Exploiting reagent evolution in samarium-mediated reaction cascades: application in a tag removal-cyclisation approach to spirooxindole scaffolds

Susannah C. Coote, Seidjolo Quenum and David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Email: <u>david.j.procter@manchester.ac.uk</u>.

Supporting Information

Contents

- S 2 General experimental and general procedures
- S 9 Experimental: Synthesis of alkylated fluorous-tagged oxindoles
- S 29 Experimental: Synthesis of spirooxindoles
- S 47 Experimental: Recycling of the fluorous tag
- S 47 Experimental: Synthesis of analogues of spirotryprostatin A
- S 65 ¹H and ¹³C NMR spectra of new compounds
- S 118 X-ray crystal structures of spirooxindoles 19a, 19b, 23, 35 and 40b
- S 120 NOE study on diketopiperazines **39a** and **39b**
- S 121 References for the Supporting Information

General Experimental

All experiments were performed under an atmosphere of nitrogen using anhydrous solvents, unless stated otherwise. Glassware for inert atmosphere reactions was ovendried and cooled under a flow of nitrogen. THF was freshly distilled from sodium/benzophenone, CH₂Cl₂ and Et₃N were freshly distilled from CaH₂. Petroleum ether refers to the fraction of petroleum ether boiling in the range 40-60 °C. All other solvents and reagents were purchased from commercial sources and used as supplied. Except where indicated otherwise, imines were prepared according to literature procedures.

¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer, with chemical shift values being reported in parts per million (ppm) relative to residual CHCl₃ ($\delta_{\rm H} = 7.27$) and CDCl₃ ($\delta_{\rm C} = 77.0$) as internal standards unless otherwise stated. All coupling constants (*J*) are reported in Hertz (Hz). NMR assignments were made with the aid of COSY, HMQC, DEPT135 and DEPT90 experiments.

Low resolution and high resolution mass spectra were obtained using positive or negative electrospray ionisation (ES). Infrared spectra were recorded using an FTIR spectrometer as evaporated films or neat using sodium chloride windows. Melting points are uncorrected. Optical rotations (Sodium D line) are reported as unitless numbers for which the concentration c is in g/100 mL.

Routine TLC analysis was carried out on aluminium sheets coated with silica gel 60 F254, 0.2 mm thickness. Plates were visualised by UV (254 mm) and/or by staining with aqueous potassium permanganate, ethanolic *p*-anisaldehyde or ethanolic phosphomolybdic acid. Column chromatography was carried out using $35-70\mu$, 60A silica gel.

Fluorous solid-phase extraction (FSPE) was performed using fluorous silica gel packed in a glass column. Crude products were dry-loaded onto silica gel and transferred onto the fluorous column. Elution with 40% water in MeCN (3 column volumes) provided the non-fluorous components of the mixture, then elution with

MeCN (3 column volumes) provided the fluorous components of the mixture. Fluorous columns were re-used up to 30 times. **FSPE** can be used to purify or partpurify all reactions involving fluorous-tagged starting materials.

General procedure A: Preparation of acetoxyamides using acetoxyacetic acid

EDCI.HCl (1.5 eq), HOBt.H₂O (0.2 eq) and acetoxyacetic acid (1.0 eq) were added to a stirred solution of amine (1.0 eq, 20.8 mmol) in CH₂Cl₂ (40 mL) at room temperature under nitrogen. The resulting solution was stirred at room temperature for 12-48 h, then a 1N aqueous solution of HCl (20 mL) and CH₂Cl₂ (20 mL) were added. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic layers were washed with a 1N aqueous solution of HCl (20 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure B: Preparation of acetoxyamides using acetoxyacetyl chloride

Acetoxyacetyl chloride (1.1 eq) was added dropwise to a stirred solution of amine (1.0 eq, 32.6 mmol) and Et₃N (1.1 eq) in CH₂Cl₂ (100 mL) at 0 °C under nitrogen. The resulting solution was allowed to warm to room temperature, then stirred at room temperature for 12 h. A saturated aqueous solution of NaHCO₃ (100 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2×50 mL) and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure C: Preparation of hydroxyamides

 K_2CO_3 (4.0 eq) was added to a stirred solution of acetoxyamide (1.0 eq, 17.1 mmol) in MeOH (30 mL) and water (15 mL) at room temperature. The resulting suspension was stirred at room temperature for 12 h, then was evaporated under reduced pressure. The resulting mixture was adjusted to pH7 using a 1N aqueous solution of HCl, and CH_2Cl_2 (30 mL) was added. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 30 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure D: Preparation of glyoxamides

A solution of DMSO (2.0 eq) in CH₂Cl₂ (2 mL) was added dropwise to a stirred solution of oxalyl chloride (1.1 eq) in CH₂Cl₂ (20 mL) at -78 °C under nitrogen. The resulting solution was stirred at -78 °C for 15 min, then a solution of hydroxyamide (1.0 eq, 8.88 mmol) in CH₂Cl₂ (20 mL) was added dropwise at -78 °C *via* cannula. The resulting solution was stirred at -78 °C for 30 min, then Et₃N (5.0 eq) was added dropwise at -78 °C. The mixture was allowed to warm to room temperature and stirred at room temperature for 3 h. A saturated aqueous solution of NaHCO₃ (30 mL) and CH₂Cl₂ (30 mL) were added, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 30 mL), and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude glyoxamide, which was used directly in the next step without further purification.

General procedure E: Tag introduction–Cyclisation: Preparation of fluoroustagged oxindoles

Fluorous thiol ($C_8F_{17}CH_2CH_2SH$, 0.7 eq) was added to a solution of crude glyoxamide (1.0 eq, 8.88 mmol) in CH_2Cl_2 (50 mL) at room temperature under nitrogen. The resulting solution was stirred at room temperature for 16 h, then trifluoroacetic anhydride (9.0 eq) was added. After stirring at room temperature for 1 h, $BF_3 \cdot OEt_2$ (5.0 eq) was added, and the resulting solution was stirred at room temperature for 4 h. The mixture was slowly and carefully quenched with a saturated aqueous solution of NaHCO₃ (until gas evolution ceased). CH_2Cl_2 (50 mL) was added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (2 × 50 mL) and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. **FSPE was used for purification.**

General procedure F: Tag introduction–Cyclisation: Preparation of fluoroustagged oxindoles for (alternative procedure employing glyoxamides containing electron-rich aromatic rings)

Fluorous thiol ($C_8F_{17}CH_2CH_2SH$, 1.0 eq) was added to a solution of crude glyoxamide (1.0 eq, 4.48 mmol) in CH_2Cl_2 (40 mL) at room temperature under nitrogen. The resulting solution was stirred at room temperature for 1 h, then trifluoroacetic anhydride (2.0 eq) was added, and the resulting solution was stirred at room

temperature for 16 h. The mixture was slowly and carefully quenched with a saturated aqueous solution of NaHCO₃ (until gas evolution ceased). CH_2Cl_2 (20 mL) was added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (2 × 40 mL) and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. **FSPE was used for purification.**

General procedure G: Preparation of alkylated fluorous-tagged oxindoles

cis-1,4-Dichlorobut-2-ene (1.5 eq) and K_2CO_3 (5.0 eq) were added to a stirred solution of fluorous-tagged oxindole (1.0 eq, 1.55 mmol) in DMF (30 mL) at room temperature under nitrogen. The resulting suspension was stirred for 5-12 h at room temperature, then water (30 mL) and EtOAc (50 mL) were added. The layers were separated, and the organic layer was washed with water (2 × 30 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. **FSPE was used for purification.**

General procedure H: Preparation of samarium diiodide (SmI₂)

Samarium diiodide was prepared by a modification of the procedure of Imamoto and Ono.¹ Samarium powder (2.00 g, 13.8 mmol, 1.2 eq) was added to an oven-dried round-bottomed flask and the flask was sealed and flushed with nitrogen gas for 20 min. THF (110 ml) was added and the resulting suspension bubbled with nitrogen gas for 15 min. Finally, iodine (2.80 g, 10.8 mmol, 1 eq) was added and the flask flushed again with nitrogen gas for 10 min. The flask was covered in aluminium foil and heated at 60 °C for 18 hours. The approx 0.1 M solution was allowed to cool to room temperature and then used directly.

General procedure I: Preparation of spirooxindoles

In a sealable tube, a solution of alkylated fluorous-tagged oxindole (1.0 eq, 0.12 mmol) in THF (4 mL) was deoxygenated by bubbling through nitrogen gas for 30 min. Then, SmI_2 (2.0 eq. of a 0.1 M solution in THF) was added dropwise over 20 min (using a syringe pump) at room temperature under nitrogen. On completion of the addition, a solution of imine (2.0 eq.) in THF (1 mL) was added, and the tube was sealed. The resulting suspension was heated at 80 °C in an oil bath for 12-18 h, and then allowed to cool to room temperature. A saturated aqueous solution of $Na_2S_2O_3$

(10 mL) and CH_2Cl_2 (10 mL) were added, and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL), and the combined organic layers were washed with a saturated aqueous solution of NaHCO₃ (10 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Generally, FSPE was used to remove fluorous disulfide by-product and to part-purify spirooxindole products. In some cases, further purification by recrystallisation or chromatography on silica gel was used to isolate single isomers for characterisation.

General procedure J: Preparation of spirooxindole aldehydes

 OsO_4 (0.1 eq. of a 2.5% (w/v) solution in *tert*-butanol) and NMO (3.0 eq.) were added to a stirred suspension of spirooxindole (0.20 mmol) in acetone (12 mL) and water (1.5 mL) at room temperature under nitrogen. The resulting suspension was stirred at room temperature for 60 h, then a saturated aqueous solution of Na₂S₂O₃ (10 mL) and CH₂Cl₂ (10 mL) were added. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 15 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude diol product. The crude product was dissolved in THF (10 mL) and water (2 mL), then NaIO₄ (1.5 eq.) was added. The resulting suspension was heated at reflux for 2 h then allowed to cool to room temperature. Et₂O (20 mL) and water (10 mL) were added and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 10 mL) and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure K: Preparation of spirooxindole methyl esters

Oxidant solution [1.6 mL; freshly prepared from NaClO₂ (300 mg) and NaH₂PO₄.H₂O (300 mg) in water (2 mL)] was added in one portion to a stirred solution of aldehyde (0.17 mmol) in *tert*-butanol (4 mL), MeCN (4 mL) and 2-methyl-2-butene (2 mL) at room temperature. The resulting solution was stirred for 2 h at room temperature, then water (10 mL) and CH₂Cl₂ (20 mL) were added. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic layers were washed with water (20 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude carboxylic acid product. The crude product was dissolved in anhydrous MeOH (8 mL) and trimethylsilyldiazomethane (1.5 mL of a 2.0M

solution in hexanes, 5.0 eq.) was added dropwise at room temperature under nitrogen. The resulting solution was stirred at room temperature for 2 h, then evaporated under reduced pressure to give the crude product.

General procedure L: Preparation of spirooxindole amines

Nitrogen gas was bubbled (15 min) through a solution of *N*-benzyl amine (0.08 mmol) in a 0.05M solution of HCl in MeOH (8 mL; 50 mL stock solution of 0.05 M HCl in MeOH freshly prepared by diluting 208 μ L 12M HCl with MeOH). Pd(OH)₂ (8 mg, 20% wt.) was added, and the resulting suspension was stirred under an atmosphere of H₂ (1 atm) for 5 min then filtered through a plug of Celite, washing with MeOH. Et₃N (5 drops) was added, and the resulting solution was evaporated under reduced pressure. The residue was dissolved in EtOAc (10 mL), water (5 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 5 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure M: Preparation of N-Troc prolinylspirooxindoles

A solution of *N*-Troc (*S*)-prolinyl chloride² (1.0 or 3.0 eq.; freshly prepared from *N*-Troc (*S*)-proline)³ in CH₂Cl₂ (3 mL) was added dropwise at 0 °C to a stirred solution of amine (0.15 mmol) and Et₃N (0.9 mmol) in CH₂Cl₂ (12 mL) under nitrogen. The resulting solution was allowed to warm to room temperature and stirred for 12 h, then CH₂Cl₂ (10 mL) and a saturated aqueous solution of NaHCO₃ (10 mL) were added. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure N: Preparation of diketopiperazines

Zn dust (100 eq) was added to a stirred suspension of *N*-Troc amide (0.07 mmol) in THF (4 mL), MeOH (4 mL) and a saturated aqueous solution of NH_4Cl (4 mL) at room temperature. The resulting suspension was stirred at room temperature for 24 h, filtered through Celite, and the filter cake was washed well with EtOAc. Water (10 mL) was added and the layers were separated. The aqueous layer was extracted with

EtOAc (2 \times 15 mL) and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

Synthesis of fluorous-tagged oxindoles:

