Supporting Information For

Copper-Catalyzed Reductive Coupling of Tosylhydrazones with Amines: A Convenient Route to α -Branched Amines

Abdallah Hamze,* Bret Tréguier, Jean-Daniel Brion, and Mouâd Alami*

Univ Paris-Sud, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France.

List of Contents

General Experimental Methods	2
Instrumentation	2
General Procedure for Preparation of Tosylhydrazone from Ketone ¹	3
Table for Optimizing Reaction Conditions	4
Typical Procedure for the Copper-Catalyzed Coupling of tosylhydrazones with amines	
reagents	5
Compounds characterizations	5
¹ H NMR and ¹³ C Spectra	. 12

General Experimental Methods

All glasswares were oven-dried at 140°C and all reactions were conducted under a nitrogen atmosphere. Solvents: cyclohexane and ethyl acetate (EtOAc), for chromatography were distilled before use. Dioxane was pre-dried with $CaCl_2$. Then reflux the pre-dried solvent over Na (1% w/v) and benzophenone (0.2% w/v) under an inert atmosphere until the blue colour of the benzophenone ketyl radical anion persists. Distil, and store it over 4A molecular sieves in the dark.

Instrumentation

The compounds were all identified by usual physical methods, i.e. ¹H-NMR, ¹³C-NMR, IR, elemental analysis. ¹H and ¹³C NMR spectra were measured in CDCl₃ with a Bruker ARX 400 or Bruker Avance 300 and chemical shifts are reported in ppm. The following abbreviations are used: m (multiplet), s (singlet), br s (broad singlet), d (doublet), t (triplet) dd (doublet of doublet), td (triplet of doublet), q (quadruplet). IR spectra were measured on a Bruker Vector 22 spectrophotometer (neat, cm⁻¹). Elemental analyses were performed with a Perkin-Elmer 240 analyser. Analytical TLC was performed on Merck precoated silica gel 60F plates with detection by exposure to ultraviolet light (254 nm) and by immersion in a staining solution of 20% phosphomolybdic acid in EtOH or vanillin stain (vanillin, concentrated H₂SO₄, EtOH). Merck silica gel 60 (230-400 mesh) was used for column chromatography. Melting points (m.p.) were recorded on a Büchi B-450 apparatus and were uncorrected.

General Procedure for Preparation of Tosylhydrazone from Ketone¹

The ketone (20 mmol) was added to an ethanolic solution (30 mL) of *p*-toluenesulfonhydrazide (20 mmol). The reaction mixture was refluxed for 2-6 h. Then the mixture was allowed to cool to room temperature and the product precipitated. The crystalline product was collected by filtration and washed thoroughly with cold ether.

N-Tosylhydrazones **1c**, **1d** and **1e** derived from carbonyl compounds were prepared following the procedure described by V. K. Aggarwal and al.²

WeO $fightharpoondown is the solid (86 % yield); mp: 149-150 °C; TLC : R_f = 0.22 (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 916, 1035, 1059, 1150, 1198, 1306, 1325, 1363, 1421, 1458, 1458, 1458, 1585, 2159, 3155; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 8.34 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.77 (d, *J* = 1.7 Hz, 2H), 6.43 (s, 1H), 3.77 (s, 6H), 2.39 (s, 3H), 2.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6 (2C), 152.3 (C), 144.2 (C), 139.2 (C), 135.4 (C), 129.5 (2CH), 128.2 (2CH), 104.6 (2CH), 101.6 (CH), 55.4 (2CH₃), 21.6 (CH₃), 13.5 (CH₃); MS (ESI) : 349.1 (M + H⁺); Anal. calcd for C₁₇H₂₀N₂O₄S : C 58.60, H 5.79, N 8.04 found: C 58.70, H 5.48, N 7.98.

