Supporting Information

Luminescent bichromophoric spiroindolones - synthesis and electronic properties

Jan Schönhaber, and Thomas J. J. Müller*

Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

ThomasJJ.Mueller@uni-duesseldorf.de

Table of Content:

General Informations	2
Synthesis of Starting Material 1a-e and 2a-d	3
Synthesis of Spirocyclic Chromophores 4a-m	6
NMR-Spectra of compounds 4a-m	14
UV/Vis- and emission spectra of 4a-m	27
Computational details	34

General Informations:

The catalyses were performed in degassed THF which was dried using MBraun system MB-SPS-800. All reactions were carried out in oven-dried Schlenk glassware using septa and syringes under argon atmosphere. The purification of products was performed on silica gel 60 (0.015-0.040 mm) of Macherey Nagel using flash technique and under pressure of 2 bar. The crude mixtures were adsorbed on Celite 545 (0.02-0.10 mm) before chromatographic purification. The ¹H and ¹³C NMR spectra were recorded on a Bruker DRX 500 spectrometer and the resonance of the solvent was locked as internal standard. The multiplicities of signals were abbreviated as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet) and corresponding combinations. The type of carbon atoms (CH₃ , CH₂ , CH, C_{quat}) was determined on the basis of DEPT-135 NMR spectra. El mass spectra were measured on Finnigan MAT 8200 spectrometer. IR spectra were obtained on a Bruker Vector 22 FT-IR. The solids were measured as KBr pellets and the oils in the form of films on KBr plates. The intensity of signals is abbreviated as s (strong), m (medium) and w (weak). The UV/Vis Spectra were recorded on a Hewlett Packard 84252 A Diode Array Spectrophotometer (c ~ 0.5 µM) and the Emission spectra were recorded on a Perkin Elmer LS55 spectrometer. Combustion analyses were carried out on a Perkin Elmer Series II Analyser 2400 in the microanalytical laboratory of the Institut für Pharmazeutische und Medizinische Chemie der Heinrich-Heine-Universität Düsseldorf. Compounds 1a-e and 2a-c were prepared as previously reported.¹

Synthesis of Starting Materials 1a-e:

1a: See Reference 1) and 2) within this Supporting Information.

1b: M. p. 140 °C; ¹H-NMR (CDCl₃, 500 MHz): δ 1.39 (s, 9H), 7.05 (t, ³*J*_{H,H} = 7.5 Hz, 1H), 7.25 (m, 3H), 7.35 (m, 4H), 7.86 (d, ³*J*_{H,H} = 8.0 Hz, 1H); ¹³C-NMR (CDCl₃, 126 MHz): δ 28.1 (CH₃), 83.3 (C_{quart.}), 84.4 (C_{quart.}), 94.0 (C_{quart.}), 100.1 (C_{quart.}), 120.3 (C_{quart.}), 128.7 (CH), 129.4 (CH), 130.0 (CH), 130.2 (CH), 133.2 (CH), 139.7 (CH), 141.0 (C_{quart.}), 150.1 (C_{quart.}), 153.0 (C_{quart.}); EI MS (70 eV, *m/z* (%)): 347 ([M-Boc]⁺, 4), 245 (14), 220 (38), 129 (100), 101 (11), 75 (26), 57 (78); IR (KBr, [cm⁻¹]): $\tilde{\nu}$ = 3066 (w), 2981 (m), 2932 (w), 2207 (s), 1747 (s), 1659 (s), 1578 (w), 1489 (w), 1468 (m), 1443 (w), 1393 (w), 1328 (m), 1280 (s), 1254 (m), 1152 (s), 1119 (m), 1096 (m), 1040 (w), 1022 (w), 952 (m), 847 (m), 787 (w), 755 (m), 731 (m), 706 (w), 690 (m), 671 (w), 627 (w), 538 (w), 516 (w); Combustion Analysis: Calcd. for C₂₀H₁₈INO₃ (447.3): C 53.71, H 4.06, N 3.13: Found: C 53.87, H 4.18, N 3.09.

1c: M. p. 80 °C; ¹H-NMR (CDCl₃, 500 MHz): δ 2.91 (s, 6H), 7.06 (d, ³*J*_{H,H} = 7.2 Hz, 2H), 7.24 (m, 4H), 7.36 (t, ³*J*_{H,H} = 7.5 Hz, 1H), 7.47 (m, 3H), 7.64 (t, ³*J*_{H,H} = 8.5 Hz, 1H), 8.06 (dd, ³*J*_{H,H} = 8.0 Hz, *J*_{H,H} = 1.2 Hz, 1H), 8.36 (d, ³*J*_{H,H} = 8.5 Hz, 1H), 8.69 (t, ³*J*_{H,H} = 8.0 Hz, 2H); ¹³C-NMR (CDCl₃, 126 MHz): δ 45.7 (CH₃), 82.2 (C_{quart.}), 93.6 (C _{quart.}), 103.5 (C_{quart.}), 115.5 (CH), 119.3 (C_{quart.}), 120.1 (CH), 123.4 (CH), 128.6 (CH), 128.7 (CH), 129.1 (CH), 130.1 (C _{quart.}), 130.5 (C _{quart.}), 131.1 (CH), 131.5 (CH), 132.5 (CH), 133.1 (CH), 133.1 (CH), 134.3 (C _{quart.}), 134.4 (CH), 139.6 (C _{quart.}), 140.6 (CH), 152.2 (C _{quart.}); EI MS (70 eV, *m/z* (%)): 580 ([M]⁺, 66), 330 (90), 271 (29), 220 (22), 170 (76) 129 (100); IR (KBr, [cm⁻¹]): $\tilde{\nu}$ = 2942 (w), 2832 (w), 2788 (w), 2215 (s), 1683 (s), 1572 (m), 1489 (w), 1462 (m), 1365 (m), 1287 (m), 1234 (w), 1202 (w), 1149 (s), 1058 (m), 1021 (w), 973 (w), 918 (w), 837 (w), 793 (m), 758 (m), 722 (w), 694 (m), 626 (s), 584 (s), 566 (m), 535 (m); UV/Vis (CH₂Cl₂): λ_{abs} (ε): 362 nm (25000); Combustion Analysis: Calcd. for C₂₇H₂₁IN₂O₃S (580.4): C 55.87, H 3.65, N 4.83: Found: C 55.62, H 3.50, N 4.74.

1d: M. p. 101 °C; ¹H-NMR (CDCl₃, 500 MHz): δ 2.87 (s, 6H), 6.94 (d, ³*J*_{H,H} = 8.5 Hz, 2H), 7.19 (m, 4H), 7.39 (d, ³*J*_{H,H} = 7.0 Hz, 1H), 7.44 (m, 2H), 7.60 (t, ³*J*_{H,H} = 8.0 Hz, 1H), 8.02