2-Acetoxy-N-(2,4-dimethoxybenzyl)-N-(3-methoxyphenyl)acetamide S1

NEt₃ (2.21 mL, 15.9 mmol, 1.1 eq) and acetoxyacetyl chloride (2.04 g, 15.9 mmol, 1.0 eq) were added sequentially to a solution of 2,4-dimethoxybenzyl)-(3-methoxyphenyl)-amine⁷ (3.69 g, 13.6 mmol, 1.0 eq) in CH₂Cl₂ (24.4 mL) at room temperature under nitrogen. The resulting mixture was stirred at room temperature for 4 h before water (20 mL) and CH₂Cl₂ (10 mL) were added. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel eluting with 20% EtOAc in hexane gave **S1** (5.32 g, 14.2 mmol, 100%) as a light yellow oil, ¹H NMR (300 MHz, CDCl₃): δ 7.25-7.16 (m, 2H; 2 × Ar-CH), 6.84 (dd, *J* = 8.4, 2.3 Hz, 1H, Ar-CH), 6.64 (d, *J* = 7.7 Hz, 1H; Ar-CH), 6.59 (s, 1H; Ar-CH), 6.41 (dd, *J* = 8.4, 2.3 Hz, 1H; Ar-CH), 6.73 (d, *J* = 2.3 Hz, 1H; Ar-CH), 4.86 (s, 2H; OCH₂), 4.40 (s, 2H, NCH₂), 3.78 (s, 3H; OCH₃), 3.73 (s, 3H; OCH₃), 3.56 (s, 3H; OCH₃), 2.15 (s, 3H; C(O)CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 170.6 (C=O), 166.3 (C=O), 160.4 (Ar-C), 160.3 (Ar-C), 158.6 (Ar-C), 141.5 (Ar-C), 131.3 (Ar-CH), 130.0 (Ar-CH), 120.5 (Ar-

CH), 117.4 (Ar-C), 114.1 (Ar-CH), 113.8 (Ar-CH), 104.1 (Ar-CH), 98.3 (Ar-CH), 61.8 (NCH₂), 55.4 (OCH₃), 55.3 (OCH₃), 55.1 (OCH₃), 47.2 (CH₂O), 20.6 (C(O)*C*H₃); IR (film): v_{max} 2932, 2830, 1742 (C=O), 1671 (C=O), 1585, 1506, 1485, 1451, 1437, 1420, 1407, 1369, 1284, 1263, 1217, 1205, 1154, 1126, 1080, 1029, 932, 837, 783, 705; MS (ES+): m/z (%): 396 (100, $[M + \text{Na}]^+$); HRMS (ES+): m/z: calcd for C₂₀H₂₃NO₆Na: 396.1418 $[M + \text{Na}]^+$; found: 396.1401.

2-Acetoxy-N-(4-methoxybenzyl)-N-phenylacetamide S2

Using general procedure A, EDCI·HCl (5.97 g, 31.2 mmol), HOBt·H₂O (562 mg, 4.16 mmol), acetoxyacetic acid (2.45 g, 20.8 mmol) and (4-methoxybenzyl)phenylamine⁴ (4.43 g, 20.8 mmol) in CH₂Cl₂ (40 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 30% EtOAc in petroleum ether gave **S2** (5.56 g, 17.7 mmol, 85%,) as a white solid, m.p. (hexanes-Et₂O) 62–65 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 3H; 3 × Ar-CH), 7.10 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 7.03-7.01 (m, 2H; 2 × Ar-CH), 6.79 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 4.81 (s, 2H; CH₂N), 4.34 (s, 2H; CH₂O), 3.78 (s, 3H; OCH₃), 2.15 (s, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.6 (C=O), 166.4 (C=O), 159.0 (Ar-C), 140.0 (Ar-C), 130.3 (Ar-CH), 129.8 (Ar-CH), 128.8 (Ar-C), 128.7 (Ar-CH), 128.4 (Ar-CH), 113.7 (Ar-CH), 61.8 (CH₂O), 55.2 (OCH₃), 52.6 (CH₂N), 20.6 (CH₃); IR (film): *v*_{max} 2997, 2947, 2936, 2835, 1748 (C=O), 1681 (C=O), 1613, 1594, 1513, 1494, 1435, 1406, 1371, 1298, 1245, 1225, 1175, 1085, 1022, 1015, 844, 820, 699 cm⁻¹; MS (ES+): *m/z* (%): 336 (100, [*M* + Na]⁺); HRMS (ES+): *m/z*: calcd for C₁₈H₁₉NO₄: 336.1206 [*M* + Na⁺]; found: 336.1216.

2-Acetoxy-N-(3-methoxyphenyl)-N-propylacetamide S3

Using general procedure B, acetoxyacetyl chloride (3.86 mL, 35.9 mmol), Et₃N (5.00 mL, 35.9 mmol) and *N*-propyl-3-methoxyaniline⁵ (5.39 g, 32.6 mmol) in CH₂Cl₂ (100 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 30% EtOAc in petroleum ether gave **S3** (8.22 g, 31.0 mmol, 95%) as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.32 (t, *J* = 8.2 Hz, 1H; Ar-CH), 6.91 (dd, *J* = 8.2, 2.1 Hz, 1H; Ar-CH), 6.81-6.78 (m, 1H; Ar-CH), 6.74 (t, *J* = 2.1 Hz, 1H; Ar-CH), 4.35 (s, 2H; CH₂O), 3.81 (s, 3H; OCH₃), 3.63 (t, *J* = 7.6 Hz, 2H; CH₂N), 2.21 (s, 3H; CH₃), 1.52 (sextet, *J* = 7.6 Hz, 2H; CH₂CH₃), 0.87 (t, *J* = 7.6 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.5 (C=O), 166.1 (C=O), 160.6 (Ar-C), 141.5 (Ar-C), 130.6 (Ar-CH), 120.2 (Ar-CH), 113.96 (Ar-CH), 113.88 (Ar-CH), 61.6 (CH₂O), 55.4 (OCH₃), 50.9 (CH₂N), 20.7 (CH₂CH₃), 20.5 (CH₃), 11.1 (CH₂CH₃); IR (film): *v*_{max} 2964, 2935, 2878, 1747 (C=O), 1680 (C=O), 1601, 1490, 1452, 1432, 1416, 1372, 1227, 1136, 1046, 847, 707 cm⁻¹; MS (ES+): *m/z* (%): 288 (50, [*M* + Na]⁺), 266 (100, [*M* + H]⁺); HRMS (ES+): *m/z*: calcd for C₁₄H₁₉NO₄: 288.1206 [*M* + Na⁺]; found: 288.1214.

2-Acetoxy-N-(4-methoxybenzyl)-N-(3-methoxyphenyl)acetamide S4

Using general procedure A, EDCI.HCl (9.40 g, 49.2 mmol), HOBt.H₂O (0.60 g, 4.10 mmol), acetoxyacetic acid (4.80 g, 41.0 mmol) and *N*-(4-methoxybenzyl)-3-methoxyaniline⁶ (5.00 g, 20.5 mmol) in CH₂Cl₂ (31 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 20% EtOAc in petroleum ether gave **S3** (6.13 g, 17.9 mmol, 87%) as a white powder, m.p. (EtOAc/hexane) 87–89 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 8.1 Hz, 1H; Ar-CH), 7.12 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 6.88 (dd, *J* = 8.1, 2.5 Hz, 1H; Ar-CH), 6.80 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 6.61 (dd, *J* = 8.1, 1.0 Hz, 1H; Ar-CH), 6.54 (d, *J* = 2.3 Hz, 1H; Ar-CH), 4.80 (s, 2H; CH₂N), 4.39 (s, 2H; CH₂O), 3.79 (s, 3H; OCH₃), 3.73 (s, 3H; OCH₃), 2.16 (s, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.6 (C=O), 166.3 (C=O), 160.4 (Ar-C), 159.0 (Ar-C), 141.1 (Ar-C), 130.5 (2 × Ar-CH), 130.3 (Ar-CH), 128.5 (Ar-C), 113.9 (Ar-CH), 113.7 (Ar-CH), 113.3 (2 × Ar-CH), 61.7 (CH₂O), 55.4 (OCH₃), 55.2 (OCH₃), 52.6 (CH₂N), 20.6 (CH₃); IR (film): v_{max} 1754 (C=O), 1673 (C=O), 1588, 1513, 1492, 1407, 1244, 1198, 1172, 1025, 820, 703 cm⁻¹; MS (ES+): m/z (%): 366 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₁₉H₂₁NO₅: 366.1305 $[M + Na^+]$; found: 366.1312.

2-Acetoxy-N-benzyl-N-(3-methoxyphenyl)acetamide S5

Using general procedure B, acetoxyacetyl chloride (0.79 mL, 7.30 mmol), Et₃N (1.02 mL, 7.30 mmol) and *N*-benzyl-3-methoxyaniline⁸ (1.42g, 6.64 mmol) in CH₂Cl₂ (30 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 30% EtOAc in petroleum ether gave **S5** (1.71 g, 5.45 mmol, 82%) as a white solid, m.p. (Et₂O) 69–72 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.20 (m, 6H; 6 × Ar-CH), 6.88 (ddd, *J* = 8.0, 2.5, 0.9 Hz, 1H; Ar-CH), 6.64 (dd, *J* = 8.0, 0.9 Hz, 1H; Ar-CH), 6.55-6.54 (m, 1H; Ar-CH), 4.87 (s, 2H; CH₂N), 4.42 (s, 2H; CH₂O), 3.72 (s, 3H; OCH₃), 2.16 (s, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.6 (C=O), 166.5 (C=O), 160.5 (Ar-C), 141.7 (Ar-C), 136.8 (Ar-C), 130.5 (Ar-CH), 128.9 (Ar-CH), 128.4 (Ar-CH), 127.5 (Ar-CH), 120.4 (Ar-CH), 114.4 (Ar-CH), 113.8 (Ar-CH), 61.7 (CH₂O), 55.3 (OCH₃), 53.2 (CH₂N), 20.6 (CH₃); IR (film): v 2966, 2940, 2928, 1743 (C=O), 1672 (C=O), 1426, 1412, 1285, 1241, 1219, 1159, 1076, 1044, 1006 cm⁻¹; MS (ES+): *m/z* (%): 336 (100, [*M* + Na]⁺); HRMS (ES+): *m/z*: calcd for C₁₈H₁₉NO₄: 336.1206 [*M* + Na⁺]; found: 336.1206.

2-Hydroxy-N-(2,4-dimethoxybenzyl)-N-(3-methoxyphenyl)acetamide S6

Using general procedure C, acetoxyamide **S4** (5.32 g, 14.3 mmol) and K₂CO₃ (7.90 g, 57.2 mmol) in MeOH (44 mL) and water (22 mL) gave hydroxyamide **S6** (4.48 g, 13.5 mmol, 94%) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 7.21 (t, *J* = 8.5 Hz, 1H; Ar-CH), 6.87 (d, *J* = 8.5 Hz, 1H; Ar-CH), 6.50 (t, *J* = 2.5 Hz, 1H; Ar-CH), 6.57 (d, *J* = 8.5 Hz, 1H; Ar-CH), 6.50 (t, *J* = 2.5 Hz, 1H; Ar-CH), 6.41 (dd, *J* = 8.5, 2.5 Hz, 1H; Ar-CH), 6.35 (d, *J* = 2.5 Hz, 1H; Ar-CH), 4.90 (s, 2H; NCH₂), 3.82 (d, *J* = 4.4 Hz, 2H; CH₂OH), 3.78 (s, 3H; OCH₃), 3.73 (s, 3H; OCH₃), 3.57 (s, 3H; OCH₃), 3.45 (t, *J* = 4.4 Hz, 1H; CH₂OH); ¹³C NMR (125 MHz, CDCl₃): δ 171.6 (C=O), 160.5 (Ar-C), 160.2 (Ar-C), 158.6 (Ar-C), 140.6 (Ar-C), 131.3 (Ar-CH), 130.0 (Ar-CH), 120.5 (Ar-CH), 117.0 (Ar-C), 114.1 (Ar-CH), 113.9 (Ar-CH), 104.0 (Ar-CH), 98.3 (Ar-CH), 60.5 (CH₂OH), 55.3 (2 × OCH₃), 55.1 (OCH₃), 47.6 (CH₂N); IR (film): *v*_{max} 3429 (OH), 2993, 2937, 2835, 1650 (C=O), 1599, 1587, 1504, 1485, 1453, 1434, 1376, 1312, 1281, 1261, 1205, 1156, 1126, 1087, 1029, 990, 932, 922, 832, 781, 749, 700; MS (ES+): *m/z* (%): 354 (100, [*M* + Na]⁺); HRMS (ES+): *m/z*: calcd for C₁₈H₂₁NO₅Na: 354.1312 [*M* + Na]⁺; found: 354.1318.

2-Hydroxy-N-(4-methoxybenzyl)-N-phenylacetamide S7

Using general procedure C, acetoxyamide S2 (5.37 g, 17.1 mmol) and K₂CO₃ (9.48 g, 68.6 mmol) in MeOH (30 mL) and water (15 mL) gave hydroxyamide S7 (4.58 g, 16.9 mmol, 98%) as a white solid, m.p. (Et₂O) 74–76 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.33 (m, 3H; 3 × Ar-CH), 7.11 (d, *J* = 8.5 Hz, 2H; 2 × Ar-CH), 6.96-6.92 (m, 2H; 2 × Ar-CH), 6.81 (d, *J* = 8.5 Hz, 2H; 2 × Ar-CH), 4.86 (s, 2H; CH₂N), 3.79 (s, 3H; OCH₃), 3.77 (s, 2H; CH₂O); ¹³C NMR (125 MHz, CDCl₃): δ 171.7 (C=O), 159.1 (Ar-C), 139.2 (Ar-C), 130.3 (Ar-CH), 129.8 (Ar-CH), 128.8 (Ar-CH), 128.7 (Ar-C), 128.4 (Ar-CH), 113.8 (Ar-CH), 60.5 (CH₂O), 55.2 (OCH₃), 53.0 (CH₂N); IR (film): *v*_{max} 3434 (OH), 2930, 2835, 1659 (C=O), 1611, 1594, 1513, 1494, 1379, 1298, 1245, 1175, 1097, 1029, 1015, 999, 817, 699 cm⁻¹; MS (ES+): *m/z* (%):

294 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₁₆H₁₇N₂O₃: 294.1101 $[M + H^+]$; found: 294.1091.