16	1,4-Dioxane	1 equiv.	Cu(acac) ₂	50/35/0/5 [°]	25 %	
17	1,4-Dioxane	Cs₂CO₃ 1.5 equiv.	Cu(acac) ₂	80/10/0/5 ^f	60 %	es
18	1,4-Dioxane	K ₂ CO ₃	Cu(acac)₂	60/20/15/5		bas
19	1,4-Dioxane	LiOtBu	Cu(acac)₂	70/14/10/6		of
20	1,4-Dioxane	NaOt-tBu	Cu(acac)₂	56/16/22/6		ect
21	1,4-Dioxane	KOt-tBu	Cu(acac)₂	61/18/15/6		Eff
22	1,4-Dioxane	CsOH	Cu(acac)₂	30/10/50/10		
23	1,4-Dioxane	K ₃ PO ₄	Cu(acac)₂	46/21/30/3		
24	1,4-Dioxane	none	Cu(acac) ₂	nd ^b		

^a Isolated yield of **3a**. ^b nd = not determined (NMR of crude reaction was not exploitable). ^c Only traces of 3a were detected by NMR when carrying out the reaction at 80 °C. ^d reaction was performed at atmospheric pressure. ^e 10% of **1a** was observed by NMR of crude reaction. ^f 5 % of **1a** was observed by NMR of crude reaction.

Typical Procedure for the Copper-Catalyzed Coupling of tosylhydrazones with amines reagents

A mixture of tosylhydrazone **1** (0.25 mmol), amines **2** (0.5 mmol, 2.0 equiv), $Cu(acac)_2$ 10 mol % and Cs_2CO_3 (0.9 mmol, 2.2 equiv) in dioxane (2.5 mL) is stirred at 100 °C for 3 h in a sealed tube. After completion of the reaction, as indicated by TLC, the mixture is cooled to room temperature. AcOEt was added to the mixture, which was filtered through *celite*. The solvents were evaporated under reduced pressure and the crude residue was purified by flash chromatography on silica gel.

Compounds characterizations

4-(1-(3,5-dimethoxyphenyl)ethyl)morpholine (3a)

Colorless oil (80 % yield). TLC : R_f = 0.16 (EtOAc/Cyclohexane, 3/7, SiO₂); IR
(neat) 2802, 1610, 1595, 1470, 1455, 1428, 1346, 1292, 1266, 1245, 1205,

1154, 1118, 1068, 1049, 1017, 960, 925, 869, 862, 845, 790, 701 cm⁻¹; ¹H NMR (300 MHz, Acetone) δ 6.53 (d, *J* = 2.3 Hz, 2H), 6.37 (t, *J* = 2.3 Hz, 1H), 3.78 (s, 6H), 3.60 (t, *J* = 4.7 Hz, 4H), 3.21 (q, *J* = 6.6 Hz, 1H), 2.54 – 2.23 (m, 4H), 1.29 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, Acetone) δ = 160.95 (2C), 147.08 (C), 105.28 (2CH), 98.29 (CH), 66.77 (2CH₂), 65.28 (CH), 54.57 (2CH), 51.29 (2CH₂), 19.54 (CH₃); MS (ESI) : 252.2 (M + H⁺), 274.1 (M + Na⁺); Anal. calcd for C₁₄H₂₁NO₃ : C 66.91, H 8.42, N 5.57 found: C 66.87, H 8.39, N 5.53.

1-(1-(3,5-dimethoxyphenyl)ethyl)-4-methylpiperidine (3b) Colorless oil (75 % yield). $R_f = 0.30$ (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2915, 2838, 2800, 1610, 1595, 1458, 1427, 1337, 1290, 1258, 1205, 1153, 1086, 1069, 1053, 926, 846, 701, 668 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.49 (d, J = 2.1 Hz, 2H), 6.34 (t, J = 2.1Hz, 1H), 3.79 (s, 6H), 3.42 – 3.20 (m, 1H), 3.10 – 2.96 (m, 1H), 2.85 – 2.69 (m, 1H), 2.02 – 1.46 (m, 7H), 1.35 (d, J = 6.6 Hz, 3H), 0.91 – 0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 160.7$ (2C), 147.3 (C), 105.9 (2CH), 98.6 (CH), 65.5 (CH), 55.5 (2CH), 51.4 (CH₂), 51.2 (CH₂), 34.7 (2CH₂), 31.0 (CH), 22.1 (CH₃), 20.0 (CH₃); MS (ESI) : 264.2 (M + H⁺); Anal. calcd for C₁₆H₂₅NO₂ : C 72.96, H 9.57, N 5.32 found: C 72.90, H 9.53, N 5.27.