3

(d, ${}^{3}J_{H,H} = 8.0$ Hz, 1H), 8.30 (d, ${}^{3}J_{H,H} = 8.5$ Hz, 1H), 8.64 (d, ${}^{3}J_{H,H} = 7.5$ Hz, 2H); 13 C-NMR (CDCl₃, 126 MHz): δ 45.7 (CH₃), 83.9 (C quart.), 92.2 (C quart.), 103.5 (C quart.), 115.5 (CH), 117.8 (C quart.), 120.0 (CH), 123.4 (CH), 128.7 (CH), 129.1 (CH), 129.2 (CH), 130.1 (C quart.), 130.5 (C quart.), 131.6 (CH), 132.6 (CH), 133.1 (CH), 134.2 (CH), 134.5 (CH), 137.5 (C quart.), 139.5 (C quart.), 140.6 (CH), 152.0 (C quart.), 152 .1 (C quart.); EI MS (70 eV, *m/z* (%)): 614 ([M]⁺, 21), 264 (100), 305 (15), 216 (13), 170 (72), 163 (80), 154 (29), 127 (24), 99 (11); IR (KBr, [cm⁻¹]): $\tilde{\nu} = 2939$ (w), 2222 (s), 1676 (s), 1637 (w), 1571 (w), 1543 (w), 1508 (w), 1476 (m), 1465 (m), 1400 (w), 1362 (s), 1298 (s), 1182 (m), 1163 (s), 1089 (m), 1053 (m), 1013 (w), 975 (w), 946 (w), 917 (w), 868 (w), 831 (m), 787 (w), 756 (w), 725 (w), 695 (m), 620 (s), 588 (s), 564 (m), 533 (m); UV/Vis (CH₂Cl₂): λ_{abs} (ε): 366 nm (25500); Combustion Analysis: Calcd. for C₂₇H₂₀ClIN₂O₃S (614.9): C 52.74, H 3.28, N 4.56: Found: C 52.46, H 3.24, N 4.51.

1e: M. p. 82 °C; ¹H-NMR (CDCl₃, 500 MHz): δ 2.88 (s, 6H), 3.74 (s, 3H), 6.71 (d, ³J_{H,H} = 8.8 Hz, 2H), 6.95 (d, ³J_{H,H} = 8.8 Hz, 2H), 7.20 (m, 3H), 7.43 (m, 3H), 7.61 (t, ³J_{H,H} = 8.0 Hz, 1H), 8.02 (d, ³J_{H,H} = 7.8 Hz, 1H), 8.35 (d, ³J_{H,H} = 8.5 Hz, 1H), 8.66 (d, ³J_{H,H} = 7.5 Hz, 1H); ¹³C-NMR (CDCl₃, 126 MHz): δ 45.7 (CH₃), 55.6 (CH₃), 82.0 (C_{quart.}), 94.8 (C_{quart.}), 103.7 (C_{quart.}), 111.1 (C_{quart.}), 114.4 (CH), 115.5 (CH), 128.5 (CH), 129.0 (CH), 130.5 (C_{quart.}), 131.4 (CH), 132.3 (CH), 133.6 (CH), 134.4 (CH), 134.5 (C_{quart.}), 135.1 (CH), 139.8 (C_{quart.}), 140.6 (CH), 152.4 (C_{quart.}), 161.2 (C_{quart.}); EI MS (70 eV, *m/z* (%)): 610 ([M]⁻⁺, 32), 360 (31), 349 (16), 334 (16), 302 (34), 250 (15), 222 (11), 170 (22), 159 (100), 71 (12); IR (KBr, [cm⁻¹]): $\tilde{\nu}$ = 2938 (w), 2190 (b), 1774 (w), 1719 (w), 1676 (s), 1601 (s), 1570 (s), 1508 (s), 1459 (m), 1398 (w), 1363 (m), 1289 (m), 1254 (s), 1145 (s), 1056 (w), 1021 (m), 973 (w), 917 (w), 834 (m), 791 (m), 721 (w), 699 (m), 622 (s), 592 (m), 858 (m), 537 (m); UV/Vis (CH₂Cl₂): λ_{abs} (ε): 367 nm (28200); Combustion Analysis: Calcd. for C₂₇H₂₀ClIN₂O₃S (610.5): C 55.09, H 3.80, N 4.59: Found: C 54.81, H 3.67, N 4.59.

2a:¹

2b:¹

2c:¹

4

2d: ¹H NMR (500 MHz, CDCl₃): δ 1.51 (s, 3H), 1.74 (s, 3H), 2.65 (d, ²J_{H,H} = 2.4 Hz, 1H), 4.15 (m, 2H), 5.40 (m, 1H), 6.65 (d, ⁴J_{H,H} = 2.4 Hz, 1H), 7.49 (m, 4H), 8.00 (d, ³J_{H,H} = 8.4 Hz, 2H), 8.46 (s, 1H), 8.65 (d, ³J_{H,H} = 8.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 18.2 (CH₃), 26.1 (CH₃), 64.4 (CH), 65.3 (CH₂), 75.8 (CH), 83.0 (C_{quart.}), 120.8 (CH), 124.9 (CH), 125.1 (CH), 126.2 (CH), 129.1 (C_{quart.}), 129.3 (CH), 129.9 (C_{quart.}), 131.8 (C_{quart.}), 138.9 (C_{quart.}); EI Ms (70eV, m/z, (%)): 300 ([M]⁺, 24), 215 ([M-C₅H₉O]⁺, 100), 69 ([M-C₁₇H₁₁O]⁺, 34), 55 ([M-C₁₈H₁₃O]⁺, 30); IR (KBr): $\tilde{\nu}$ = 3581 (w), 3733 (w), 3276 (m), 2911 (m), 2116 (m), 1677 (m), 1622 (m), 1524 (m), 1446 (s), 1383 (m), 1341 (m), 1302 (w), 1288 (m), 1251 (w), 1229 (w), 1202 (w), 1182 (w), 1159 (w), 1122 (w), 1054 (s), 993 (w), 967 (m), 920 (m), 893 (s), 870 (m), 849 (m), 788 (s), 757 (w), 729 (s), 711 (s), 676 (s), 656 (w), 643 (s), 596 (m), 545 (m); Combustion Analysis: Calcd. for C₂₂H₂₀O^{-0.05} C₄H₁₀O (300.2+3.7): C 86.80, H 7.06: Found: C 87.06, H 7.36.

General Procedure for the Synthesis of Spirocyclic Chromophores and Bichromophores:

In an argon flushed oven-dried screw-cap vessel, 2-iodophenylalkynylamide **1** (1.50 mmol), and propargyl prenyl ether **2** (1.65 mmol) were dissolved in a mixture of dry THF (6 mL) and dry triethylamine (6 mL). Then the reaction mixture was degassed with Argon for 5 min before $PdCl_2(PPh_3)_2$ (5 mol%) and Cul (5 mol%) were subsequently added. First, the reaction was stirred at room temperature for 1 h and was then heated to 130 °C for 16 h. After cooling to room temperature the solvents were removed in vacuo and the residue was chromatographed on silica gel (*n*-hexane/ethyl acetate + 5 vol% of triethylamine). After recrystallization from dichloromethane/*n*-hexane the spirocyclic chromophores were obtained as pale yellow powders.