2-Hydroxy-N-(3-methoxyphenyl)-N-propylacetamide S8

Using general procedure C, acetoxyamide **S3** (7.91 g, 29.8 mmol) and K₂CO₃ (16.5 g, 0.1 mol) in MeOH (60 mL) and water (30 mL) gave hydroxyamide **S8** (6.56 g, 29.4 mmol, 98%) as an off-white solid, m.p. (Et₂O) 50–53 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (t, *J* = 8.2 Hz, 1H; Ar-CH), 6.94 (dd, *J* = 8.2, 1.9 Hz, 1H; Ar-CH), 6.76-6.74 (m, 1H; Ar-CH), 6.69 (t, *J* = 1.9 Hz, 1H; Ar-CH), 3.83 (s, 3H; OCH₃), 3.81 (s, 2H; CH₂O), 3.72-3.68 (m, 2H; CH₂N), 1.57 (sextet, *J* = 7.5 Hz, 2H; CH₂CH₃), 0.92 (t, *J* = 7.5 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 172.6 (C=O), 160.6 (Ar-C), 140.6 (Ar-C), 130.6 (Ar-CH), 120.2 (Ar-CH), 113.99 (Ar-CH), 113.98 (Ar-CH), 60.4 (CH₂O), 55.4 (OCH₃), 51.2 (CH₂N), 20.9 (CH₂CH₃), 11.1 (CH₃); IR (film): *v*_{max} 3436 (OH), 2965, 2930, 1659 (C=O), 1601, 1490, 1456, 1384, 1313, 1289, 1249, 1211, 1100, 1046, 706 cm⁻¹; MS (ES+): *m*/*z* (%): 246 (35, [*M* + Na]⁺), 224 (100, [*M* + H]⁺); HRMS (ES+): *m*/*z*: calcd for C₁₂H₁₇NO₃: 246.1101 [*M* + Na⁺]; found: 246.1101.

2-Hydroxy-N-(4-methoxybenzyl)-N-(3-methoxyphenyl)acetamide S9

Using general procedure C, acetoxyamide S4 (6.00 g, 17.4 mmol) and K₂CO₃ (9.60 g, 69.9 mmol) in MeOH (53 mL) and water (27 mL) gave hydroxyamide S9 (5.38 g, 100%) as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.28 (t, *J* = 8.1 Hz, 1H; Ar-CH), 7.15 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 6.92 (dd, *J* = 8.1, 2.5 Hz, 1H; Ar-CH), 6.83 (d, *J* = 8.8 Hz, 2H; 2 × Ar-CH), 6.55 (dd, *J* = 8.1, 0.8 Hz, 1H; Ar-CH), 6.48 (t, *J* = 2.5

Hz, 1H; Ar-CH), 4.86 (s, 2H; CH₂N), 3.85 (s, 2H; CH₂O), 3.81 (s, 3H; OCH₃), 3.75 (s, 3H; OCH₃), 3.45 (br s, 1H; OH); ¹³C NMR (100 MHz, CDCl₃): δ 166.3 (C=O), 160.4 (Ar-C), 159.1 (Ar-C), 140.3 (Ar-C), 130.4 (Ar-CH), 130.3 (Ar-CH), 128.7 (Ar-CH), 120.4 (Ar-C), 114.3 (Ar-CH), 113.9 (Ar-CH), 113.7 (Ar-CH), 60.4 (CH₂O), 55.3 (OCH₃), 55.2 (OCH₃), 52.8 (CH₂N); IR (film): v_{max} 3427 (OH), 2926, 2863, 1715 (C=O), 1627, 1513, 1463, 1379, 1348, 1248, 1160, 1039, 921, 883 cm⁻¹; MS (ES+): m/z (%): 324 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₁₇H₁₉NO₄: 324.1204 $[M + H^+]$; found: 324.1206.

N-Benzyl-2-Hydroxy-N-(3-methoxyphenyl)acetamide S10

Using general procedure C, acetoxyamide **S5** (3.58 g, 11.4 mmol) and K₂CO₃ (6.31 g, 45.7 mol) in MeOH (40 mL) and water (20 mL) gave hydroxyamide **S10** (3.09 g, 11.4 mmol, 100%) as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.12 (m, 6H; 6 × Ar-CH), 6.82 (ddd, J = 8.3, 2.2, 0.8 Hz, 1H; Ar-CH), 6.48 (ddd, J = 7.8, 2.2, 0.8 Hz, 1H; Ar-CH), 6.38 (t, J = 2.2 Hz, 1H; Ar-CH), 4.83 (s, 2H; CH₂N), 3.78 (d, J = 4.4 Hz, 2H; CH₂O), 3.64 (s, 3H; OCH₃), 3.34 (t, J = 4.4 Hz, 1H; OH); ¹³C NMR (100 MHz, CDCl₃): δ 171.8 (C=O), 160.4 (Ar-C), 140.3 (Ar-C), 136.6 (Ar-C), 130.4 (Ar-CH), 128.9 (Ar-CH), 128.4 (Ar-CH), 127.7 (Ar-CH), 120.3 (Ar-CH), 114.4 (Ar-CH), 113.8 (Ar-CH), 60.4 (CH₂O), 55.3 (OCH₃), 53.4 (CH₂N); IR (film): v_{max} 3440 (OH), 2936, 2837, 1653 (C=O), 1598, 1587, 1488, 1377, 1314, 1285, 1238, 1164, 1095, 1077, 1028, 993 cm⁻¹; MS (ES+): m/z (%): 294 (100, [M + Na]⁺); HRMS (ES+): m/z: calcd for C₁₆H₁₇NO₃: 294.1101 [M + Na⁺]; found: 294.1098.

6-Methoxy-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecylsulfanyl)-1-(2,4-dimethoxybenzyl)-1,3-dihydroindol-2-one 9

Using general procedure D, DMSO (1.00 mL, 13.4 mmol), oxalyl chloride (0.60 mL, 7.30 mmol), a solution of hydroxyamide **S6** (2.20 g, 6.70 mmol) in CH_2Cl_2 (22.3 mL) and Et_3N (3.39 mL, 33.5 mmol) in CH_2Cl_2 (22.3 mL) gave the crude glyoxamide product, which was used in the next step without further purification.

Using general procedure F, fluorous thiol (C₈F₁₇CH₂CH₂SH, 2.00 mL, 6.70 mmol), TFAA (1.90 mL, 13.4 mmol) and the crude glyoxamide, in CH₂Cl₂ (44.5 mL) gave the crude product as a 6:1 mixture of regioisomers (by ¹H NMR spectroscopy). Purification by FSPE gave 9 (4.40 g, 5.56 mmol, 82%) as yellow oil. Further purification by flash column chromatography on silica gel eluting with 100% CH₂Cl₂ gave the major regioisomer as a white powder, m.p. (CH₂Cl₂) 93-95 °C; ¹H NMR (400 MHz, CDCl₃, major regioisomer): δ 7.24 (d, J = 8.1 Hz, 1H; Ar-CH), 7.15 (d, J = 8.6 Hz, 1H; Ar-CH), 6.55 (dd, *J* = 8.1, 2.4 Hz, 1H; Ar-CH), 6.52 (d, *J* = 2.4 Hz, 1H; Ar-CH), 6.46 (d, *J* = 2.4 Hz, 1H; Ar-CH), 6.41 (dd, *J* = 8.6, 2.4 Hz, 1H; Ar-CH), 4.91 (d, J = 15.6 Hz, 1H; CH_AH_BN), 4.79 (d, J = 15.6 Hz, 1H; CH_AH_BN), 4.34 (s, 1H; CHS), 3.88 (s, 3H; OCH₃), 3.76 (s, 6H; $2 \times OCH_3$), 3.04-2.96 (m, 1H; SCH_AH_B), 2.77-2.86 (m, 1H; SCH_AH_B), 2.49-2.33 (m, 2H; SCH₂CH₂); ¹³C NMR (100 MHz, CDCl₃, major regioisomer): δ 175.8 (C=O), 161.0 (ArC), 160.5 (ArC), 157.9 (ArC), 144.8 (ArC), 129.7 (ArCH), 125.5 (ArCH), 116.5 (ArC), 116.0 (ArC), 107.0 (ArCH), 104.4 (ArCH), 98.5 (ArCH), 97.4 (ArCH), 55.4 (2 × OCH₃), 55.3 (OCH₃), 44.6 (CHS), 38.1 (NCH₂), 31.9 (t, J = 22.2 Hz; $CH_2C_8F_{17}$); 20.9 (t, J = 3.7 Hz; SCH_2); IR (film): v_{max} 2932, 2830, 1742, 1715 (C=O), 1613, 1587, 1508, 1462, 1372, 1237, 1203, 1145, 1129, 1110, 1030, 832, 749, 705, 665, 651; MS (ES+): m/z (%): 814 $(100, [M + Na]^+)$; HRMS (ES+): m/z: calcd for C₂₈H₂₂NO₄F₁₇SNa: 814.0890 [M + Na]⁺; found: 814.0926.

3-(3,3,4,4,5,5,6,6,7,7,8,8,9,910,10,10-Heptadecafluorodecylsulfanyl)-1-(4methoxybenzyl)-1,3-dihydroindol-2-one S11

Using general procedure D, DMSO (1.3 mL, 17.8 mmol), oxalyl chloride (0.9 mL, 9.76 mmol), a solution of hydroxyamide **S7** (2.41 g, 8.88 mmol) in CH_2Cl_2 (20 mL) and Et_3N (6.2 mL, 44.38 mmol) in CH_2Cl_2 (20 mL) gave the crude glyoxamide product, which was used in the next step without further purification.

Using general procedure E, fluorous thiol (C₈F₁₇CH₂CH₂SH, 1.8 mL, 6.21 mmol), the crude glyoxamide, trifluoroacetic anhydride (11.1 mL, 79.9 mmol) and BF₃·OEt₂ (5.6 mL, 44.4 mmol) in CH₂Cl₂ (50 mL) gave the crude product. Purification by **FSPE** gave S11 (2.81 g, 3.84 mmol, 62%) as a yellow oil, ¹H NMR (500 MHz, CDCl₃): δ 7.38 (d, J = 7.6 Hz, 1H; Ar-CH), 7.26 (d, J = 8.7 Hz, 2H; 2 × Ar-CH), 7.23 (t, J = 7.6Hz, 1H; Ar-CH), 7.07 (t, J = 7.6 Hz, 1H; Ar-CH), 6.85 (d, J = 8.7 Hz, 1H; $2 \times$ Ar-CH), 6.78 (d J = 7.6 Hz, 1H; Ar-CH), 4.91 (d, J = 15.5 Hz, 1H; $NCH_ACH_BC_6H_4OCH_3$, 4.82 (d, J = 15.5 Hz, 1H; $NCH_ACH_BC_6H_4OCH_3$), 4.40 (s, 1H; CHS), 3.77 (s, 3H; OCH₃), 3.04-2.98 (m, 1H; CH_AH_BS), 2.85-2.79 (m, 1H; CH_AH_BS), 2.46-2.35 (m, 2H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃): δ 175.0 (C=O), 159.2 (Ar-C), 143.1 (Ar-C), 129.3 (Ar-CH), 128.7 (Ar-CH), 127.4 (Ar-C), 125.14 (Ar-CH), 125.06 (Ar-C), 123.0 (Ar-CH), 114.2 (Ar-CH), 109.4 (Ar-CH), 55.2 (OCH₃), 44.8 (CHS), 43.5 (NCH₂C₆H₄OMe), 31.8 (t, J = 22.0 Hz; CH₂C₈F₁₇), 21.0 (t, J = 4.6 Hz, CH₂S); IR (film): v_{max} 2952, 2930, 2908, 2835, 1712 (C=O), 1614, 1513, 1485, 1466, 1435, 1357, 1345, 1242, 1214, 1150, 1113, 1088, 1029, 954, 898, 755 cm⁻¹; MS (ES+): m/z (%):754 (25, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₆H₁₈F₁₇NO₂S: 754.0680 $[M + Na^+]$; found: 754.0672.