1-(1-(3,5-dimethoxyphenyl)ethyl)pyrrolidine (3c)

Colorless oil (82 % yield). TLC : R_f = 0.25 (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2970, 2935, 2873, 2835, 1609, 1594, 1455, 1427, 1366, 1344, 1321, 1290, 1246, 1204, 1152, 1132, 1083, 1062, 1049, 1028, 980, 927, 904, 843, 829, 701, 640 cm⁻ ¹; ¹H NMR (300 MHz, CDCl₃) δ 6.52 (d, J = 1.8 Hz, 2H), 6.34 (t, J = 1.8 Hz, 1H), 3.78 (s, 6H), 3.11 $(q, J = 6.4 Hz, 1H), 2.63 - 2.34 (m, 4H), 1.88 - 1.64 (m, 4H), 1.39 (d, J = 6.4 Hz, 3H); {}^{13}C NMR$ $(75 \text{ MHz}, \text{CDCl}_3) \delta = 160.8 (2C), 148.0 (C), 105.2 (2CH), 99.0 (CH), 66.6 (CH), 55.5 (2CH_3), 53.2$ (2CH₂), 23.6 (2CH₂), 23.3 (CH₃); MS (ESI) : 236.2 (M+ H⁺); Anal. calcd for C₁₄H₂₁NO₂ : C 71,46 H 8.99, N 5.95 found: C 71.40, H 8.85, N 5.91.

1-(3,5-dimethoxyphenyl)-N,N-diethylethanamine (3d)

Colorless oil (55 % yield). TLC : R_f = 0.25 (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2969, 2835, 1610, 1594, 1458, 1426, 1344, 1289, 1204, 1150, 1054, 1008, 925, 846, 701, 676 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.57 (d, J = 2.3 Hz, 2H), 6.34 (t, J = 2.3 Hz, 1H), 3.79 (s, 6H), 3.71 (q, J = 6.6 Hz, 1H), 2.66 – 2.49 (m, 4H), 1.33 (d, J = 6.6 Hz, 3H), 1.00 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 160.7$ (2C), 148.3 (C), 105.7 (2CH), 98.7 (CH), 59.9 (CH), 55.5 (2CH₃), 43.0 (2CH₂), 18.9 (2CH₃), 11.9 (CH₃); MS (ESI) : 238.1 (M+ H⁺); Anal. calcd for C₁₄H₂₃NO₂ : C 70.85, H 9.77, N 5.90, found: C 70.71, H 9.63, N 5.85.

4-(1-phenylethyl)morpholine (3e) has been previously reported³ Colorless oil (67 % yield). TLC : R_f = 0.25 (EtOAc/Cyclohexane, 3/7, SiO₂);

4-benzhydrylmorpholine (3f)

White solid (84 % yield), mp: 76–78 °C. TLC : $R_f = 0.25$ (EtOAc/Cyclohexane, 5/95, SiO₂); IR (neat) 2957, 2853, 2809, 1492, 1450, 1278, 1118, 1075, 1032, 1009, 876, 801, 759, 707, 668 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.34 (m, 4H), 7.33 – 7.22 (m, 4H), 7.22 – 7.12 (m, 2H), 4.20 (s, 1H), 3.83 – 3.58 (m, 4H), 2.61-2.20 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 142.5 (2C), 128.7 (4CH), 128.1 (4CH), 127.2 (2CH), 76.8 (CH), 67.4 (2CH₂), 52.8 (2CH₂); MS (ESI): 254.1 (M + H⁺); Anal. calcd for C₁₇H₁₉NO : C 80.60, H 7.56,