3:¹

4a: M. p. 186 °C; ¹H NMR (500 MHz, CDCI3): δ 0.63 (s, 3H), 1.23 (s, 3H), 1.55 (s, 9H), 3.94 (m, 1H), 4.22 (m, 1H), 4.50 (t, ${}^{3}J_{H,H} = 9.0$ Hz, 1H), 6.78 (m, 2H), 7.06 (s, 1H), 7.10 (m, 3H), 7.19 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 1H), 7.30 (d, ${}^{3}J_{H,H} = 7.5$ Hz, 1H), 7.38 (m, 4H), 7.68 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 2H), 7.88 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 1H); ¹³C NMR (126 MHz, CDCI₃): δ 17.2 (CH₃), 22.3 (CH₃), 28.3 (CH₃), 40.1 (C_{quat}), 48.1 (CH), 62.8 (C_{quat}), 70.4 (CH₂), 84.3 (C_{quat}), 110.2 (C_{quat}), 114.8 (CH), 122.9 (CH), 124.3 (CH), 125.9 (CH), 126.6 (CH), 127.1 (CH), 127.5 (CH), 128.9 (CH), 128.8 (CH), 128.9 (CH), 129.2 (CH), 131.2 (C_{quat}), 131.6 (C_{quat}), 135.4 (C_{quat}), 140.0 (C_{quat}), 141.8 (C_{quat}), 149.5 (C_{quat}), 152.7 (C_{quat}), 174.9 (C_{quat}); EI Ms (70 eV, m/z, (%)): 519 ([M]⁺.46), 419 ([M-Boc]⁺.59), 330 (16), 314 (17), 261 (21), 105 (100), 77 (23), 57 (50); IR (KBr): $\tilde{\nu} = 2978$ (w), 1769 (m), 1733 (s), 1628 (w), 1601 (w), 1491 (w), 1476 (m), 1463 (m), 1395 (w), 1370 (w), 1348 (m), 1290 (m), 1252 (m), 672 (w), 635 (w), 598 (w); UV/Vis (CH₂Cl₂): λ_{max}. (ε) 348 (38300); Combustion Analysis: Calcd. for C₃₄H₃₃NO₄ (519.6): C 78.59, H 6.40, N 2.70. Found: C 78.38, H 6.26, N 2.67.

4b: M. p. 123 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.63 (s, 3H), 1.22 (s, 3H), 1.55 (s, 9H), 3.93 (m, 1H), 4.20 (dd, ³*J*_{H,H} = 8.5 Hz, ²*J*_{H,H} = 12.5 Hz, 1H), 4.49 (m, 1H), 6.77 (m, 2H), 7.00 (s, 1H), 7.10 (m, 3H), 7.19 (d, ³*J*_{H,H} = 7.5 Hz, 1H), 7.28 (d, ³*J*_{H,H} = 7.0 Hz, 1H), 7.37 6

(d, ${}^{3}J_{H,H} = 8.5$ Hz, 3H), 7.61 (d, ${}^{3}J_{H,H} = 8.5$ Hz, 2H), 7.88 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 1H); 13 C NMR (126 MHz, CDCl₃): δ 17.2 (CH₃), 22.3 (CH₃), 22.8 (CH₃), 28.3 (CH₃), 40.1 (C_{quat.}), 48.1 (CH), 62.7 (C_{quat.}), 70.5 (CH₂), 84.4 (C_{quat.}), 110.7 (C_{quat.}), 114.9 (CH), 122.5 (CH), 124.3 (CH), 125.9 (CH), 126.6 (CH), 127.3 (CH), 128.6 (CH), 128.7 (CH), 129.0 (CH), 129.0 (CH), 129.0 (CH), 129.6 (C_{quat.}), 131.4 (C_{quat.}), 134.9 (C_{quat.}), 136.1 (C_{quat.}), 140.0 (C_{quat.}), 141.7 (C_{quat.}), 149.4 (C_{quat.}), 151.5 (C_{quat.}), 174.8 (C_{quat.}); EI Ms: (70 eV, m/z, (%)): 553 ([M]⁺, 6), 453 ([M-Boc]⁺, 10), 86 (11), 84 (23), 71 (16), 69 (24), 67 (11), 57 ([C₄H₉]⁺, 95), 56 (97), 55 (30), 43 (84), 42 (59), 41 (100); IR (KBr): $\tilde{\nu}$ = 2954 (w), 1769 (s), 1728 (s), 1599 (w), 1489 (m), 1475 (m), 1465 (m), 1394 (w), 1370 (w), 1345 (m), 1289 (s), 1252 (m), 1148 (s), 1091 (m), 1078 (m), 1010 (w), 959 (w), 835 (w), 769 (w), 698 (w), 600 (w); UV/Vis (CH₂Cl₂): $\lambda_{max.}$ (ϵ) 350 (17300); Combustion Analysis: Calcd. for C₃₄H₃₂CINO₄ (554.1): C 73.70, H 5.82, N 2.53: Found.: C 73.78, H 6.76, N 2.31.

4c: M. p. 157 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.90 (s, 3H), 1.39 (s, 3H), 1.55 (s, 9H), 3.85 (s, 3H), 3.85 (m, 1H), 4.58 (m, 1H), 4.88 (m, 1H), 6.45 (s, 1H), 6.82 (d, ${}^{3}J_{H,H} = 7.5$ Hz, 2H), 6.87 (d, ${}^{3}J_{H,H} = 8.5$ Hz, 2H), 6.91 (m, 2H), 7.18 (m, 2H), 7.34 (d, ${}^{3}J_{H,H} = 7.5$ Hz, 1H), 7.45 (t, ${}^{3}J_{H,H} = 8.0$ Hz, 1H), 7.89 (d, ${}^{3}J_{H,H} = 8.5$ Hz, 2H), 7.94 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 19.1 (CH₃), 22.4 (CH₃), 28.2 (CH₃), 46.0 (C_{quat.}), 51.6 (CH), 55.6 (CH₃), 60.2 (CH₂), 62.9 (C_{quat.}), 85.0 (C_{quat.}), 113.8 (CH), 115.9 (CH), 122.6 (C_{quat.}), 124.9 (CH), 125.1 (CH), 126.5 (CH), 129.0 (CH), 129.4 (CH), 129.7 (CH), 130.1 (CH), 131.8 (CH), 138.5 (C_{quat.}), 140.6 (C_{quat.}), 149.0 (C_{quat.}), 157.2 (C_{quat.}), 163.6 (C_{quat.}), 173.5 (C_{quat.}); EI Ms: (70 eV, m/z, (%)): 549 ([M]⁺·, 3), 449 ([M-Boc]⁺·, 19), 261 (13), 233 (12), 204 (11), 152 (25), 135 (100), 105 (11); IR (KBr): $\tilde{\nu} = 2972$ (w), 1719 (w), 1655 (w), 1605 (m), 1543 (w), 1510 (w), 1460 (m), 1343 (w), 1255 (m), 1150 (bs), 1100 (m), 1029 (w), 843 (w), 770 (w), 698 (w); UV/Vis (CH₂Cl₂): λ_{max.} (ε) 350 (18900); Combustion Analysis: Calcd. for C₃₅H₃₅NO₅ · 0.1 CH₂Cl₂ (549.7+8.5): C 69.62, H 5.97, N 2.27: Found.: C 69.75, H 5.67, N 2.20.

