1498931.500	97.6570

色谱图（B 4－甲基 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	10.123	384107.719	8114047.000	50.6277
2	12.073	308089.688	7912835.500	49.3723

色谱图（B 4－甲基11030708 0D0000．org）

色谱图（B 3－氟，消 OD0002．org）

色谱图（B 3－氟 11030710 OD0001．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	10.648	102050.688	2173595.250	96.0966
2	11.832	3256.451	88290.156	3.9034

色谱图（B 3－氯 AD0001．org）

色谱图（B 3－氯11030711 AD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	22.673	3063.675	87772.773	3.6639
2	23.940	74516.680	2307824.000	96.3361

色谱图（B 3－溴－72 AS0000．org）

色谱图（B 11030712 AS0000．org）

色谱图（B 3－硝基乙酯 OD0000．org）

色谱图（B 3－硝基乙酯0307140D0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \sec \right)$	Area (mV)	Area $(\%)$
1	14.707	4374.605	143250.297	3.6165
2	16.390	100767.695	3817797.750	96.3835

色谱图（B 3－甲基 消 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	12.915	185472.484	5103790.500	49.2308
2	18.682	126373.938	5263267.000	50.7691

色谱图（B3－甲氧基 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	19.640	183527.141	8196294.500	49.1670
2	32.473	111311.219	8474027.000	50.8330

色谱图（B 3－甲氧基030716 OD0000．org）

Peak	RT (min)	Height $(\mathrm{mV} * \mathrm{sec})$	Area (mV)	Area $(\%)$
1	19.623	65707.422	2944951.750	94.8067
2	32.757	2048.333	161317.906	5.1933

色谱图（B 邻氯 AD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	11.707	639752.313	10537213.000	50.3373
2	16.373	478400.438	10395985.000	49.6627

色谱图（B 邻洎 OD0000．org）

色谱图（B 邻溴11030718 OD0000．org）

Peak	RT (min)	Height $(\mathrm{mV} * \mathrm{sec})$	Area (mV)	Area $(\%)$
1	18.565	8005.803	319530.656	4.7202
2	21.132	136654.844	6449932.000	95.2798

色谱图（B 1－萗 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	25.857	29084.516	1812218.000	49.4274
2	34.623	19340.063	1854206.250	50.5726

色谱图（B 11030721 OD0000．org）

色谱图（B 噻吩乙酯 OD0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	9.907	215933.750	4306556.500	49.2018
2	12.640	167562.078	4446286.500	50.7982

色谱图（B 11030720 0D0000．org）

色谱图（B 环犮酮 AS0000．org）

色谱图（B 环戊酮 11030802 AS0000．org）

Peak	RT (min)	Height $\left(\mathrm{mV}^{*} \mathrm{sec}\right)$	Area (mV)	Area $(\%)$
1	13.148	214358.844	5125394.500	78.8220
2	14.482	47834.219	1251060.500	19.2397
3	18.082	2228.906	126038.602	1.9383

色谱图（B 氧杂酮 ASO000．org）

色谱图（B 11030804 AS0000．org）

E. NMR Analysis of the Products.

จ 88%	\% 9
EF以	¢9\%
W/	V

3e

Electronic Supplementary Material（ESI）for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

§

风．-310

	吅
ござ发	M ${ }_{6}$
	$1 /$

31

PL-304

30

气

9\％\％	黣
二人゙゚R	
V	V

F. References.

[1] Y.-C. Wu, L. Liu, H.-J. Li, D. Wang, Y.-J. Chen, J. Org. Chem. 2006, 71, 6592-6595.
[2] P.-F. Li, J.-L. Zhao, F.-B. Li, A. S. C. Chan, F. Y. Kwong, Org. Lett. 2010, 12, 5616-5619.
[3] a) C.-L. Cao, X.-L. Sun, Y.-B. Kang, Y. Tang, Org. Lett. 2007, 9, 4151-4154; b) C.-W. Zheng, Y.-Y. Wu, X.-Sh. Wang, G. Zhao, Adv. Synth. Catal. 2008, 350, 2690-2694.