3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecylsulfanyl)-6-methoxy-1propyl-1,3-dihydroindol-2-one S12 Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Using general procedure D, DMSO (636 µL, 8.96 mmol), oxalyl chloride (430 µL, 4.93 mmol), a solution of hydroxyamide S8 (1.00 g, 4.48 mmol) in CH₂Cl₂ (15 mL) and Et₃N (3.12 mL, 22.4 mmol) in CH₂Cl₂ (30 mL) gave the crude glyoxamide product, which was used in the next step without further purification. Using general procedure F, fluorous thiol (C₈F₁₇CH₂CH₂SH, 1.28 mL, 4.48 mmol), TFAA (1.25 mL, 8.96 mmol) and the crude glyoxamide, in CH₂Cl₂ (40 mL) gave the crude product (as a 5:1 mixture of regioisomers (by ¹H NMR spectroscopy)). Purification by **FSPE** gave **S12** (2.50 g, 3.66 mmol, 82%) as a 5:1 mixture of regioisomers (by ${}^{1}\text{H}$ NMR spectroscopy) as a brown oil. Further purification by flash column chromatography on silica gel eluting with CH₂Cl₂ gave the major regioisomer as a white solid, m.p. (Et₂O) 59–60 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, J = 8.2 Hz, 1H; Ar-CH), 6.59 (dd, J = 8.2, 2.3 Hz, 1H; Ar-CH), 6.43 (d, J = 2.3 Hz, 1H; Ar-CH), 4.29 (s, 1H; CHS), 3.84 (s, 3H; OCH₃), 3.69 (dt, J = 13.9, 7.3 Hz, 1H; CH_AH_BN), 3.62 (dt, J = 13.9, 7.3, 1H; CH_AH_BN), 3.00-2.92 (m, 1H; CH_AH_BS), 2.84-2.76 (m, 1H; CH_A H_BS), 2.47-2.33 (m, 2H; CH₂C₈ F_{17}), 1.71 (sextet, J = 7.3 Hz, 2H; CH_2CH_3), 0.98 (t, J = 7.3 Hz, 3H; CH_3); ¹³C NMR (100 MHz, $CDCl_3$): δ 175.6 (C=O), 161.0 (Ar-C), 144.8 (Ar-C), 125.9 (Ar-CH), 116.8 (Ar-C), 106.4 (Ar-CH), 96.9 (Ar-CH), 55.6 (OCH₃), 44.5 (CHS), 41.9 (CH₂N), 31.9 (t, J = 21.1 Hz; $CH_2C_8F_{17}$), 20.8 (t, J = 4.6 Hz, CH_2S), 20.7 (CH_2CH_3), 11.3 (CH_3); IR (film): v_{max} 2972, 2941, 1715 (C=O), 1626, 1600, 1504, 1463, 1367, 1243, 1207, 1150, 1104 cm⁻ ¹; MS (ES+): m/z (%): 706 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for $C_{22}H_{18}F_{17}NO_2S$: 706.0679 [*M* + Na⁺]; found: 706.0678 and the minor regioisomer as a white solid, m.p. (Et₂O) 65–67 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.27 (m, 1H; Ar-CH), 6.64 (d, J = 8.6 Hz, 1H; Ar-CH), 6.52 (d, J = 7.8 Hz, 1H; Ar-CH), 4.36 (s, 1H; CHS), 3.90 (s, 3H; OCH₃), 3.71 (dt, J = 14.1, 7.3 Hz, 1H; CH_AH_BN), 3.61 (dt, J = 14.1, 7.3 Hz, 1H; CH_AH_BN), 3.02 (ddd, J = 13.4, 10.1, 6.3 Hz, 1H; CH_AH_BS), 2.88 (ddd, J = 13.4, 10.6, 6.0 Hz, 1H; CH_AH_BS), 2.48-2.34 (m, 2H; CH₂C₈F₁₇), 1.71 (sextet, J = 7.3 Hz, 2H; CH₂CH₃), 0.97 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz,

CDCl₃): δ 174.9 (C=O), 156.2 (Ar-C), 144.8 (Ar-C), 130.8 (Ar-CH), 111.2 (Ar-C), 105.9 (Ar-CH), 102.0 (Ar-CH), 55.6 (OCH₃), 43.3 (CHS), 42.0 (CH₂N), 31.9 (t, *J* = 22.0 Hz; *C*H₂C₈F₁₇), 20.9 (t, *J* = 3.3 Hz, CH₂S), 20.9 (*C*H₂CH₃), 11.3 (CH₃); IR (film): v_{max} 2970, 2941, 1713 (C=O), 1608, 1600, 1472, 1354, 1334, 1261, 1243, 1207, 1150, 1111, 1096, 1062, 769, 664 cm⁻¹; MS (ES+): *m*/*z* (%): 706 (100, [*M* + Na]⁺), 151 (20); HRMS (ES+): *m*/*z*: calcd for C₂₂H₁₈F₁₇NO₂S: 706.0679 [*M* + Na⁺]; found: 706.0668.

6-Methoxy-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecylsulfanyl)-1*p*-methoxybenzyl-1,3-dihydroindol-2-one S13⁹

Using general procedure D, DMSO (1.41 mL, 19.9 mmol), oxalyl chloride (0.96 mL, 11.0 mmol), a solution of hydroxyamide **S9** (3.00 g, 9.96 mmol) in CH_2Cl_2 (9.5 mL) and Et_3N (6.93 mL, 49.8 mmol) in CH_2Cl_2 (77.9 mL) gave the crude glyoxamide product, which was used in the next step without further purification.

Using general procedure F, fluorous thiol ($C_8F_{17}CH_2CH_2SH$, 2.62 mL, 9.96 mmol), TFAA (2.81 mL, 19.9 mmol) and the crude glyoxamide, in CH_2Cl_2 (77.9 mL) gave the crude product as a 5:1 mixture of regioisomers (by ¹H NMR spectroscopy). Purification by **FSPE** gave **S13** (6.08 g, 7.98 mmol, 89%) as yellow oil. Further recrystallisation gave the major regioisomer as a white powder, m.p. (MeOH) 100-103 °C; ¹H NMR (400 MHz, CDCl₃, major regioisomer): δ 7.19-7.16 (m, 3H; 3 × Ar-CH), 6.76 (d, *J* = 8.6 Hz, 2H; Ar-CH), 6.48 (dd, *J* = 8.1, 2.3 Hz, 1H; Ar-CH), 6.28 (d, *J* = 2.3 Hz, 1H; Ar-CH), 4.80 (d, *J* = 15.4 Hz, 1H; NCH_AH_BC₆H₄OCH₃), 4.69 (d, *J* = 15.4 Hz, 1H; NCH_AH_BC₆H₄OCH₃), 3.67 (s, 3H; OCH₃), 2.96-2.89 (m, 1H; CH_AH_BS), 2.77-2.70 (m, 1H; CH_AH_BS), 2.38-2.29 (m, 2H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃, major regioisomer): δ 175.7 (C=O), 160.9 (Ar-C), 159.2 (Ar-C), 144.4 (Ar-C), 128.7 (Ar-CH), 127.4 (Ar-C), 125.8 (Ar-CH), 116.7 (Ar-C), 114.2 (Ar-CH), 106.7 (Ar-CH), 97.6 (Ar-CH), 55.4 (OCH₃), 55.2

(OCH₃), 44.5 (CHS), 43.5 (CH₂N), 31.8 (t, J = 22.2 Hz, $CH_2C_8F_{17}$), 20.9 (t, J = 4.6 Hz; CH₂S); IR (film): v_{max} 2926, 2850, 1715 (C=O), 1622, 1500, 1243, 1201, 1145, 1112, 1031, 648 cm⁻¹; MS (ES+): m/z (%): 784 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₇H₂₀NO₃SF₁₇: 784.0769 $[M + Na^+]$; found: 784.0785.

6-Methoxy-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecylsulfanyl)-1benzyl-1,3-dihydroindol-2-one S14

Using general procedure D, DMSO (514 μ L, 7.25 mmol), oxalyl chloride (348 μ L, 3.99 mmol), a solution of hydroxyamide **S10** (983 mg, 3.62 mmol) in CH₂Cl₂ (15 mL) and Et₃N (2.50 mL, 18.1 mmol) in CH₂Cl₂ (15 mL) gave the crude glyoxamide product, which was used in the next step without further purification.

Using general procedure F, $C_8F_{17}CH_2CH_2SH$ (1.00 mL, 3.62 mmol), TFAA (1.01 mL, 7.25 mmol) and the crude glyoxamide, in CH₂Cl₂ (40 mL) gave the crude product as a 5:1 mixture of regioisomers (by ¹H NMR spectroscopy). Purification by **FSPE** gave oxindole **S14** (2.07 g, 2.83 mmol, 78%) as a 5:1 mixture of regioisomers (by ¹H NMR spectroscopy) as a brown oil. Further purification by flash column chromatography on silica gel eluting with CH₂Cl₂ gave the major regioisomer as a white solid, m.p. (Et₂O) 80–82 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26 (m, 6H; 6 × Ar-CH), 6.57 (dd, *J* = 8.0, 2.0 Hz, 1H; Ar-CH), 6.33 (d, *J* = 2.0 Hz, 1H; Ar-CH), 4.94 (d, *J* = 15.5 Hz, 1H; NCH_AH_BPh), 4.85 (d, *J* = 15.5 Hz, 1H; NCH_AH_BPh), 4.38 (s, 1H; CHS), 3.75 (s, 3H; OCH₃), 3.04 (ddd, *J* = 13.1, 9.6, 6.8 Hz, 1H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃): δ 175.8 (C=O), 161.0 (Ar-C), 144.4 (Ar-C), 135.4 (Ar-C), 128.9 (Ar-CH), 127.8 (Ar-CH), 127.3 (Ar-CH), 125.9 (Ar-CH), 116.7 (Ar-C), 106.8 (Ar-CH), 97.5 (Ar-CH), 55.4 (OCH₃), 44.5 (NCH₂Ph), 44.0 (CHS), 31.9 (t, *J* = 21.7 Hz; CH₂C₈F₁₇);

21.0 (CH₂S); IR (film): v 2944, 1715 (C=O), 1621, 1498, 1375, 1337, 1274, 1242, 1200, 1145, 1112, 1084, 1028 cm⁻¹; MS (ES+): m/z (%): 754 (100, $[M + Na]^+$), 294 (15); HRMS (ES+): m/z: calcd for C₂₆H₁₈F₁₇NO₂S: 754.0690 $[M + Na^+]$; found: 754.0701 and the minor regioisomer as a white solid, m.p. (Et₂O) 76–79 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.24 (m, 5H; 5 × Ar-CH), 7.20 (t, J = 8.2 Hz, 1H; Ar-CH), 6.62 (d, J = 8.2 Hz, 1H; Ar-CH), 6.42 (d, J = 8.2 Hz, 1H; Ar-CH), 4.97 (d, J = 15.6 Hz, 1H; NCH_AH_BPh), 4.84 (d, J = 15.6 Hz, 1H; NCH_AH_BPh), 4.46 (s, 1H; CHS), 3.90 (s, 3H; OCH₃), 3.09 (ddd, J = 13.2, 9.6, 7.1 Hz, 1H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃): δ 175.1 (C=O), 156.2 (Ar-C), 144.4 (Ar-C), 135.6 (Ar-C), 130.8 (Ar-CH), 128.8 (Ar-CH), 127.7 (Ar-CH), 127.2 (Ar-CH), 111.2 (Ar-C), 106.2 (Ar-CH), 102.8 (Ar-CH), 55.7 (OCH₃), 44.1 (NCH₂Ph), 43.3 (CHS), 31.9 (t, J = 21.1 Hz; CH₂C₈F₁₇), 21.3 (t, J = 4.6 Hz, CH₂S); IR (film): v 2949, 1715 (C=O), 1603, 1471, 1349, 1267, 1240, 1197, 1145, 1132, 1114, 1081 cm⁻¹; MS (ES+): m/z (%): 754 (25, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₆H₁₈F₁₇NO₂S: 754.0680 $[M + Na^+]$; found: 754.0672.

6-Methoxy-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecylsulfanyl)-1,3-dihydroindol-2-one S15

A solution of oxindole **9** (3.59 g, 4.49 mmol) and anisole (19.5 mL, 180 mmol, 40 eq) in CH₂Cl₂ (66.2 mL) and TFA (66.2 mL) was heated at 50 °C for 48 h, then allowed to cool to room temperature. The mixture was then slowly and carefully quenched with a saturated aqueous solution of NaHCO₃ (until gas evolution ceased). CH₂Cl₂ (50 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product. Purification by **FSPE** gave **S15** (2.31 g, 3.60 mmol, 82%) as a white powder, m.p. (Hexane/EtOAc) 91-94 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H; NH), 7.27 (d, *J* = 8.3 Hz, 1H; Ar-CH), 6.61 (dd, *J* = 8.3, 2.3 Hz, 1H; Ar-CH), 6.47 (d, *J* = 2.3 Hz, 1H; Ar-CH), 4.31 (s,

1H; CHS), 3.81 (s, 3H; OCH₃), 3.01-2.93 (m, 1H; SCH_AH_B), 2.85-2.77 (m, 1H; SCH_AH_B), 2.49-2.34 (m, 2H; SCH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 178.0 (C=O), 161.0 (Ar-C), 142.3 (Ar-C), 126.1 (Ar-CH), 117.1 (Ar-C), 108.1 (Ar-CH), 97.3 (Ar-CH), 55.5 (OCH₃), 45.3 (CHS), 31.8 (t, J = 22.2 Hz; CH₂C₈F₁₇), 20.8 (SCH₂); IR (film): v_{max} 3206 (NH), 2920, 1706 (C=O), 1623, 1506, 1457, 1335, 1235, 1198, 1145, 1113, 1030, 955, 827, 703, 649; MS (ES+): m/z (%): 664 (100, [M + Na]⁺); HRMS (ES+): m/z: calcd for C₁₉H₁₂NO₂F₁₇SNa: 664.0209 [M + Na]⁺; found: 664.0220.