4-((4-chlorophenyl)(phenyl)mothyl)morpholine (3g) has been previously reported ⁴

Colorless oil (40 % yield), R_f = 0.25 (EtOAc/Cyclohexane, 5/95, SiO₂);

ÓM∈

4-(3,5-dimethoxybenzyl)morpholine (3h)

Colorless oil (61 % yield). TLC : $R_f = 0.60$ (EtOAc/Cyclohexane, 5/5, SiO₂); IR (neat) 2808, 1608, 1594, 1472, 1454, 1428, 1397, 1350, 1332, 1318, 1293, 1274, 1204, 1156, 1147, 1113, 1067, 1054, 1035, 1009, 993, 926, 907, 865, 836, 769 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.53 – 6.48 (m, 2H), 6.40 – 6.30 (m, 1H), 3.79 (s, 6H), 3.73 – 3.68 (m, 4H), 3.43 (s, 2H), 2.50 – 2.36 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 160.9 (2C), 140.5 (C), 107.1 (2CH), 99.2 (CH), 67.2 (2CH₂), 63.6 (CH₂), 55.4 (2CH₃), 53.8 (2CH₂); MS (ESI): 238.1 (M + H⁺); Anal. calcd for C₁₃H₁₉NO₃ : C 65.80, H 8.07, N 5.90 found: C 65.72, H 8.01, N 5.87.

4-benzylmorpholine (3i) has been previously reported⁵

Colorless oil (71 % yield). TLC : $R_f = 0.2$ (EtOAc/Cyclohexane, 5/5, SiO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.07 (m, 5H), 3.80 – 3.66 (m, 4H), 3.50 (s, 2H), 2.48 – 2.40 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 137.9 (C), 129.3 (2CH), 128.4 (2CH), 127.3 (CH), 67.2 (2CH₂), 63.6 (CH₂), 53.8 (2CH₂).

1-benzylpiperidine (3j) has been previously reported⁶

Colorless oil (60 % yield). TLC : $R_f = 0.30$ (EtOAc/Cyclohexane, 5/5, SiO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.02 (m, 5H), 3.48 (s, 2H), 2.38 (br s, 4H), 1.65 – 1.48 (m, 4H), 1.49 – 1.37 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 138.7 (C), 129.4 (2CH), 128.2 (2CH), 127.0 (CH), 64.1 (CH₂), 54.6 (2CH₂), 26.1 (2CH₂), 24.5 (CH₂).

N-(1-(3,5-dimethoxyphenyl)ethyl)butan-1-amine (3k)

Colorless oil (50 % yield). TLC : R_f = 0.20 (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2956, 2926, 2837, 1610, 1595, 1466, 1459, 1428, 1344, 1292,

1204, 1154, 1055, 927, 845, 830, 698, 618 cm⁻¹; ¹H NMR (300 MHz, Acetone) δ 6.56 (d, *J* = 2.3 Hz, 2H), 6.34 (t, *J* = 2.3 Hz, 1H), 3.77 (s, 6H), 3.67 (q, *J* = 6.5 Hz, 1H), 2.58 – 2.29 (m, 2H), 1.99

- 1.81 (m, 1H), 1.49 - 1.29 (m, 4H), 1.26 (d, J = 6.6 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, Acetone) δ = 162.0 (2C), 150.6 (C), 105.3 (2CH), 99.2 (CH), 59.6 (CH), 55.6 (2CH₃), 48.3 (CH₂), 33.5 (CH₂), 25.3 (CH₃), 21.3 (CH₂), 14.5 (CH₃). MS (ESI) : 238.1 (M+ H⁺), 252.1 (M + Na⁺); Anal. calcd for C₁₄H₂₃NO₂ : C 70.85, H 9.77, N 5.90, found: C 70.78, H 9.72, N 5.88.