4d: M. p. 248 °C; ¹H-NMR (CDCl₃, 500 MHz): δ 0.60 (s, 3 H), 1.11 (s, 3H), 2.88 (s, 6H), 3.87 (m, 1H), 4.15 (m, 1H), 4.47 (t, ³*J*_{H,H} = 9.0 Hz, 1H), 6.28 (t, ³*J*_{H,H} = 7.5 Hz, 2H), 6.43 (d, ³*J*_{H,H} = 8.0 Hz, 2H), 6.64 (t, ³*J*_{H,H} = 7.5 Hz, 1H), 6.90 (s, 1H), 7.16 (d, ³*J*_{H,H} = 7.5 Hz, 1H), 7.25 (d, ³*J*_{H,H} = 8.5 Hz, 2H), 7.34 (d, ³*J*_{H,H} = 8.5 Hz, 2H), 7.44 (m, 2H), 7.51 (m, 1H), 7.57 (d, ³*J*_{H,H} = 8.5 Hz, 2H), 8.25 (m, 2H), 8.47 (m, 2H); ¹³C-NMR (CDCl₃, 126 MHz): δ 16.6

7

(CH₃), 21.8 (CH₃), 40.3 (C_{quat.}), 45.4 (CH₃), 47.7 (CH), 62.1 (C_{quat.}), 70.3 (CH₂), 110.3 (C_{quat.}), 113.2 (CH), 115.8 (CH), 118.1 (CH), 112.5 (CH), 123.1 (CH), 124.3 (CH), 127.7 (CH), 126.1 (CH), 126.5 (CH), 127.7 (CH), 128.5 (CH), 128.7 (C_{quat.}), 128.8 (CH), 129.1 (CH), 129.6 (CH), 130.2 (CH), 131.4 (CH), 131.8 (CH), 133.0 (CH), 133.2 (C_{quat.}), 134.7 (C_{quat.}), 134.8 (C_{quat.}), 139.7 (C_{quat.}), 140.3 (C_{quat.}), 151.6 (C_{quat.}), 152.2 (C_{quat.}), 174.6 (C_{quat.}); EI MS (70 eV, *m/z* (%)): 686 ([M]⁺, 12), 452 ([M-Dansyl]⁺, 17), 307 (17), 293 (61), 170 (41), 149 (100); IR (KBr): $\tilde{\nu} = 2942 \text{ cm}^{-1}$ (s), 2832 (s), 2788 (s), 2215 (m), 1683 (w), 1572 (s), 1462 (m), 1365 (m), 1287 (m), 1149 (w), 1058 (s), 793 (s), 758 (s), 626 (m), 584 (m); UV/VIS (CH₂Cl₂): λ_{max} (ϵ) 353 (18849); Combustion Analysis: Calcd. for C₄₁H₃₅CIN₂O₄S (687.3): C 71.65, H 5.13, N 4.08; Found.: C 71.53, H 4.95, N 3.83.

4e: M. p. 268 °C; ¹H-NMR (500 MHz, CDCl₃): δ 0.64 (s, 3H), 1.09 (s,3H), 2.90 (s, 6H), 3.85 (m, 1H), 4.16 (dd, ${}^{3}J_{H,H}$ = 8.8 Hz, 1H), 4.47 (t, ${}^{3}J_{H,H}$ = 9.3 Hz, 1H), 6.16 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 6.32 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 6.89 (s, 1H), 7.18 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.24 (m, 2H), 7.34 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 7.43 (m, 2H), 7.51 (m, 1H), 7.55 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 8.15 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.24 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.46 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 8.55 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H); ${}^{13}C$ -NMR (128 MHZ, CDCl₃): δ 16.9 (CH₃), 22.1 (CH₃), 40.6 (C_{quat}), 45.6 (CH₃), 47.9 (CH), 62.3 (C_{quat}), 70.6 (CH₂), 110.3 (C_{quat}), 113.5 (CH), 115.3 (CH), 117.9 (CH), 122.8 (CH), 123.3 (CH), 124.6 (CH), 126.3 (CH), 127.3 (CH), 128.1 (CH), 128.7 (CH), 128.9 (CH), 129.1 (CH), 129.3 (C_{quat}), 129.5 (CH), 129.9 (C_{quat}), 130.4 (C_{quat}), 131.4 (C_{quat}), 132.4 (CH), 132.5 (C_{quat}), 133.3 (CH), 133.3 (C_{quat}), 133.6 (C_{quat}), 135.2 (C_{auat}), 139.0 (C_{auat}), 139.8 (C_{auat}), 152.4 (C_{auat}); EI Ms: (70 eV, *m/z*, (%)): 720 ([M]⁺, 11), 486 ([M-Dansyl]⁺, 7), 460 (31), 366 (10), 277 (21), 170 (63), 154 (11), 139 (100), 111 (25), 69 (10); IR (KBr): \tilde{v} = 2955 (b), 2346 (w), 1757 (s), 1719 (w), 1701 (w), 1686 (w), 1676 (w), 1655 (w), 1638 (w), 1599 (w), 1561 (w), 1544 (w), 1524 (w), 1509 (w), 1490 (m), 1459 (s), 1399 (w), 1364 (m), 1262 (w), 1237 (m), 1204 (w), 1174 (m), 1148 (m), 1092 (s), 1013 (w), 968 (w), 831 (w), 790 (s), 757 (w), 689 (w), 623 (m), 578 (s); UV/VIS (CH₂Cl₂): λ_{max} (ϵ) 356 (15188); Combustion Analysis: Calcd. for C₄₁H₃₄Cl₂N₂O₄S · 0.05 CH₂Cl₂ (720.2+4.3): C 65.23, H 4.62, N 3.67; Found: C 65.16, H 4.75, N 3.42.

4f: M. p. 161 °C; ¹H-NMR (500 MHz, CDCl₃): δ 0.52 (s, 3H) 1.02 (s, 3H), 2.81 (s, 6H), 3.43 (s, 3H), 3.78 (t, ³J_{H,H} = 11 Hz, 1H), 4.07 (m, 1H), 4.39 (m, 1H), 5.82 (d, ³J_{H,H} = 8.72 Hz, 2H), 6.32 (d, ³J_{H,H} = 8.71 Hz, 2H), 6.80 (s, 1H), 7.09 (d, ³J_{H,H} = 7.63 Hz, 1H), 7.20 (m, 1H),

7.29 (d, ${}^{3}J_{H,H}$ = 8.58 Hz, 2H), 7.46 (m, 4H), 7.50 (d, ${}^{3}J_{H,H}$ = 8.60 Hz, 2H), 8.16 (d, ${}^{3}J_{H,H}$ = 8.72 Hz, 1H), 8.20 (d, ${}^{3}J_{H,H}$ = 8.19 Hz, 1H), 8.41 (d, ${}^{3}J_{H,H}$ = 7.42 Hz, 1H), 8.46 (d, ${}^{3}J_{H,H}$ = 7.56 Hz, 1H); 13 C-NMR (126 MHz, CDCI₃): \bar{o} 16.6 (CH₃), 21.9 (CH₃), 40.3 (C_{quat}), 45.3 (CH₃), 47.8 (CH), 54.9 (CH₃), 62.2 (C_{quat}), 70.2 (CH₂), 110.4 (C_{quat}), 113.2 (CH), 113.2 (CH), 114.9 (CH), 120.9 (CH), 123.2 (CH), 124.3 (CH), 126.2 (CH), 126.4 (CH), 126.9 (CH), 127.0 (CH), 128.4 (CH), 128.6 (CH), 128.8 (CH), 129.0 (CH), 129.1 (CH), 129.3 (C_{quat}), 130.3 (C_{quat}), 131.4 (C_{quat}), 131.8 (CH), 132.8 (C_{quat}), 133.0 (CH), 133.3 (C_{quat}), 134.5 (C_{quat}), 134.6 (C_{quat}), 139.6 (C_{quat}), 151.0 (C_{quat}), 158.3 (C_{quat}), 174.8 (C_{quat}); EI Ms (70 eV, m/z, (%)): 716 ([M]⁺, 100), 717 (M]⁺, 47), 718 ([M]⁺, 44), 482 ([M-C₁₂H₁₂NO₂S]⁺, 28), 170 (19), 139 (46); IR (KBr): $\tilde{\nu}$ = 3651 (m), 2953 (m), 2835 (m), 1756 (s), 1599 (m), 1570 (m), 1502 (s), 1489 (s), 1458 (s), 1396 (m), 1364 (s), 1285 (m), 1245 (s), 1203 (m), 1173 (s), 1145 (s), 1058 (s), 991 (m), 966 (m), 943 (m), 831 (m), 800 (m), 785 (m), 759 (m), 688 (m), 623 (m), 596 (w), 579 (s), 566 (m); UV/Vis (CH₂Cl₂): λ_{max} . (ϵ) 358 (24900); HR-MS: Calcd. for C₄₂H₃₇NaCIN₂O₅S: 739.200391; Found: 739.200742.