3-(4-Chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-6-methoxy-1,3-dihydroindol-2-one 10

cis-1,4-Dichlorobut-2-ene (825 µL of a 1.0 M solution in DMF, 0.83 mmol) and K_2CO_3 (434 mg, 3.14 mmol) were added sequentially to a stirred solution of **S15** (504 mg, 0.79 mmol) in DMF (10 mL) at room temperature under nitrogen. The resulting suspension was stirred for 45 min at room temperature, then water (30 mL) and EtOAc (50 mL) were added. The layers were separated, and the organic layer was washed with water $(2 \times 30 \text{ mL})$, dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by FSPE gave alkylated oxindole 10 (418 mg, 0.57 mmol, 73%) as a yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 9.44 (s, 1H; NH), 7.22 (d, J = 8.3 Hz, 1H; Ar-CH), 6.63 (dd, J = 8.3, 2.3 Hz, 1H; Ar-CH), 6.55 (d, J = 2.3 Hz, 1H; Ar-CH), 5.72-5.60 (m, 1H; =CHCH₂Cl), 5.39-5.32 (m, 1H; =CHCH₂C), 4.03 (d, J = 7.8 Hz, 2H; CH₂Cl), 3.80 (s, 3H; OCH₃), 2.95 (ddd, J = 14.2, 8.5, 1.3 Hz, 1H; CH_AH_BC), 2.78 (ddd, J = 14.2, 6.9, 0.8 Hz, 1H; CH_AH_BC), 2.65 (t, J= 8.2 Hz, 2H; SCH₂), 2.32-2.07 (m, 2H; SCH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 179.7 (C=O), 161.1 (Ar-C), 141.6 (Ar-C), 129.7 (ClCH₂CH=), 126.2 (CCH₂CH=), 125.1 (Ar-CH), 120.0 (Ar-C), 108.6 (Ar-CH), 97.4 (Ar-CH), 55.5 (OCH₃), 54.6 (C-C=O)), 38.9 (CH₂Cl), 33.3 (CH₂C), 31.4 (t, J = 22.2 Hz; CH₂C₈F₁₇), 19.9 (t, J = 2.8

Hz; SCH₂); IR (film): v_{max} 3220 (NH), 1710 (C=O), 1606 (C=C), 1501, 1462, 1319, 1235, 1200, 1145, 1105, 779, 732, 705, 651; MS (ES-): m/z (%): 728 (100, $[M - H]^+$); HRMS (ES-): m/z: calcd for C₂₃H₁₆NO₂F₁₇Cl: 728.0329 $[M - H]^+$; found: 728.0324.

5-Bromo-3-(4-chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-1-propyl-1,3-dihydroindol-2-one 11

procedure G, 5-bromo-3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Using general heptadecafluorodecyl)thio)-1-propylindolin-2-one⁹ (1.26 g, 1.72 mmol), cis-1,4dichlorobut-2-ene (0.22 mL, 2.06 mmol) and K₂CO₃ (1.19 g, 8.61 mmol) in DMF (23.3 mL) gave the crude product. Purification by FSPE gave alkylated oxindole 11 (0.90 g, 1.10 mmol, 87%) as a pale brown oil, ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H; $2 \times$ Ar-CH), 6.76 (d, J = 8.3 Hz, 1H; Ar-CH), 5.69-5.62 (m, 1H; =CH), 5.29-5.22 (m, 1H; =CH), 4.07 (ddd, J = 11.8, 8.3, 1.0 Hz, 1H; =CHCH_ACH_BCl), 3.97(ddd, J = 11.8, 7.3, 0.8 Hz, 1H; =CHCH_ACH_BCl), 3.72-3.59 (m, 2H; NCH₂CH₂), 2.97 (ddd, J = 14.1, 8.6, 1.2 Hz, 1H; =CHCH_AH_BC), 2.79-2.59 (m, 3H; =CHCH_AH_BC and CH₂S), 2.28-2.15 (m, 2H; CH₂C₈F₁₇), 1.67 (sextet, J = 7.3 Hz, 2H; CH₂CH₃), 0.95 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.3$ (C=O), 141.6 (Ar-C), 132.4 (Ar-CH), 130.5 (Ar-C), 130.1 (=CH), 127.4 (Ar-CH), 125.7 (=CH), 115.7 (Ar-C), 110.2 (Ar-CH), 53.6 (C-C=O), 42.0 (NCH₂CH₂), 38.8 (CH₂Cl), 33.3 (=CHCH₂C), 31.5 (t, J = 22.0 Hz; $CH_2C_8F_{17}$), 20.7 (CH_2CH_3), 19.7 (t, J = 4.6 Hz; CH_2S), 11.3 (CH₃); IR (film): v_{max} 2971, 2922, 1731 (C=O), 1482, 1197, 1138 cm⁻¹; MS (ES+): m/z (%): 844 (100, [⁸¹BrM + Na]⁺), 842 (80, [⁷⁹BrM + Na]⁺); HRMS (EI+): m/z: calcd for $C_{21}H_{15}N_2O_3BrF_{17}S$: 841.9769 [*M* + Na⁺]; found: 841.9764.

3-(4-Chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-1-(4-methoxybenzyl)-1,3-dihydroindol-2-one 12

Using general procedure G, oxindole S11 (1.13 g, 1.55 mmol), cis-1,4-dichlorobut-2ene (0.23 mL, 1.86 mmol) and K₂CO₃ (1.07 g, 7.75 mmol) in DMF (30 mL) gave the crude product. Purification by FSPE gave alkylated oxindole 12 (976 mg, 1.19 mmol, 77%) as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.35 (dd, J = 7.6, 0.8 Hz, 1H; Ar-CH), 7.26-7.21 (m, 3H; 3 × Ar-CH), 7.10 (td, J = 7.6, 1.0 Hz, 1H; Ar-CH), 6.85-6.79 (m, 3H; 3 × Ar-CH), 5.66-5.58 (m, 1H; =CH), 5.31-5.23 (m, 1H; =CH), 4.91 (d, J = 15.4 Hz, 1H; NCH_ACH_BC₆H₄OMe), 4.78 (d, J = 15.4 Hz, 1H; NCH_ACH_BC₆H₄OMe), 4.07 (ddd, J = 12.1, 8.3, 1.0 Hz, 1H; =CHCH_ACH_BCl), 3.98 $(dd, J = 12.1, 7.0 Hz, 1H; = CHCH_ACH_BCI), 3.77 (s, 3H; OCH_3), 3.03 (ddd, J = 14.1, J)$ 8.8, 1.2 Hz, 1H; =CHCH_AH_BC), 2.83 (ddd, J = 14.1, 6.8, 1.2 Hz, 1H; =CHCH_AH_BC), 2.71-2.62 (m, 2H; CH₂S), 2.23-2.09 (m, 2H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃): δ 176.0 (C=O), 159.2 (Ar-C), 142.3 (Ar-C), 129.8 (=CH), 129.5 (Ar-CH), 128.8 (Ar-CH), 128.2 (Ar-C), 127.4 (Ar-C), 126.3 (=CH), 124.1 (Ar-CH), 123.2 (Ar-CH), 114.1 (Ar-CH), 109.5 (Ar-CH), 55.1 (OCH₃), 53.8 (C-C=O), 43.5 $(NCH_2C_6H_4OCH_3)$, 38.9 (=CHCH_2Cl), 33.4 (=CHCH_2C), 31.4 (t, J = 22.0 Hz; *C*H₂C₈F₁₇), 19.7 (t, *J* = 3.7 Hz, CH₂S); IR (film): *v*_{max} 3030, 2946, 2924, 1712 (C=O), 1617, 1516, 1485, 1466, 1441, 1348, 1295, 1244, 1206, 1175, 1144, 1035, 953, 747, 646 cm⁻¹; MS (ES+): m/z (%): 844 (30, $[^{37}ClM + Na]^+$), 842 (100, $[^{35}ClM + Na]^+$); HRMS (ES+): m/z: calcd for C₂₆H₂₃NO₂ClF₁₇S: 842.0759 [M + Na⁺]; found: 794.0748.

3-(4-Chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-1-propyl-1,3-dihydroindol-2-one 13

G. 3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Using general procedure heptadecafluorodecyl)thio)-1-propylindolin-2-one⁹ (4.80 g, 7.70 mmol), cis-1,4dichlorobut-2-ene (1.21 mL, 11.5 mmol) and K₂CO₃ (1.43 g, 38.4 mmol) in DMF (80 mL) gave the crude product. Purification by FSPE gave alkylated oxindole 13 (3.78 g, 5.20 mmol, 68%) as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.30 (m, 2H; 2 × Ar-CH), 7.12 (dt, J = 7.6, 1.0 Hz, 1H; Ar-CH), 6.87 (d, J = 7.8 Hz, 1H; Ar-CH), 5.65-5.59 (m, 1H; =CH), 5.23-5.31 (m, 1H; =CH), 4.05 (ddd, J = 11.8, 8.3, 1.3 Hz, 1H; =CHCH_ACH_BCl), 3.97 (dd, J = 11.8, 7.3 Hz, 1H; =CHCH_ACH_BCl), 3.62-3.74 (m, 2H; CH₂N), 2.97 (ddd, J = 14.1, 8.8, 1.3 Hz, 1H; =CHCH_ACH_BC), 2.80 (ddd, J =14.1, 7.1, 1.3 Hz, 1H; =CHCH_ACH_BC), 2.71-2.65 (m, 1H; CH_AH_BS), 2.64-2.58 (m, 1H; CH_A H_B S), 2.22-2.11 (m, 2H; C H_2 C₈ F_{17}), 1.68 (sextet, J = 7.4 Hz, 2H; C H_2 CH₃), 0.96 (t, J = 7.4 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 175.6 (C=O), 142.7 (Ar-C), 129.7 (=CH), 129.5 (Ar-CH), 128.3 (Ar-C), 126.3 (=CH), 124.2 (Ar-CH), 123.0 (Ar-CH), 108.8 (Ar-CH), 53.8 (C-C=O), 41.9 (NCH₂), 38.9 (=CHCH₂Cl), 33.4 $(=CHCH_2C)$, 31.6 (t, J = 22.0 Hz; $CH_2C_8F_{17}$), 20.8 (CH_2CH_3) , 19.8 (t, J = 3.7 Hz; CH₂-S), 11.3 (CH₃); IR (film): v_{max} 3060, 2971, 2939, 2878, 1712 (C=O), 1612, 1487, 1468, 1444, 1360, 1249, 1114, 1025, 953, 872, 751 cm⁻¹; MS (EI+): m/z (%): 764 (100, $[M + Na]^+$); HRMS (EI+): m/z: calcd for C₂₅H₂₁NOClF₁₇S: 764.0655 [M +Na⁺]; found: 764.0659.

3-(4-Chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-6-methoxy-1-propyl-1,3-dihydroindol-2-one 14

Using general procedure G, oxindole S12 (606 mg, 0.89 mmol), cis-1,4-dichlorobut-2-ene (112 µL, 1.06 mmol) and K₂CO₃ (490 mg, 3.55 mmol) in DMF (10 mL) gave the crude product. Purification by FSPE gave alkylated oxindole 14 (600 mg, 0.78 mmol, 88%) as a yellow oil, ¹H NMR (500 MHz, CDCl₃): δ 7.24 (d, J = 8.2 Hz, 1H; Ar-CH), 6.61 (dd, J = 8.2, 2.2 Hz, 1H; Ar-CH), 6.43 (d, J = 2.2 Hz, 1H, Ar-CH), 5.65-5.60 (m, 1H; CH=CH₂Cl), 5.31-5.25 (m, 1H; CH=CH₂C), 4.06 (dd, J = 12.0, 8.5 Hz, 1H; CH_ACH_BCl), 3.97 (dd, J = 12.0, 7.3 Hz, 1H; CH_ACH_BCl), 3.67 (dt, J = 14.2, 7.2 Hz, 1H; NCH_ACH_BCH₂), 3.62 (dt, J = 14.2, 7.2 Hz, 1H; NCH_ACH_BCH₂), 2.94 (ddd, J = 14.0, 8.5, 0.6 Hz, 1H; =CHCH_AH_BC), 2.77 (dd, J = 14.0, 7.0, 1H; =CHCH_A H_B C), 2.69 (dt, J = 13.4, 7.8 Hz, 1H; C H_A H_BS), 2.62 (dt, J = 13.4, 7.8, 1H; CH_AH_BS), 2.24-2.13 (m, 2H; $CH_2C_8F_{17}$), 1.68 (sextet, J = 7.2 Hz, 2H; CH_2CH_3), 0.96 (t, J = 7.2 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 176.5 (C=O), 161.1 (Ar-C), 143.9 (Ar-C), 129.5 (CH=CH2Cl), 126.5 (CH=CH2C), 125.0 (Ar-CH), 119.9 (Ar-C), 106.6 (Ar-CH), 96.8 (Ar-CH), 55.5 (OCH₃), 53.5 (C-C=O), 41.8 (CH₂N), 39.0 (CH₂Cl), 33.4 (=CHCH₂C), 31.6 (t, J = 21.7 Hz; CH₂C₈F₁₇), 20.8 (CH₂CH₃), 19.7 (t, J = 3.6 Hz; CH₂S), 11.3 (CH₃); IR (film): *v*_{max} 2966, 2941, 1716 (C=O), 1624, 1602, 1504, 1463, 1370, 1241, 1209, 1148, 1109, 1034 cm⁻¹; MS (ES+): m/z (%): 794 (100, $[M + Na]^+$), 533 (20), 151 (20); HRMS (EI+): m/z: calcd for C₂₆H₂₃NO₂ClF₁₇S: 794.0759 $[M + Na^+]$; found: 794.0775.