1-(3,5-dimethoxyphenyl)-N-(2-morpholinoethyl)ethanamine (3l) Colorless oil (62 % yield). TLC : $R_f = 0.25$ (EtOAc/MeOH, 9/1, SiO₂);

IR (neat) 2961, 2809, 2688, 1609, 1594, 1468, 1455, 1428, 1351, 1292, 1273, 1204, 1152, 1115, 1065, 1052, 1008, 942, 914, 866, 842, 762, 700, 661; ¹H NMR (300 MHz, CDCl₃) δ 6.47 (d, J = 2.3 Hz, 2H), 6.34 (t, J = 2.3 Hz, 1H), 3.78 (s, 6H), 3.73 – 3.65 (m, 5H), 2.68 – 2.20 (m, 9H), 1.37 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta =$

161.1(2C), 148.2 (C), 104.7 (2CH), 98.8 (CH), 67.1 (2CH₂), 58.9 (CH), 58.2 (CH₂), 55.5 (2CH₃), 53.8 (2CH₂), 43.8 (CH₂), 24.2 (CH₃); MS (ESI) : 295.2 (M+ H⁺), 317.2 (M + Na⁺); Anal. calcd for C₁₆H₂₆N₂O₃ : C 65.28, H 8.90, N 9.52 found: C 65.19, H 8.85, N 9.48.

N-benzyl-1-(3,5-dimethoxyphenyl)ethanamine (3m)

Colorless oil (53 % yield). TLC : R_f = 0.25 (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2938, 2837, 1609, 1594, 1464, 1454, 1428, 1345, 1291, 1204, 1152, 1122, 1054, 904, 833, 731, 697, 649 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.16 (m, 5H), 6.55 (d, J = 2.3 Hz, 2H), 6.37 (t, J = 2.3 Hz, 1H), 3.81 (s, 6H), 3.78 - 3.56 (m, 3H), 1.63 (br, 1H), 1.36 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 161.1$ (2C), 148.4 (C), 140.6 (C), 128.5 (2CH), 128.3 (2CH), 127.0 (CH), 104.7 (2CH), 99.0 (CH), 57.9 (CH), 55.5 $(2CH_3)$, 51.8 (CH_2) , 24.6 (CH_3) ; MS (ESI) : 272.2 $(M + H^+)$; Anal. calcd for $C_{17}H_{21}NO_2$: C 75.25, H 7.80, N 5.16 found: C 75.20, H 7.75, N 5.14.

1,1-diphenyl-N-(pyridin-4-ylmethyl)methanamine (3n)

Yellow oil (42 % yield). TLC : R_f = 0.20 (EtOAc/Cyclohexane, 5/5, SiO₂); IR (neat) 3025, 1599, 1561, 1492, 1453, 1413, 1318, 1289, 1220, 1157, 1077, 1066, 1029, 993, 798, 744, 704, 695 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.99 – 6.76 (m, 14H), 4.94 (s, 1H), 3.81 (s, 2H), 2.60 – 1.69 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 150.6 (C), 149.6 (2CH), 143.3 (2C), 130.0 (2CH), 128.6 (4CH), 128.3 (2CH), 127.3 (4CH), 66.5 (CH), 50.5 (CH₂); MS (ESI): 275.1 (M + H⁺); Anal. calcd for $C_{19}H_{18}N_2$: C 83.18, H 6.61, N 10.21 found: C 83.02, H 6.53, N 10.03.

1204, 1151, 1116,1052, 924, 843, 834,699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.47 (d, *J* = 2.1 Hz, 2H), 6.36 (t, *J* = 2.1 Hz, 1H), 3.80 (s, 6H), 3.71 (q, *J* = 6.6 Hz, 1H), 3.60 (t, *J* = 5.0 Hz, 2H), 3.30 (brs, 1H), 2.53 (t, *J* = 5.0 Hz, 2H), 1.75 – 1.47 (m, 4H), 1.41 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 161.2 (2C), 146.7 (C), 104.7 (2CH), 99.2 (CH), 62.8 (CH₂), 58.8 (CH), 55.5 (2CH), 47.5 (CH₂), 32.3 (CH₂), 28.5 (CH₂), 23.5 (CH₃); MS (ESI): 254.2 (M + H⁺); Anal. calcd for C₁₄H₂₃NO₃ : C 66.37, H 9.15, N 5.53 found: C 66.25, H 9.10, N 5.50.