4g: M. p. 263 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.81 (s, 3H), 1.47 (s, 3H), 2.38 (s, 3H), 4.19 (t, ${}^{3}J_{H,H}$ = 11.0 Hz, 1H), 4.56 (m, 1H), 4.75 (t, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H), 6.15 (s, 1H), 6.20 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 2H), 6.47 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 2H), 6.72 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.14 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 7.29 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.37 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.50 (m, 5H), 7.82 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 2H), 7.99 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.04 (dd, ${}^{3}J_{H,H}$ = 8.5 Hz, ${}^{4}J_{H,H}$ = 3.0 Hz, 2H), 8.14 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.20 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.51 (s, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 17.5 (CH₃), 21.9 (CH₃), 22.2 (CH₃), 40.8 (C_{quat.}), 47.7 (CH), 62.8 (C_{guat.}), 71.4 (CH₂), 113.2 (CH), 114.7 (C_{guat.}), 122.5 (CH), 124.5 (C_{guat.}), 124.8 (CH), 125.5 (CH), 125.7 (CH), 125.9 (CH), 126.2 (CH), 126.3 (CH), 126.5 (CH), 126.8 (CH), 128.0 (CH), 128.2 (CH), 128.9 (CH), 129.9 (CH), 129.5 (CH), 129.8 (CH), 130.8 (C_{auat.}),131.0 (C_{auat.}),131.5 (C_{auat.}), 131.6 (C_{auat.}), 132.0 (C_{auat.}), 134.0 (C_{auat.}), 135.2 (C_{auat.}), 139.4 (C_{quat.}), 140.8 (C_{quat.}), 145.4 (C_{quat.}), 150.9 (C_{quat.}); EI Ms: (70 eV, m/z, (%)) 673 ([M]⁺·, 37), 518 (21), 340 (17), 299 (12), 252 (28), 205 (64), 177 (57), 135 (56), 91 (81), 57 (67), 43 (100); IR (KBr): \tilde{v} = 3053 (w), 2976 (w), 1760 (s), 1655 (w), 1598 (m), 1492 (w), 1459 (m), 1377 (m), 1324 (w), 1295 (w), 1238 (m), 1179 (s), 1145 (m), 1092 (w), 1059 (m), 978 (w), 888 (w), 847 (w), 814 (w), 762 (m), 691 (m), 660 (m), 593 (w), 572 (s), 545 (m); UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 387 (10500), 368 (10600), 321 nm (17200); Combustion Analysis: Calcd. for C₄₄H₃₅NO₄S (673.8): C 78.43, H 5.24, N 2.08: Found: C 78.18, H 5.39, N 2.00.

4h: M. p. 189 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.74 (s, 3H), 1.51 (s, 3H), 1.57 (s, 9H), 4.24 (t, ${}^{3}J_{HH}$ = 11.0 Hz, 1H), 4.57 (m, 1H), 4.75 (t, ${}^{3}J_{HH}$ = 9.5 Hz, 1H), 6.23 (s, 1H), 6.56 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 2H), 6.93 (m, 3H), 7.29 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.41 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 2H), 7.46 (m, 1H), 7.52 (m, 2H), 7.57 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.91 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 8.01 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.05 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.18 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.25 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.53 (s, 1H); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ 17.7 (CH₃), 22.1 (CH₃), 28.3 (CH₃), 40.7 (C_{quat.}), 47.6 (CH), 62.9 (C_{quat.}), 71.3 (CH₂), 84.3 (C_{quat.}), 109.6 (C_{quat.}), 115.0 (CH), 124.6 (C_{quat.}), 125.9 (CH), 126.2 (CH), 126.6 (CH), 126.4 (CH), 126.8 (CH), 127.0 (CH), 128.3 (CH), 128.9 (CH), 129.3 (CH), 130.9 (C_{auat}), 131.6 (C_{auat}), 134.0 (C_{guat.}), 136.9 (C_{guat.}), 140.0 (C_{guat.}), 141.2 (C_{guat.}), 149.4 (C_{guat.}), 150.5 (C_{guat.}), 175.0 (C_{auat.}); EI Ms: (70 eV, m/z, (%)) 619 ([M]⁺, 17), 519 ([M-Boc]⁺, 100), 450 (12), 299 (51), 287 (14), 255 (14), 215 (17), 205 (35), 191 (16), 177 (65), 150 (16), 56 (54), 44 (20), 41 (50); IR (KBr): \tilde{v} = 2979 (w), 1767 (m), 1724 (m), 1655 (w), 1602 (w), 1476 (m), 1463 (m), 1395 (w), 1370 (w), 1346 (m), 1303 (m), 1289 (m), 1252 (m), 1148 (s), 1098 (m), 1060 (w), 1003 (w), 936 (w), 891 (w), 844 (w), 750 (m), 735 (m), 699 (m), 645 (m); UV/Vis (CH₂Cl₂): λ_{max} (ε) 387 (10600), 367 (10100), 320 nm (19300); Combustion Analysis: Calcd. for C₄₂H₃₇NO₄ · 0.02 CH₂Cl₂ (619.8+1.7): C 80.26, H 5.96, N 2.22: Found: C 80.03, H 5.93, N 2.20.

4i: M. p. 263 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.72 (s, 3H), 1.36 (s, 3H), 2.86 (s, 6H), 4.18 (t, ³J_{H,H} = 11.0 Hz, 1H), 4.52 (dd, ³J_{H,H} = 9.0 Hz, ³J_{H,H} = 12.0 Hz, 1H), 4.72 (t, ³J_{H,H} = 9.5 Hz, 1H), 6.09 (t, ³J_{H,H} = 8.0 Hz, 2H), 6.13 (s, 1H), 6.22 (d, ³J_{H,H} = 7.5 Hz, 2H), 6.48 (t, ³J_{H,H} = 7.5 Hz, 1H), 7.14 (d, ³J_{H,H} = 7.5 Hz, 1H), 7.46 (m, 9H), 8.00 (m, 3H), 8.10 (d, ³J_{H,H} = 8.5 Hz, 1H), 8.21 (d, ³J_{H,H} = 8.5 Hz, 1H), 8.25 (d, ³J_{H,H} = 9.0 Hz, 1H), 8.29 (d, ³J_{H,H} = 8.0 Hz, 1H), 8.46 (m, 1H), 8.50 (s, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 17.3 (CH₃), 22.1 (CH₃), 41.2 (C_{quat.}), 45.7 (CH₃), 47.6 (CH), 62.6 (C_{quat.}), 71.4 (CH₂), 113.5 (CH), 114.8 (C_{quat.}), 115.3 (CH), 122.2 (CH), 123.4 (CH), 124.4 (C_{quat.}), 124.6 (CH), 125.5 (CH), 125.7 (CH), 125.8 (CH), 125.9 (CH), 126.1 (CH), 126.4 (CH), 130.4 (C_{quat.}), 130.8 (C_{quat.}), 130.9 (C_{quat.}), 131.5 (C_{quat.}), 131.5 (C_{quat.}), 131.9 (C_{quat.}), 132.0 (CH), 133.3 (CH), 133.4 (C_{quat.}),