6-Methoxy-3-(4-chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-1-*p*-methoxybenzyl-1,3-dihydroindol-2-one 15

Using general procedure G, oxindole S13 (0.29 g, 0.40 mmol), cis-1,4-dichlorobut-2ene (0.60 mL, 0.60 mmol) and K₂CO₃ (0.26 g, 1.90 mmol) in DMF (5 mL) gave the crude product. Purification by FSPE gave alkylated oxindole 15 (0.24 g, 0.29 mmol, 77%) as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.11 (m, 3H; 3 × Ar-CH), 6.83 (d, J = 8.8 Hz, 2H; Ar-CH), 6.58 (dd, J = 8.2, 2.3 Hz, 1H; Ar-CH), 6.37 (d, J = 2.3 Hz, 1H; Ar-CH), 5.66-5.59 (m, 1H; =CH), 5.24-5.30 (m, 1H; =CH), 4.88 (d, J = 15.4 Hz, 1H; NCH_AH_BC₆H₄OCH₃), 4.74 (d, J = 15.4 Hz, 1H; NCH_AH_BC₆H₄OCH₃), 4.07 (ddd, *J* = 11.8, 8.1, 1.3 Hz, 1H; =CHCH_ACH_BCl), 3.97 (dd, *J* = 11.8, 7.3 Hz, 1H; =CHCH_ACH_BCl), 3.77 (s, 3H; OCH₃), 3.76 (s, 3H; OCH₃), 3.00 (ddd, J = 14.1, 8.6, 1.5 Hz, 1H; =CHC H_A C H_B C), 2.79 (ddd, J = 14.1, 6.8, 1.8 Hz, 1H; =CHC H_A C H_B C), 2.73-2.62 (m, 2H; CH₂S), 2.25-2.11 (m, 2H, CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl): δ 176.6 (C=O), 160.9 (Ar-C), 159.2 (Ar-C), 143.6 (Ar-C), 130.9 (Ar-CH), 129.3 (=CH), 128.8 (Ar-CH), 127.4 (Ar-C), 126.5 (=CH), 124.9 (Ar-CH), 119.7 (Ar-C), 114.2 (2 × Ar-CH), 106.9 (Ar-CH), 97.5 (Ar-CH), 55.4 (OCH₃), 55.2 (OCH₃), 53.5 (C-C=O), 43.7 (NCH₂), 39.0 (=CHCH₂Cl), 33.5 (=CHCH₂C), 31.5 (t, J=22.2 Hz; CH₂C₈F₁₇), 19.7 (t, J=2.9 Hz; CH₂S); IR (film): v=3006, 2942, 2841, 2364, 1714 (C=O), 1622, 1515, 1470, 1374, 1239, 1152, 1036 cm⁻¹; MS (EI+): *m/z* (%): 872 (100, $[M + \text{Na}]^+$; HRMS (EI+): m/z: calcd for C₃₁H₂₅NO₃ClF₁₇S: 872.0870 [$M + \text{Na}^+$]; found: 872.0870.

3-(4-Chlorobut-2-enyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodecylsulfanyl)-1-benzyl-1,3-dihydroindol-2-one 16

Using general procedure G, oxindole **S14** (1.36 g, 1.86 mmol), *cis*-1,4-dichlorobut-2ene (0.23 mL, 2.23 mmol) and K₂CO₃ (1.03 mg, 7.94 mmol) in DMF (16 mL) gave the crude product. Purification by **FSPE** gave alkylated oxindole **16** (1.23g, 2.78 mmol, 80%) as a yellow oil, ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.24 (m, 6H; 6 × Ar-CH), 6.59 (dd, J = 8.2, 2.0 Hz, 1H; Ar-CH), 6.34 (d, J = 2.0 Hz, 1H, Ar-CH), 5.66-5.61 (m, 1H; CH=CH₂Cl), 5.33-5.27 (m, 1H; CH=CH₂C), 4.95 (d, J = 15.6 Hz, 1H; NCH_AH_BPh), 4.81 (d, J = 15.6 Hz, 1H; NCH_AH_BPh), 4.07 (dd, J = 12.0, 8.9 Hz, 1H; CH_ACH_BCl), 3.97 (dd, J = 12.0, 7.3 Hz, 1H; CH_ACH_BCl), 3.75 (s, 3H; OCH₃), 3.02 (dd, J = 14.0, 8.8 Hz, 1H; NCH_ACH_BC-C=O), 2.82 (dd, J = 14.0, 7.0 Hz, 1H; NCH_ACH_BC-C=O), 2.76-2.65 (m, 2H; CH₂S), 2.25-2.15 (m, 2H; CH₂C₈F₁₇); ¹³C NMR (100 MHz, CDCl₃): δ 176.7 (C=O), 161.0 (Ar-C), 143.6 (Ar-C), 135.3 (Ar-C), 129.7 (CH=CH₂Cl), 128.8 (Ar-CH), 127.9 (Ar-CH), 127.3 (Ar-CH), 126.5 (CH=CH₂C), 124.9 (Ar-CH), 119.7 (Ar-C), 107.0 (Ar-CH), 97.5 (Ar-CH), 55.4 (OCH₃), 53.5 (C-C=O), 44.0 (NCH₂Ph), 39.0 (CH₂Cl), 33.4 (=CHCH₂C), 31.5 (t, J =27.5 Hz; CH₂C₈F₁₇), 19.7 (t, J = 4.6 Hz; CH₂S); IR (film): v 2958, 2945, 1713 (C=O), 1624, 1501, 1456, 1375, 1236, 1200, 1145, 1114, 1081, 1033 cm⁻¹; MS (ES+): m/z(%): 844 (30, [³⁷ClM + Na]⁺), 842 (100, [³⁵ClM + Na]⁺); HRMS (ES+): m/z: calcd for C₂₆H₂₃NO₂ClF₁₇S: 842.0759 [M + Na⁺]; found: 794.0748. rac-(15,25)-5'-bromo-1'-propyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one 17

A solution of oxindole 11 (452 mg, 0.55 mmol) in THF (17 mL) was deoxygenated by bubbling through nitrogen gas for 45 min. Then, SmI₂ (11.0 mL of a 0.1M solution in THF, 1.10 mmol) was added dropwise over 1 h (using a syringe pump) at rt under nitrogen. On completion of the addition, a saturated aqueous solution of NaHCO₃ (20 mL) and EtOAc (20 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (2×10 mL), and the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel eluting with 10% EtOAc in petroleum ether gave vinylcyclopropane 17 (90 mg, 0.29 mmol, 53%) as a pale vellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.35 (dd, J = 8.3, 2.0 Hz, 1H; Ar-CH), 6.95 (d, *J* = 2.0 Hz, 1H; Ar-CH), 6.76 (d, *J* = 8.3 Hz, 1H; Ar-CH), 6.21 (ddd, *J* = 17.1, 10.3, 9.4 Hz, 1H; CH=CH₂), 5.27 (ddd, J = 17.1, 1.5, 0.5 Hz, 1H; CH=CH_AH_B), 5.14 $(dd, J = 10.3, 2.0 \text{ Hz}, 1\text{H}; \text{CH}=\text{CH}_{A}H_{B}), 3.73-3.69 \text{ (m, 2H; NCH}_{2}), 2.53-2.46 \text{ (m, 1H;})$ CH_2CHN), 2.00 (dd, J = 8.1, 4.8 Hz, 1H; CH_AH_BCHN), 1.94 (dd, J = 8.8, 4.8 Hz, 1H; CH_A H_B CHN), 1.75-1.65 (m, 2H; C H_2 CH₃), 0.95 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 174.1 (C=O), 141.8 (Ar-C), 133.6 (CH=CH₂), 132.8 (Ar-C), 129.4 (Ar-CH), 121.4 (Ar-CH), 117.2 (=CH₂), 114.4 (Ar-C), 109.5 (Ar-CH), 42.0 (NCH₂), 37.7 (CH-CH=CH₂), 33.6 (C-C=O), 25.0 (CH₂CH), 21.0 (CH₂CH₃), 11.4 (CH₃); IR (film): v_{max} 3417, 2080, 2965, 2359, 1716 (C=O), 1607, 1485, 1367, 1204, 1141 cm⁻¹; MS (ES+): m/z (%): 308 (100, $[^{81}BrM + H]^+$), 306 (100, $[^{79}BrM + H]^+$); HRMS (ES+): m/z: calcd for C₁₅H₁₆NO⁷⁹Br: 306.0488 [M + H⁺]; found: 306.0501.

rac-(2'S,5'S,3S)-1'Allyl-5-bromo-2'-phenyl-1-propyl-5'-vinyl-1H-spiro[indole-

3,3'-pyrrolidin]-2-one 19

Using general procedure I, oxindole 14 (101 mg, 0.12 mmol) and SmI₂ (2.5 mL of a 0.1 M solution in THF, 0.25 mmol) in THF (4 mL), and a solution of imine (36 mg, 0.25 mmol) in THF (1 mL) gave the crude product as a 3:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 10% Et_2O in petroleum ether gave 19a (30 mg, 0.07 mmol, 54%, major diastereoisomer) as an off-white solid, m.p. (Et₂O) 104–107 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 2.0 Hz, 1H; Ar-CH), 7.15 (dd, J = 8.3, 2.0 Hz, 1H; Ar-CH), 7.10-6.95 (m, 5H; 5 × Ar-CH), 6.38 (d, J = 8.3 Hz, 1H; Ar-CH), 5.96 (ddd, J = 17.1, 10.1, 8.3 Hz, 1H; CHCH=CH₂), 5.88 (ddt, J = 17.2, 10.4, 6.9 Hz, 1H; CH₂CH=CH₂), 5.33 (ddd, J = 17.2, 1.6, 0.8 Hz, 1H; CHCH= CH_AH_B), 5.26 (dd, J = 10.1, 1.6 Hz, 1H; CHCH= CH_AH_B), 5.13-5.10 (m, 1H; $CH_2CH=CH_AH_B$, 4.96 (ddt, J = 17.1, 2.0, 1.3 Hz, 1H; $CH_2CH=CH_AH_B$), 4.26 (s, 1H; CHPh), 3.79-3.73 (m, 1H; CH₂CHN), 3.66 (ddd, J = 14.1, 8.3, 6.3 Hz, 1H; NCH_AH_BCH₂), 3.42-3.32 (m, 2H; NCH_AH_BCH₂ and CH_AH_BCH=CH₂), 3.22 (dd, J =14.9, 6.9 Hz, 1H; $CH_AH_BCH=CH_2$), 2.67 (dd, J = 13.4, 9.1 Hz, 1H; CH_AH_BCHN), 1.88 (dd, J = 13.4, 7.0 Hz, 1H; CH_AH_BCHN), 1.56-1.45 (m, 2H; CH₂CH₃), 0.82 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 178.2 (C=O), 141.3 (Ar-C), 140.1 (CH₂CH=CH₂), 136.1 (Ar-C), 134.7 (Ar-C), 132.2 (CHCH=CH₂), 130.0 (Ar-CH), 128.8 (Ar-CH), 128.1 (Ar-CH), 127.47 (Ar-CH), 127.42 (Ar-CH), 118.9 (CH₂CH=CH₂), 117.1 (CHCH=CH₂), 114.2 (Ar-C), 108.9 (Ar-CH), 74.8 (CHPh), 63.8 (CH₂CHN), 57.9 (C-C=O), 51.2 (CH₂CH=CH₂), 41.7 (NCH₂CH₂), 40.9 (CH₂CHN), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (film): v_{max} 2966, 2932, 1710 (C=O), 1606, 1480, 1456, 1426, 1349, 1336, 1142, 1114, 923, 806, 747, 703 cm⁻¹; MS (ES+): m/z (%): 475 (90, $[^{81}\text{Br}M + \text{Na}]^+$), 473 (100, $[^{79}\text{Br}M + \text{Na}]^+$); HRMS (ES+): m/z: calcd for $C_{25}H_{27}N_2O^{81}Br$: 453.1365 [*M* + H⁺]; found: 453.1372; and **19b** (13 mg, 0.03) mmol, 23%, minor diastereoisomer) as a yellow oil, which crystallized from aqueous