2-((1-(3,5-dimethoxyphenyl)ethyl)(methyl)amino)ethanol (3q)

Colorless oil (84 % yield). TLC : $R_f = 0.25$ (EtOAc/MeOH, 9/1, SiO₂); IR

(neat) 3429, 2936, 1608, 1594, 1454, 1428, 1400, 1342, 1307, 1292, 1204, 1149, 1081, 1062, 1050, 1021, 994, 969, 941, 925, 844, 781, 719, 701, 673, 664, 642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.45 (d, *J* = 1.6 Hz, 2H), 6.35 (t, *J* = 1.6 Hz, 1H), 3.77 (s, 6H), 3.67 - 3.41 (m, 3H), 2.89 - 2.34 (m, 3H), 2.21 (s, 3H), 1.36 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 160.8 (2C), 145.7 (C), 106.0 (2CH), 98.8 (CH), 63.9 (CH), 58.4 (CH₂), 55.4 (2CH₃), 55.2 (CH₂), 37.7 (CH₂), 17.8 (CH₂); MS (ESI): 240.1 (M + H⁺); Anal. calcd for C₁₃H₂₁NO₃ : C 65.25, H 8.84, N 5.85 found: C 65.12, H 8.78, N 5.78.

2-(benzyl(1-(3,5-dimethoxyphenyl)ethyl)amino)ethanol (3r)

Colorless oil (61 % yield). TLC : $R_f = 0.3$ (EtOAc/MeOH,9/1, SiO₂); IR (neat) 2936, 1684, 1596, 1456, 1429, 1205, 1156, 1047, 903, 778, 728, 717, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.02 (m, 5H), 6.47 (d, J = 2.0 Hz, 2H), 6.36 (t, J = 2.0 Hz, 1H), 4.01 – 3.31 (m, 11H), 2.87 – 2.46 (m, 2H), 1.40 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 160.8 (2C), 145.1 (C), 140.0 (C), 128.9 (2CH), 128.6 (2CH), 127.3 (CH), 106.4 (2CH), 98.7 (CH), 58.8 (CH₂), 57.9 (CH), 55.4 (2CH₃), 54.8 (CH₂), 51.0 (CH₂), 14.9 (CH₃); MS (ESI): 316.2 (M + H⁺); Anal. calcd for $C_{19}H_{25}NO_3$: C 72.35, H 7.99, N 4.44 found: C 72.28, H 7.90, N 4.39.

1-(1-(3,5-dimethoxyphenyl)ethyl)-1H-imidazole (3s) Colorless oil (65 % yield). TLC : $R_f = 0.30$ (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 2936, 1610, 1598, 1497, 1477, 1454, 1429, 1347, 1323, 1294, 1224, 1206, 1163, 1155, 1112, 1072, 1053, 1047, 1023, 983, 903, 847, 834, 818, 738, 726, 720, 714, 694 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (s, 1H), 7.09 (s, 1H), 6.95 (s, 1H), 6.38 (t, J = 2.1 Hz, 1H), 6.28 (d, J = 2.1 Hz, 2H), 5.27 (q, J = 7.1 Hz, 1H), 3.75 (s, 6H), 1.84 (d, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 161.4 (2C), 143.9 (C), 129.1 (CH), 118.2 (CH), 110.2 (CH), 104.5 (2CH), 99.6 (CH), 56.9 (CH), 55.5 (2CH₃), 22.1 (CH₃); MS (APCl) : 233.1 (M + H⁺); Anal. calcd for C₁₃H₁₆N₂O₂ : C 67.22, H 6.94, N 12.06 found: C 67.18, H 6.91, N 12.0.