133.8 (C_{quat.}), 140.0 (C_{quat.}), 140.1 (C_{quat.}), 150.9 (C_{quat.}), 175.1 (C_{quat.}); EI Ms (70 eV, m/z, (%)): 752 ([M]⁺, 100), 590 (10), 519 (32), 518 ([M-Ds]⁺,46), 205 (34), 177 (16), 171 (13), 170 (27), 86 (23), 84 (39), 49 (27), 44 (24), 43 (48); IR (KBr): $\tilde{\nu}$ = 3855 (w), 3752 (w), 3651 (w), 3424 (s), 2942 (m), 1753 (s), 1718 (w), 1701 (w), 1655 (m), 1638 (m), 1598 (m), 1543 (w), 1508 (w), 1491 (w), 1458 (s), 1360 (s), 1323 (m), 1237 (s), 1203 (m), 1174 (s), 1145 (s), 1059 (s), 966 (m), 885 (w), 842 (w), 784 (m), 760 (s), 688 (m), 625 (s), 575 (s); UV/Vis (CH₂Cl₂): $\lambda_{max.}$ (ϵ) 326 nm (10800), 366 nm (7800), 385 nm (6800); Combustion Analysis: Calcd. for C₄₉H₄₀N₂O₄S (752.9): C 78.17, H 5.35, N 3.72 Found: C 78.05, H 5.16, N 3.82.

4j: M. p. 265 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.76 (s, 3H), 1.39 (s, 3H), 2.87 (d, ³J_{H,H} = 9.0 Hz, 6H), 4.17 (t, ${}^{3}J_{H,H}$ = 11.0 Hz, 1H), 4.53 (dd, ${}^{3}J_{H,H}$ =9.5 Hz, ${}^{3}J_{H,H}$ = 12.0 Hz, 1H), 4.74 (t, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H), 5.97 (m, 2H), 6.12 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 3H), 7.16 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.45 (m, 8H), 8.01 (m, 2H), 8.09 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 1H), 8.19 (dd, ${}^{3}J_{HH}$ = 5.5 Hz, ${}^{3}J_{H,H}$ = 8.5 Hz, 2H), 8.27 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 8.48 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 8.51 (s, 1H), 8.54 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 1H); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ 17.3 (CH₃), 22.1 (CH₃), 41.2 (C_{auat.}), 45.6 (CH₃), 47.5 (CH), 62.5 (C_{auat.}), 71.5 (CH₂), 113.5 (CH), 114.7 (C_{auat.}), 115.4 (CH), 122.7 (CH), 123.3 (CH), 124.3 (C_{quat.}), 124.7 (CH), 125.6 (CH), 125.7 (CH), 125.9 (CH), 126.0 (CH), 126.3 (CH), 126.8 (CH), 126.8 (CH), 127.1 (CH), 127.8 (CH), 128.9 (CH), 128.9 (CH), 129.4 (CH), 129.6 (CH), 130.4 (C_{quat.}), 130.8 (C_{quat.}), 130.9 (C_{quat}), 131.5 (C_{quat.}), 131.5 (C_{quat.}), 131.6 (C_{quat.}), 132.2 (C_{quat.}), 132.4 (CH), 132.4 (C_{quat.}), 133.3 (CH), 138.6 (C_{quat.}), 139.9 (C_{quat.}), 151.4 (C_{quat.}), 175.0 (C_{quat.}); EI Ms (70 eV, m/z, (%)): 786 $([M]^+, 100), 554 (13), 553 (14), 552 ([M-Dansyl]^+, 35), 392 (14), 205 (31), 177 (15), 170$ $([M-C_{37}H_{27}CINO_4S]^+, 24), 57 (15), 56 (14), 44 ([N-(CH_3)_2]^+, 11), 43 (76), 42 (16), 41 (21);$ IR (KBr): \tilde{v} = 3855 (w), 3752 (w), 3736 (w), 3713 (w), 3677 (w), 3650 (w), 2938 (m), 1757 (s), 1655 (m), 1543 (m), 1508 (m), 1458 (s), 1364 (s), 1323 (m), 1238 (m), 1174 (s), 1146 (s), 1058 (s), 967 (m), 890 (m), 788 (s), 757 (m), 734 (m), 687 (m), 622 (s), 576 (s); UV/Vis (CH₂Cl₂): λ_{max} (ε) 330 nm (22100), 367 nm (16700), 386 nm (14800); Combustion Analysis: Calcd. for C₄₉H₃₉ClN₂O₄S (787.4): C 74.75, H 4.99, N 3.56: Found: C 74.59, H 5.01, N 3.44.

4k: M. p. 276 °C; ¹H NMR (500 MHz, CDCI₃): δ 0.70 (s, 3H), 1.37 (s, 3H), 2.85 (s, 6H), 3.37 (s, 3H), 4.17 (m, 1H), 4.50 (dd, ³*J*_{H,H} =9.0 Hz, ³*J*_{H,H} = 12.0 Hz, 1H), 4.71 (t, ³*J*_{H,H} = 9.5 Hz, 1H), 5.67 (d, ³*J*_{H,H} = 9.0 Hz, 2H), 6.08 (s, 1H), 6.18 (d, ³*J*_{H,H} = 9.0 Hz, 2H), 7.13 (d,

11

 ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.34 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.47 (m, 8H), 8.00 (m, 2H), 8.11 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 8.22 (m, 2H), 8.28 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 8.48 (m, 3H); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ 17.3 (CH₃), 22.1 (CH₃), 41.2 (C_{quat.}), 45.5 (CH₃), 47.7 (CH), 55.0 (CH₃), 62.6 (C_{auat.}), 71.3 (CH₂), 113.2 (CH), 113.4 (CH), 114.9 (C_{auat.}), 115.1 (CH), 118.3 (CH), 121.0 (CH), 123.4 (CH), 124.6 (C_{quat.}), 124.6 (CH), 125.5 (CH), 125.7 (CH), 126.0 (CH), 126.2 (CH), 126.5 (CH), 126.7 (CH), 126.7 (CH), 127.0 (CH), 128.8 (CH), 129.0 (C_{quat}), 129.2 (CH), 129.4 (CH), 129.7 (C_{quat.}), 130.5 (C_{quat.}), 130.8 (C_{quat.}), 130.9 (C_{quat.}), 131.5 (C_{quat.}), 131.5 (C_{quat.}), 131.9 (C_{quat.}), 132.1 (CH), 132.7 (C_{quat.}), 133.2 (CH), 133.5 (C_{quat.}), 133.5 (C_{quat.}), 139.9 (C_{quat.}), 150.2 (C_{quat.}), 158.3 (C_{quat.}), 175.2 (C_{quat.}); EI Ms (70 eV, m/z, (%)): 782 ([M]⁺·, 100), 552 (13), 549 (20), 548 ([M-Ds]⁺·,28), 250 (31), 205 (54), 177 (25), 171 (16), 170 $([C_{12}H_{12}N]^+$, 44), 169 (11), 168 (13), 149 (12); IR (KBr): $\tilde{v} = 3855$ (w), 3752 (w), 2936 (m), 2833 (m), 1757 (s), 1655 (m), 1606 (m), 1509 (s), 1458 (s), 1409 (m), 1362 (s), 1322 (m), 1306 (m), 1240 (s), 1203 (m), 1175 (s), 1145 (s), 1057 (m), 966 (m), 944 (m), 885 (w), 829 (m), 785 (s), 756 (m), 733 (m), 687 (m); UV/Vis (CH₂Cl₂): λ_{max} (ε) 327 nm (22900), 366 nm (15700), 384 nm (13800); Combustion Analysis: Calcd. for C₅₀H₄₂N₂O₅S (782.9): C 76.70, H 5.41, N 3.58. Found: C 76.48, H 5.17, N 3.43.