ethanol as an off-white solid, m.p. 132–134 °C; ¹H NMR (400 MHz, CDCl₃): δ7.48 (d, *J* = 2.0 Hz, 1H; Ar-CH), 7.34 (dd, *J* = 8.3, 2.0 Hz, 1H; Ar-CH), 7.19-7.00 (m, 5H; $5 \times$ Ar-CH), 6.49 (d, J = 8.3 Hz, 1H; Ar-CH), 6.08 (ddd, J = 17.2, 9.9, 8.3 Hz, 1H; CHCH=CH₂), 5.84 (ddt, J = 17.2, 10.1, 7.0 Hz, 1H; CH₂CH=CH₂), 5.31 (ddd, J =17.2, 1.8, 0.5 Hz, 1H; CHCH= CH_AH_B), 5.22 (dd, J = 10.1, 1.8 Hz, 1H; CHCH=CH_A H_B), 5.12 (br dd, J = 10.1, 1.3 Hz, 1H; CH₂CH=C H_A H_B), 4.93 (ddt, J =17.2, 2.0, 1.3 Hz, 1H; CH₂CH=CH_A H_B), 4.01 (s, 1H; CHPh), 3.63 (q, J = 8.3 Hz, 1H; CH₂CHN), 3.45 (ddd, J = 14.5, 8.6, 6.0 Hz, 1H; NCH_AH_BCH₂), 3.36 (br dd, J = 14.7, 7.0 Hz, 1H; $CH_AH_BCH=CH_2$), 3.14 (dd, J = 14.7, 7.0 Hz, 1H; $CH_AH_BCH=CH_2$), 2.95 (ddd, J = 14.5, 8.3, 6.6 Hz, 1H; NCH_AH_BCH₂), 2.32 (dd, J = 13.2, 8.3 Hz, 1H; CH_AH_BCHN), 2.24 (dd, J = 13.2, 8.3 Hz, 1H; CH_AH_BCHN), 1.11-0.82 (m, 2H; CH₂CH₃), 0.52 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 177.1 (C=O), 142.5 (Ar-C), 140.2 (CH=CH₂), 135.7 (Ar-C), 135.3 (Ar-C), 131.6 (CHCH=CH₂), 130.7 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 126.0 (Ar-CH), 119.1 (CH₂CH=CH₂), 117.1 (CHCH=CH₂), 114.4 (Ar-C), 109.1 (Ar-CH), 77.4 (CHPh), 65.5 (CH₂CHN), 57.4 (C-C=O), 50.6 (CH₂CH=CH₂), 41.3 (NCH₂CH₂), 40.6 (CH₂CHN), 20.3 (CH₂CH₃), 11.1 (CH₃); IR (film): v_{max} 2967, 2932, 1716 (C=O), 1605, 1486, 1455, 1423, 1348, 1208, 1189, 1137, 1114, 1098, 996, 923, 806, 748, 700 cm⁻¹; MS (ES+): m/z (%): 475 (100, [⁸¹BrM + Na]⁺), 473 (85, [⁷⁹BrM + Na]⁺); HRMS (ES+): m/z: calcd (%) for C₂₅H₂₇N₂O⁸¹Br: 473.1199 [M + Na⁺]; found: 473.1206.

rac-(2'*S*,5'*S*,3*S*)-1'-Allyl-5-bromo-2'-(4-bromophenyl)-1-propyl-5'-vinyl-1*H*-spiro[indole-3,3'-pyrrolidin]-2-one 20

Using general procedure I, oxindole **11** (67 mg, 0.08 mmol) and SmI_2 (1.6 mL of a 0.1 M solution in THF, 0.16 mmol) in THF (2 mL), and a solution of imine (37 mg,

0.16 mmol) in THF (1 mL) gave the crude product as a 3:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 10% EtOAc in petroleum ether gave 20 (30 mg, 0.06 mmol, 69%) as a 3:1 mixture of diastereoisomers (by ¹H NMR spectroscopy), as a yellow oil. Further purification by flash chromatography on silica gel eluting with 20% Et₂O in petroleum ether gave the minor diastereoisomer as a pale vellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 2.0 Hz, 1H; Ar-CH), 7.35 (dd, J = 8.3, 2.0 Hz, 1H; Ar-CH), 7.31-7.24 (m, 4H; 4 × Ar-CH), 6.52 (d, J = 8.3 Hz, 1H; Ar-CH), 6.05 (ddd, *J* = 17.2, 10.1, 8.3 Hz, 1H; CHC*H*=CH₂), 5.82 (ddt, *J* = 17.2, 10.1, 6.8 Hz, 1H; CH₂CH=CH₂), 5.31 (dd, J = 17.2, 1.8 Hz, 1H; CHCH=CH_AH_B), 5.23 (dd, J = 10.1, 1.8 Hz, 1H; CHCH=CH_AH_B), 5.13 (dd, J = 10.1, 2.0 Hz, 1H; $CH_2CH=CH_AH_B$), 4.92 (br dd, J = 17.2, 2.0 Hz, 1H; CHCH=CH_AH_B), 3.96 (s, 1H; CHAr), 3.63 (q, J = 8.3 Hz, 1H; CH₂CHN), 3.48 (ddd, J = 13.8, 8.3, 6.3 Hz, 1H; NCH_AH_B), 3.34 (dd, J = 14.9, 6.6 Hz, 1H; $CH_AH_BCH=CH_2$), 3.10 (dd, J = 14.9, 7.3 Hz, 1H; $CH_AH_BCH=CH_2$), 3.00 (ddd, J = 13.8, 8.1, 6.6 Hz, 1H; NCH_AH_B), 2.31 (dd, J= 13.2, 8.3 Hz, 1H; CH_AH_BCHN), 2.25 (dd, J = 13.2, 8.3 Hz, 1H; CH_AH_BCHN), 1.16-1.00 (m, 2H; CH₂CH₃), 0.56 (t, J=7.6 Hz, 3H; CH₃); 13 C NMR (100 MHz, CDCl₃): δ 177.0 (C=O), 142.5 (Ar-C), 140.0 (CH=CH₂), 135.0 (2 × Ar-C), 131.4 (CHCH=CH₂), 130.94 (Ar-CH), 130.89 (Ar-CH), 129.81 (Ar-CH), 126.1 (Ar-CH), 121.8 (Ar-C), 119.4 (CH₂CH=CH₂), 117.4 (CHCH=CH₂), 114.6 (Ar-C), 109.3 (Ar-CH), 76.7 (CHAr), 65.6 (CH₂CHN), 57.4 (C-C=O), 50.7 (CH₂CH=CH₂), 41.4 (CH₂N), 40.7 (CH₂CHN), 20.5 (CH₂CH₃), 11.1 (CH₃); IR (film): v_{max} 2964, 2930, 1715 (C=O), 1606, 1483, 1348, 1206, 1189, 1110, 1069, 1007, 923, 806 and 736 cm⁻¹; MS (ES+): m/z (%): 555 (50, $[^{81}\text{Br}^{81}\text{Br}M + \text{Na}]^+$), 553 (100, $[^{81}\text{Br}^{79}\text{Br}M + \text{Na}]^+$), 551 (50, $[^{79}\text{Br}^{79}\text{Br}M + \text{Na}]^+$; HRMS (ES+): m/z: calcd (%) for C₂₅H₂₆N₂O⁷⁹Br₂: 551.0304 [M + Na⁺]; found: 551.0298; and the major diastereoisomer as an off-white solid, m.p. 110–112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 2.2 Hz, 1H; Ar-CH), 7.21-7.18 (m, 3H; 3 × Ar-CH), 6.93 (d, J = 8.1 Hz, 2H; 2 × Ar-CH), 6.42 (d, J = 8.3 Hz, 1H; Ar-CH), 5.95 (ddd, J = 17.1, 10.1, 8.3 Hz, 1H; CHCH=CH₂), 5.84 (ddt, J = 17.2, 10.1, 6.8 Hz, 1H; CH₂CH=CH₂), 5.32 (br d, J = 17.1 Hz, 1H; CHCH=CH_AH_B), 5.25 $(dd, J = 10.1, 2.0 \text{ Hz}, 1\text{H}; CHCH=CH_AH_B)$, 5.12 (dd, J = 10.1, 2.0 Hz, 1H; $CH_2CH=CH_AH_B$, 4.94 (dd, J = 17.2, 2.0 Hz, 1H; $CH_2CH=CH_AH_B$), 4.21 (s, 1H; CHAr), 3.78-3.72 (m, 1H; CH₂CHN), 3.65 (ddd, J = 14.1, 8.1, 6.6 Hz, 1H; NCH_AH_B),

3.42-3.34 (m, 2H; NCH_A H_B and $CH_AH_BCH=CH_2$), 3.16 (dd, J = 14.9, 6.8 Hz, 1H; CH_A $H_BCH=CH_2$), 2.68 (dd, J = 13.4, 9.3 Hz, 1H; CH_AH_BCHN), 1.88 (dd, J = 13.4, 6.8 Hz, 1H; CH_A H_BCHN), 1.57-1.45 (m, 2H; CH_2CH_3), 0.83 (t, J = 7.6 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.9$ (C=O), 141.3 (Ar-C), 139.8 (CHCH=CH₂), 135.2 (Ar-C), 134.4 (Ar-C), 131.8 (CH₂CH=CH₂), 130.6 (Ar-CH), 130.4 (Ar-CH), 129.7 (Ar-CH), 128.6 (Ar-CH), 121.3 (Ar-C), 119.2 (CH₂CH=CH₂), 117.3 (CHCH=CH₂), 114.3 (Ar-C), 109.1 (Ar-CH), 74.1 (CHAr), 63.7 (CH₂CHN), 57.8 (C-C=O), 51.1 (CH₂CH=CH₂), 41.7 (CH₂N), 40.8 (CH₂CHN), 20.7 (CH₂CH₃), 11.3 (CH₃); IR (film): v_{max} 2964, 2930, 1712 (C=O), 1606, 1483, 1427, 1348, 1141, 1069, 1010, 923 and 805 cm⁻¹; MS (ES+): m/z (%): 555 (50, [⁸¹Br⁸¹BrM + Na]⁺), 553 (100, [⁸¹Br⁷⁹BrM + Na]⁺), 551 (50, [⁷⁹Br⁷⁹BrM + Na]⁺); HRMS (ES+): m/z: calcd for C₂₅H₂₆N₂O⁷⁹Br₂: 529.0490 [M + H⁺]; found: 529.0490.

rac-(2'*R*,5'*S*,3*S*)-1'-Allyl-1-propyl-2'-((triisopropylsilyl)ethynyl)-5'vinylspiro[indoline-3,3'-pyrrolidin]-2-one 21

Using general procedure I, oxindole **13** (0.23 g, 0.32 mmol) and SmI₂ (6.5 mL of a 0.1 M solution in THF, 0.65 mmol) in THF (2 mL), and a solution of imine (0.16 g, 0.65 mmol) in THF (1 mL) gave the crude product as a 11:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 20% Et₂O in petroleum ether gave **21** (0.11 g, 0.23 mmol 75%) as a 11:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 7.6, 1.4 Hz, 1H; Ar-CH), 7.20 (td, J = 7.6, 1.4 Hz, 1H; Ar-CH), 7.02 (td, J = 7.6, 1.0 Hz, 1H; Ar-CH), 6.78 (br d, J = 7.6 Hz, 1H; Ar-CH), 6.04-5.93 (m, 1H; CH₂CH=CH₂), 5.80 (ddd, J = 17.1, 10.2, 8.3 Hz, 1H; CH₂CH=CH₂), 5.29-5.15 (m, 4H; CHCH=CH₂ and CH₂CH=CH₂), 3.87 (s, 1H; CH-

C=CSi), 3.77-3.68 (m, 1H; NCH_AH_BCH₂),), 3.64-3.53 (m, 2H; CH_AH_BCH=CH₂ and NCH_AH_BCH₂), 3.51-3.43 (m, 2H; CH_AH_BCH=CH₂ and CH₂CHN), 2.51 (dd, J = 13.2, 8.7 Hz, 1H; CH_AH_BCHN), 1.84 (dd, J = 13.2, 7.8 Hz, 1H; CH_AH_BCHN), 1.72-1.64 (m, 2 H; CH₂CH₃), 0.95 (t, J = 7.3 Hz, 3H; CH₂CH₃), 0.87-0.75 (m, 21 H; Si(CH(CH₃)₂)₃); ¹³C NMR (100 MHz, CDCl₃): δ 178.3 (C=O), 142.5 (Ar-C), 139.5 (CHCH=CH₂), 134.0 (Ar-C), 131.6 (CH₂CH-CH₂), 127.6 (Ar-CH), 125.1 (Ar-CH), 122.4 (Ar-CH), 119.6 (CH₂CH=CH₂), 117.5 (CHCH=CH₂), 107.9 (Ar-CH), 102.9 (CHC=CSi), 87.3 (CHC=CSi), 63.6 (CH₂CHN), 62.6 (CH-C=CSi), 55.4 (C-C=O), 50.8 (CH₂CH=CH₂), 41.9 (CH₂CHN)), 41.7 (NCH₂CH₂), 20.8 (CH₂CH₃), 11.5 (CH₂CH₃), 11.1 (3 × CH(CH₃)₂), 10.9 (3 × CH(CH₃)₂); IR (film): v_{max} 2944, 2866, 2167 (C=C), 1643 (C=O), 1463, 1383, 1337, 1266, 1242, 1203, 1148, 1099, 996, 920, 883 cm⁻¹; MS (ES+): m/z (%): 477 (100, $[M + H]^+$); HRMS (ES+): m/z: calcd for C₃₀H₄₄N₂OSi: 477.3281 [$M + H^+$]; found: 477.3296.

rac-(2'*R*,5'*S*,3*S*)-1'-Benzyl-5-bromo-2'-furan-2-yl-1-propyl-5'-vinyl-1Hspiro[indole-3,3'-pyrrolidin]-2-one 22