1-benzhydryl-1H-benzo[d]imidazole (3t)

White solid (64 % yield), mp: 160–162 °C. TLC : $R_f = 0.25$ (EtOAc/Cyclohexane, 5/95, SiO₂); IR (neat) 2957, 1496, 1478, 1450, 1281, 1218, 1031, 903, 775, 726 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.47 – 7.06 (m, 13H), 6.76 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 144.0 (CH), 142.7 (C), 138.2 (2C), 134.2 (C), 129.2 (4CH), 128.7 (2CH), 128.3 (4CH), 123.2 (CH), 122.6 (CH), 120.5 (CH), 110.9 (CH), 63.8 (CH); MS (ESI): 285.1 (M + H⁺); Anal. calcd for C₂₀H₁₆N₂ : C 84.48, H 5.67, N 9.85 found: C 84.33, H 5.55, N 9.80.

1-benzhydryl-1H-pyrazole (3u)

White solid (70 % yield), mp: 61–63 °C. TLC : $R_f = 0.60$ (EtOAc/Cyclohexane, 3/7, SiO₂); IR (neat) 1493, 1448, 1440, 1397, 1349, 1315, 1297, 1283, 1264, 1184, 1091, 1079, 1053, 1044, 1032, 969, 918, 866, 841, 817, 751, 743, 726, 705, 701 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (s, 1H), 7.47 – 7.20 (m, 7H), 7.18 – 7.00 (m, 4H), 6.81 (s, 1H), 6.30 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 139.9 (CH), 139.7 (2C), 129.7 (CH), 128.8 (4CH), 128.4 (4CH), 128.2 (2CH), 105.7 (CH), 69.6 (CH); MS (ESI): 257.1 (M + Na⁺); Anal. calcd for C₁₆H₁₄N₂ : C 82.02, H 6.02, N 11.96 found: C 81.91, H 5.92, N 11.90. **1-(3-phenylpropyl)-1H-imidazole (3v)** has been previously reported⁷ Colorless oil (63 % yield). TLC : $R_f = 0.15$ (EtOAc, SiO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.46 (s, 1H), 7.41 – 6.99 (m, 6H), 6.93 (s, 1H), 3.93 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.23 – 2.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 140.4 (C), 129.7 (CH), 128.8 (2CH), 128.5 (3CH), 126.5 (CH), 118.8 (CH), 46.3 (CH₂), 32.6 (CH₂), 32.4 (CH₂).

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \label{eq:scalar}{l} \label{eq:sc$

- 1. (a) W. R. Bamford and T. S. Stevens, *J. Chem. Soc.*, 1952, 4735-4740; (b) R. H. Shapiro and J. H. Duncan, *Org. Synth.*, 1971, **51**, 66.
- V. K. Aggarwal, E. Alonso, I. Bae, G. Hynd, K. M. Lydon, M. J. Palmer, M. Patel, M. Porcelloni, J. Richardson, R. A. Stenson, J. R. Studley, J.-L. Vasse and C. L. Winn, *J. Am. Chem. Soc.*, 2003, **125**, 10926-10940.
- 3. (a) M. Utsunomiya and J. F. Hartwig, *J. Am. Chem. Soc.*, 2003, **125**, 14286-14287; (b) M. Kawaguchi, J. Ohashi, Y. Kawakami, Y. Yamamoto and J. Oda, *Synthesis*, 1985, 701-703.
- 4. T. Murai, K. Ui and Narengerile, J. Org. Chem., 2009, 74, 5703-5706.
- 5. M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum, A. J. Watson, M. L. Williams, *J. Am. Chem. Soc.*, 2009, **131**, 1766-1774.
- 6. S. D. Bull, S. G. Davies, G. Fenton, A. W. Mulvaney, R. S. Prasad, A. D. Smith, J. Chem. Soc., Perkin Trans. 1, 2000, 3765-3774.
- 7. C. H. Patel, S. Dhanani, C. P. Owen and S. Ahmed, *Bioorg. Med. Chem. Lett.*, 2006, **16**, 4752-4756.

¹H NMR and ¹³C Spectra