General Procedure for the Synthesis of *N*-unsubstituted Spirocyclic Chromophores and Bichromophores:

In an argon flushed oven-dried screw-cap vessel, compound **4a** or **4h** (0.2 mmol), respectively, was dissolved in dry dichloromethane (5 mL) and 2 equivalents of dry zinc bromide were added. Then the reaction mixture was stirred for 2 h at room temperature before the solvent was removed in vacuo and the residue was chromatographed on silica gel (*n*-hexane/ethyl acetate + 5 vol% of triethylamine). After recrystallization from dichloromethane/*n*-hexane the spirocyclic chromophores were obtained as pale yellow powders.

4I: M. p. 270 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.66 (s, 3H), 1.24 (s, 3H), 3.97 (dd, ³J_{H,H} = 12.5 Hz, ³J_{H,H} = 9.5 Hz, 1H), 4.23 (dd, ³J_{H,H} = 13.5 Hz, ³J_{H,H} = 8.5 Hz, 1H), 4.52 (m, 1H), 6.76 (d, ³J_{H,H} = 7.5 Hz, 2H), 6.83 (m, 2H), 7.04 (s, 1H), 7.07 (m, 3H), 7.26 (m, 2H), 7.35 (d, ³J_{H,H} = 7.5 Hz, 1H), 7.40 (m, 2H), 7.69 (d, ³J_{H,H} = 8.0 Hz, 2H), 8.33 (s, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 15.7 (CH₃), 20.9 (CH₃), 40.0 (C_{quat.}), 47.3 (CH), 61.8 (C_{quat.}), 69.2 (CH₂), 108.6 (C_{quat.}), 109.3 (CH), 121.3 (CH), 121.4 (CH), 125.1 (CH), 124.4 (CH), 126.0 (CH),

126.3 (CH), 127.2 (CH), 127.3 (CH), 127.5 (CH), 127.9 (CH), 130.0 (C_{quat.}), 132.4 (C_{quat.}), 134.3 (C_{quat.}), 139.8 (C_{quat.}), 140.9 (C_{quat.}), 151.2 (C_{quat.}), 178.8 (C_{quat.}); El Ms (70 eV, m/z, (%)): 419 ([M]⁺, 69), 314 (28), 246 (14), 185 (10), 165 (15), 132 (12), 115 (13), 105 (100), 91 (11), 77 (53); IR (KBr): $\tilde{\nu} = 3056$ (w), 2963 (bw), 2892 (w), 1718 (s), 1618 (m), 1597 (w), 1491 (w), 1472 (m), 1445 (w), 1392 (w), 1370 (w), 1326 (w), 1260 (w), 1236 (w), 1179 (w), 1093 (m), 1067 (m), 1024 (w), 954 (w), 802 (w), 766 (m), 698 (m), 674 (w), 630 (w), 559 (w); UV/Vis (CH₂Cl₂): $\lambda_{max.}$ (ϵ) 347 nm (19100); Combustion Analysis: Calcd. for C₂₉H₂₅NO₂ · 0.05 C₄H₈O₂ (419.5+4.4): C 81.61, H 6.16, N 3.17; Found: C 81.38, H 6.18, N 3.14.

4m: M. P.: 236 °C; ¹H NMR (500 MHz, CDCl₃): δ 0.80 (s, 3H), 1.58 (s, 3H), 4.30 (t, ³J_{H,H} = 11.0 Hz, 1H), 4.61 (dd, ${}^{3}J_{H,H}$ = 9.0 Hz, ${}^{3}J_{H,H}$ = 11.0 Hz, 1H), 4.79 (t, ${}^{3}J_{H,H}$ = 9.0 Hz, 1H), 6.23 (s, 1H), 6.64 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 2H), 6.81 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 6.94 (m, 3H), 7.17 (t, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.31 (t, ${}^{3}J_{H,H}$ = 7.0 Hz, 1H), 7.41 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.48 (m, 1H), 7.48 (m, 1H), 7.54 (m, 2H), 7.59 (m, 1H), 8.03 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.07 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 8.23 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H), 8.28 (d, ${}^{3}J_{H,H}$ = 9.0 Hz, 1H), 8.55 (s, 1H); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ 17.6 (CH₃), 22.4 (CH₃), 40.0 (C_{quat.}), 48.4 (CH), 63.4 (C_{quat.}), 71.6 (CH₂), 110.1 (CH), 115.5 (C_{ouat}), 122.2 (CH), 122.7 (CH), 125.8 (CH), 125.9 (CH), 126.3 (CH), 126.5 (CH), 126.5 (CH), 126.6 (CH), 126.9 (CH), 127.3 (CH), 127.7 (CH), 128.4 (CH), 128.9 (CH), 129.0 (CH), 129.1 (CH), 129.4 (CH), 131.1 (C_{guat}), 131.2 (C_{guat}), 131.7 (C_{quat.}),131.8 (C_{quat.}), 133.9 (C_{quat.}), 134.0 (C_{quat.}), 134.9 (CH), 135.2 (C_{quat.}), 141.3 (C_{auat.}),141.8 (C_{auat.}), 150.4 (C_{auat.}), 180.2 (C_{auat.}); EI Ms (70 eV, m/z, (%)): 519 ([M]⁺, 100), 299 (62), 205 (27), 191 (11), 177 (42), 151 (12), 86 (25), 84 (31), 74 (39), 69 (22), 56 (66), 45 (30); IR (KBr): \tilde{v} = 2951 (w), 1705 (s), 1655 (m), 1616 (m), 1508 (w), 1491 (w), 1468 (m), 1389 (w), 1318 (w), 1178 (m), 1136 (w), 1037 (w), 976 (w), 845 (w), 749 (m), 698 (m), 635 (w), 548 (w); UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 386 (9200), 367 (9500), 318 (18500); Combustion Analysis: Calcd. for C₃₇H₂₉NO₂ · 0.05 CH₂Cl₂ (519.6+4.3): C 81.83, H 5.46, N 2.56; Found: C 81.69, H 5.60, N 2.32.

NMR-Spectra of 4a:

NMR-Spectra of 4b:

NMR-Spectra of 4c:

051.01 ----20 r06.0 ------48.S 0.1 195.25 ----- 28.234 30 065.1 ---3.02--= 1.5 -87.8 748.1 40 820.94 ----2.0 50 685.12 ----149.88 ---2.5 60 942.09 ---688.<u>2</u>8 — 70 3.0 80 3.5 6 7 3.824 3.04 3.04 3.04 37854 37854 4.0 100 4.5 ppm 110 ppm 4.563 4.572 413°830 **፲**--00.↑ 985.4 ~ 965.4 998'911 / 120 998.4 = **I-66.0** 5.0 213.615 478.4 - 125.134 **688.**4 286.921 868.4 7 130 879.951 5.5 858.F5F ~ 140 140.628 6.0 150 966.841 ----212.781 ---160 -- 6.452 ≖-†⁄6.0 6.5 809.E91 ----6.824 6.809 ers.aar ----2.15-170 -11.S 蟗 78.9 J 7.0 -06.1 909'821 ----180 <u>2.27–=</u> ---rs.r <u>∓</u>-61.1 7.5 190 ₹_______ 247.961 ----200 8.0 -1(ŀ

NMR-Spectra of 4d:

NMR-Spectra of 4e:

NMR-Spectra of 4f:

NMR-Spectra of 4h:

NMR-Spectra of 4i:

NMR-Spectra of 4j:

NMR-Spectra of 4k:

NMR-Spectra of 4m:

UV/VIS (blue) and Fluorescence (red) Spectra of 4a:

UV/VIS (blue) and Fluorescence (red) Spectra of 4b:

UV/VIS (blue) and Fluorescence (red) Spectra of 4c:

UV/VIS (blue) and Fluorescence (red) Spectra of 4d:

UV/VIS (blue) and Fluorescence (red) Spectra of 4e:

UV/VIS (blue) and Fluorescence (red) Spectra of 4f:

UV/VIS (blue) and Fluorescence (red) Spectra of 4g:

UV/VIS (blue) and Fluorescence (red) Spectra of 4h:

UV/VIS (blue) and Fluorescence (red) Spectra of 4i:

UV/VIS (blue) and Fluorescence (red) Spectra of 4j:

UV/VIS (blue) and Fluorescence (red) Spectra of 4k:

UV/VIS (blue) and Fluorescence (red) Spectra of 4I:

32

UV/VIS (blue) and Fluorescence (red) Spectra of 4m:

Computational Details of the Computed Model System

С	0.827787	3.213501	0.562717
С	1.085317	1.883553	0.944669
С	2.004829	1.653478	1.985591
С	2.633199	2.720663	2.627306
С	2.361373	4.036665	2.244391
С	1.455816	4.278314	1.208262
С	0.382700	0.767058	0.257599
С	1.179102	-0.479467	-0.141233
С	0.504009	-1.233725	-1.390369
С	-0.964266	-1.498899	-0.973476
С	-1.684997	-0.185149	-0.659316
С	-0.955590	0.839583	0.032813
С	1.380362	-1.405147	1.063668
С	2.755553	-1.690068	1.199095
Ν	3.482258	-0.975536	0.240021
С	2.652831	-0.152610	-0.530507
С	3.231350	-2.529073	2.199448
С	2.305373	-3.078690	3.098027
С	0.948166	-2.770605	3.003697
С	0.481692	-1.920096	1.985770
С	-1.908257	-2.134717	-2.022750
0	-3.224637	-1.459600	-1.806910
С	-2.957843	-0.252538	-1.131190
0	3.073516	0.621747	-1.393831
С	-4.109112	0.647501	-1.052051
С	-3.997702	2.021169	-0.768069
С	-5.137435	2.820232	-0.689889
С	-6.404552	2.269686	-0.900412
С	-6.523682	0.910781	-1.205795
С	-5.389334	0.108071	-1.288348

Optimized ground state geometry coordinates:

С	1.228711	-2.568903	-1.672295
С	0.552336	-0.337941	-2.653228
Н	-7.287470	2.895381	-0.837954
Н	4.288158	-2.746034	2.293169
Н	2.656386	-3.736151	3.885195
Н	0.248703	-3.177907	3.723841
Н	-0.564701	-1.643756	1.946325
Н	-1.485122	1.710597	0.400657
Н	-1.590286	-1.921884	-3.046944
Н	-2.068613	-3.203509	-1.881951
Н	-0.954242	-2.129495	-0.076647
Н	1.216489	-3.218515	-0.792000
Н	2.268656	-2.393783	-1.967892
Н	0.728012	-3.086274	-2.499526
Н	-0.129513	0.509643	-2.549506
Н	0.253817	-0.921838	-3.531228
Н	1.560343	0.046795	-2.809035
Н	-3.023588	2.473785	-0.644060
Н	-5.034908	3.877961	-0.475040
Н	-7.501848	0.477856	-1.382668
Н	-5.467247	-0.942395	-1.532934
Н	2.199381	0.639135	2.307725
Н	3.329402	2.524339	3.435354
Н	2.853210	4.863685	2.743783
Н	1.250937	5.295195	0.892171
Н	0.156401	3.401183	-0.267337
С	4.939023	-0.944050	0.107272
Н	5.328474	-1.933287	-0.156144
Н	5.152854	-0.233627	-0.694867
Н	5.408422	-0.602288	1.036837
Total energy = -1356.3301792299 a.u.			

Optimized excited state geometry coordinates:

С	0.666439	3.354338	0.356018
С	1.181793	2.043590	0.586210
С	2.332802	1.940225	1.416197
С	2.922040	3.066028	1.974558
С	2.397839	4.343109	1.732049
С	1.266385	4.473468	0.916396
С	0.535834	0.880249	0.012260
С	1.260775	-0.446343	-0.201018
С	0.673060	-1.196540	-1.500617
С	-0.823666	-1.459504	-1.205076
С	-1.538600	-0.184611	-0.788493
С	-0.844180	0.903841	-0.271516
С	1.197648	-1.311151	1.061833
С	2.501564	-1.733544	1.395443
Ν	3.422212	-1.176760	0.495969
С	2.798839	-0.332833	-0.428842
С	2.747161	-2.549098	2.493286
С	1.657250	-2.935828	3.286141
С	0.365701	-2.495968	2.989454
С	0.131872	-1.673819	1.875045
С	-1.706072	-1.919626	-2.390942
0	-3.059700	-1.339278	-2.087956
С	-2.906944	-0.291698	-1.188545
0	3.409975	0.291565	-1.301680
С	-4.061727	0.450844	-0.838332
С	-4.084223	1.328937	0.293700
С	-5.230200	2.047596	0.597890
С	-6.384902	1.935631	-0.193390
С	-6.383761	1.056588	-1.297516
С	-5.257329	0.322616	-1.614319
С	1.405404	-2.538148	-1.729128
С	0.849635	-0.286007	-2.742867

Н	-7.271137	2.510949	0.046806
Н	3.751459	-2.872385	2.737988
Н	1.826738	-3.572210	4.147096
Н	-0.463089	-2.783930	3.625208
Н	-0.864960	-1.304856	1.666818
Н	-1.392610	1.817250	-0.075786
Н	-1.370718	-1.497527	-3.340297
Н	-1.847814	-2.997311	-2.463848
Н	-0.893304	-2.214951	-0.409098
Н	1.381204	-3.156546	-0.826648
Н	2.446433	-2.366771	-2.021284
Н	0.917173	-3.086907	-2.544028
Н	0.152985	0.555232	-2.711557
Н	0.670637	-0.863484	-3.657511
Н	1.868363	0.104122	-2.767076
Н	-3.218980	1.387744	0.942786
Η	-5.235161	2.698638	1.466112
Η	-7.277913	0.955172	-1.903390
Н	-5.252715	-0.353806	-2.459529
Н	2.727206	0.962590	1.653650
Η	3.789315	2.952024	2.615725
Η	2.863229	5.219105	2.168681
Η	0.861292	5.457692	0.707471
Η	-0.178117	3.484591	-0.309659
С	4.872480	-1.372615	0.509885
Η	5.124318	-2.426579	0.349802
Η	5.267226	-0.767404	-0.309755
Н	5.303536	-1.035695	1.459226
total energy = -1356.31961252100 a.u.			

¹ D. M. D'Souza, F. Rominger and T. J. J. Müller, *Angew. Chem. Int. Ed.*, 2005, **44**, 153; D. M. D'Souza, A. Kiel, D.-P. Herten, F. Rominger and T. J. J. Müller, *Chem. Eur. J.*, 2008, **14**, 529.