Using general procedure I, oxindole **11** (102 mg, 0.12 mmol) and SmI₂ (2.5 mL of a 0.1 M solution in THF, 0.25 mmol) in THF (4 mL), and a solution of imine (46 mg, 0.25 mmol) in THF (1 mL) gave the crude product as a 7:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 5% EtOAc in petroleum ether gave **22** (38 mg, 0.08 mmol, 65%) as a 7:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Further purification by flash column chromatography on silica gel eluting with 3% acetone in pentane gave the minor diastereoisomer as a pale yellow oil, and the major diastereoisomer as a white solid, m.p. (Et₂O) 115–117 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 1.7 Hz, 1H; Ar-CH), 7.27-7.19 (m, 5H; 5 × Ar-CH), 7.12 (dd, *J* = 8.2, 1.7 Hz, 1H; Ar-CH), 7.09 (br

d, J = 1.8 Hz, 1H; furyl-CH), 6.53 (d, J = 8.2 Hz, 1H; Ar-CH), 6.08 (dd, J = 3.3, 1.8 Hz, 1H; furyl-CH), 5.96 (d, J = 3.3 Hz, 1H; furyl-CH), 5.89 (ddd, J = 17.2, 10.1, 8.2 Hz, 1H; CH=CH₂), 5.31 (dd, J = 17.1, 1.0 Hz, 1H; CH=CH_AH_B), 5.17 (dd, J = 10.1, 1.0 Hz, 1H; CH=CH_A H_B), 4.21 (s, 1H; CHfuryl), 3.92 (d, J = 14.2 Hz, 1H; NC H_AH_BPh), 3.82 (d, J = 14.2 Hz, 1H; NC H_AH_BPh), 3.69 (dt, J = 14.1, 7.3 Hz, 1H; $NCH_AH_BCH_2$), 3.63 (q, J = 8.2 Hz, 1H; CH_2CHN), 3.45 (dt, J = 14.1, 7.3 Hz, 1H, $NCH_AH_BCH_2$), 2.49 (dd, J = 13.4, 8.2 Hz, 1H; CH_AH_BCHN), 1.92 (dd, J = 13.4, 8.2 Hz, 1H; CH_AH_BCHN), 1.58 (sextet, J = 7.3 Hz, 1H; CH_2CH_3), 0.85 (t, J = 7.3 Hz, 3H; CH₃); 13 C NMR (100 MHz, CDCl₃): δ 178.1 (C=O), 151.0 (furyl-C), 141.6 (furvl-CH), 141.5 (Ar-C), 139.8 (CH=CH₂), 136.1 (Ar-C), 134.6 (Ar-C), 130.3 (Ar-CH), 129.8 (Ar-CH), 128.4 (Ar-CH), 127.9 (Ar-CH), 126.9 (Ar-CH), 117.3 (CH=CH₂), 114.5 (Ar-C), 109.9 (Ar-CH), 109.0 (furyl-CH), 108.8 (furyl-CH), 69.0 (CHfuryl), 64.5 (CH₂CHN), 56.4 (C-C=O), 53.8 (NCH₂Ph), 41.6 (NCH₂CH₂), 41.5 (CH₂CHN), 20.5 (CH₂CH₃), 11.1 (CH₃); IR (film): v_{max} 2964, 2930, 1712 (C=O), 1606, 1480, 1427, 1351, 1141, 1110, 920, 806, 733 and 702 cm⁻¹; MS (ES+): m/z (%): $515 (85, [^{81}\text{Br}M + \text{Na}]^+), 513 (100, [^{79}\text{Br}M + \text{Na}]^+), 465 (25), 463 (25); HRMS (ES+):$ m/z: calcd for C₂₇H₂₇N₂O₂⁷⁹Br: 491.1329 [M + H⁺]; found: 491.1344.

rac-(2'*R*,5'*S*,3*S*)-5-Bromo-1'-(4-methoxyphenyl)-1-propyl-2'-thiophen-2-yl-5'vinyl-1*H*-spiro[indole-3,3'-pyrrolidin]-2-one 23

Using general procedure I, oxindole **11** (99 mg, 0.12 mmol) and SmI₂ (2.4 mL of a 0.1 M solution in THF, 0.25 mmol) in THF (4 mL), and a solution of imine (52 mg, 0.25 mmol) in THF (1 mL) gave the crude product as a 4:1:0.8 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 10% EtOAc in petroleum ether gave **23** (47 mg, 0.09 mmol, 74%) as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Further purification by recrystallisation from

ethanol gave the major diastereoisomer as a white solid, m.p. (EtOH) 115–117 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, J = 8.3, 2.0 Hz, 1H; Ar-CH), 7.23 (dd, J = 5.0, 1.0 Hz, 1H; thienyl-CH), 6.95 (dd, J = 5.0, 3.5 Hz, 1H; thienyl-CH), 6.81 (d, J = 9.2Hz, 2H; 2 × Ar-CH), 6.75 (d, J = 9.2 Hz, 2H; 2 × Ar-CH), 6.65 (d, J = 8.3 Hz, 1H; Ar-CH), 6.58 (br d, J = 3.5 Hz, 1H; thienyl-CH), 6.22 (d, J = 2.0 Hz, 1H; Ar-CH), 6.09 (ddd, J = 17.2, 10.1, 7.5 Hz, 1H; CH=CH₂), 5.47 (d, J = 17.2 Hz, 1H; CH=CH_AH_B), 5.30 (d, J = 10.1, 1.0 Hz, 1H; CH=CH_AH_B), 4.91 (s, 1H; CHthienyl), 4.80 (q, J = 7.5 Hz, 1H; CH₂CHN), 3.72 (s, 3H; OCH₃), 3.65-3.60 (m, 2H; NCH_2CH_2), 2.44 (d, J = 7.5 Hz, 2H; CH_2CHN), 1.68 (sextet, J = 7.3 Hz, 2H; CH_2CH_3), 0.93 (t, J = 7.3 Hz, 3H; CH_3); ¹³C NMR (100 MHz, $CDCl_3$): δ 178.4 (C=O), 153.0 (thienyl-C), 146.9 (Ar-C), 141.9 (Ar-C), 141.8 (Ar-C), 140.0 (CH=CH₂), 130.9 (Ar-CH), 129.9 (Ar-C), 128.6 (Ar-CH), 127.0 (thienyl-CH), 124.8 (thienyl-CH), 124.7 (thienyl-CH), 116.8 (CH=CH₂), 116.6 (Ar-CH), 114.4 (Ar-C), 114.2 (Ar-CH), 109.2 (Ar-CH), 69.4 (CHthienyl), 61.8 (CH₂CHN), 57.3 (OCH₃), 55.6 (C-C=O), 41.5 (NCH₂CH₂), 41.3 (CH₂CHN), 20.6 (CH₂CH₃), 11.3 (CH₃); IR (film): v_{max} 2964, 2924, 2874, 1712 (C=O), 1603, 1510, 1480, 1424, 1351, 1337, 1239, 1178, 1110, 1038, 993, 811, 730, 697 cm⁻¹; MS (ES+): m/z (%): 547 (70, $[^{81}BrM + Na]^+$), 545 (70, $[^{79}\text{Br}M + \text{Na}]^+$), 525 (90), 523 (90), 521 (70), 519 (50), 144 (35), 130 (100); HRMS (ES+): m/z: calcd for C₂₇H₂₇N₂O₂⁷⁹BrS: 523.1049 [M + H⁺]; found: 523.1036.

rac-(2'R,5'S,3S)-1'-Allyl-6-methoxy-1-(4-methoxybenzyl)-2'((triisopropylsilyl)ethynyl)-5'-vinylspiro[indoline-3,3'-pyrrolidin]-2-one 24

Using general procedure I, oxindole **15** (0.10 g, 0.11 mmol) and SmI_2 (2.3 mL of a 0.1 M solution in THF, 0.23 mmol) in THF (2 mL), and a solution of imine (0.06 g, 0.23 mmol) in THF (1 mL) gave the crude product as a 8:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel
eluting with 10% Et₂O in petroleum ether gave 24 (40 mg, 0.07 mmol, 63%) as a 8:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.2 Hz, 1H; Ar-CH), 7.22 (d, J = 8.8 Hz, 2H; Ar-CH), 6.82 (d, J = 8.8 Hz, 2H; Ar-CH), 6.50 (dd, J = 8.2, 2.3 Hz, 1H; Ar-CH), 6.29 (d, J = 2.3 Hz, 1H; Ar-CH), 6.05-5.93 (m, 1H; CH₂=CH-CH₂), 5.80 (ddd, J = 17.2, 10.1, 8.3 Hz, 1H; CHCH=CH₂), 5.30-5.16 (m, 4H; 2H CHCH=CH₂ and CH₂CH=CH₂), 4.83 (d, J = 15.4 Hz, 1H; NCH_AH_BC₆H₄OCH₃), 4.77 (1 H, d, J = 15.4 Hz, 1H; NCH_A*H*_BC₆H₄OCH₃), 3.90 (s, 1H; C*H*C=CSi), 3.77 (s, 3H; OCH₃), 3.72 (s, 3H; OCH₃), 3.57 (dd, *J* = 14.9, 7.3 Hz, 1H; CH₂CHN), 3.53-3.44 (m, 2H; NCH₂CH=CH₂), 2.55 (dd, J = 13.1, 8.3 Hz, 1H; CH_AH_BCHN), 1.85 (1 H, dd, J = 13.1, 8.1 Hz, 1H; CH_AH_BCHN , 0.84-0.80 (m, 21 H, Si(CH(CH_3)_2)_3); ¹³C NMR (100 MHz, CDCl_3): δ 179.2 (C=O), 159.8 (Ar-C), 158.9 (Ar-C), 143.4 (Ar-C), 139.4 (CHCH=CH₂), 131.6 (CH₂CH=CH₂), 128.6 (Ar-CH), 127.9 (Ar-C), 126.0 (Ar-C), 125.5 (Ar-CH), 119.6 (CH₂CH=CH₂), 117.5 (CHCH=CH₂), 114.1 (Ar-CH), 106.2 (Ar-CH), 103.0 (CHC=CSi), 96.9 (Ar-CH), 87.4 (CHC=CSi), 63.6 (CH₂CHN), 62.6 (CHC=CSi), 55.4 (C-C=O), 55.2 (OCH₃), 55.0 (OCH₃), 50.9 (NCH₂CH=CH₂), 43.4 (NCH₂CH₂), 42.2 (CH₂CHN), 18.3 (3 × CH(CH₃)₂), 10.9 (3 × CH(CH₃)₂); IR (film): v_{max} 2941, 2863, 2172 (C=C), 1716 (C=O), 1626, 1514, 1463, 1379, 1248, 1158, 1037, 995, 922 cm⁻¹; MS (ES+): m/z (%): 585 (100, $[M + H]^+$); HRMS (ES+): m/z: calcd for C₃₆H₄₈N₂O₃Si: 585.3489 $[M + H^+]$; found: 585.3507.

rac-(2'*S*,5'*S*,3*S*)-1'-Benzyl-6-methoxy-2'-phenyl-1-propyl-5'-vinyl-1*H*-spiro[indole-3,3'-pyrrolidin]-2-one 25

Using general procedure I, oxindole **14** (105 mg, 0.14 mmol) and SmI_2 (2.7 mL of a 0.1 M solution in THF, 0.3 mmol) in THF (4 mL), and a solution of imine (53 mg, 0.27 mmol) in THF (1 mL) gave the crude product as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by **FSPE** eluting with

MeOH (100 mL) gave the non-fluorous crude product, then eluting with THF (100 mL) gave fluorous disulfide⁹ (45 mg, 0.05 mmol, 69%) as a white solid. Further purification of the non-fluorous crude product by flash column chromatography on silica gel eluting with 10% EtOAc in hexane gave 25 (43 mg, 0.10 mmol, 70%) as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Recrystallisation from Et₂O-hexane (1:1) gave the major diastereoisomer as a white solid, m.p. (1:1 Et₂O-hexane) 117–120 °C; ¹H NMR (400 MHz, CDCl₃): δ7.36 (d, J = 8.3 Hz, 1H; Ar-CH), 7.27-7.19 (m, 3H; 3 × Ar-CH), 7.13-7.04 (m, 7H; 7 × Ar-CH), 6.45 (dd, J = 8.3, 2.3 Hz, 1H; Ar-CH), 6.09 (d, J = 2.3 Hz, 1H; Ar-CH), 5.94 (ddd, J = 17.1, 10.1, 8.3 Hz, 1H; CH=CH₂), 5.25 (br d, J = 17.1 Hz, 1H; CH=CH_AH_B), 5.09 $(dd, J = 10.1, 1.2 Hz, 1H; CH=CH_AH_B), 4.11 (s, 1H; CHPh), 3.94 (d, J = 14.2 Hz, 1H;$ NCH_AH_BPh), 3.74 (s, 3H; OCH₃), 3.70 (d, J = 14.2 Hz, 1H; NCH_AH_BPh), 3.66-3.60 (m, 2H; NCH_AH_BCH₂ and CH₂CHN), 3.31 (ddd, J = 14.6, 8.1, 6.8 Hz, 1H; $NCH_AH_BCH_2$), 2.61 (dd, J = 13.2, 9.6 Hz, 1H; CH_AH_BCHN), 1.85 (dd, J = 13.2, 6.8 Hz, 1H; CH_A H_B CHN), 1.56-1.42 (m, 2H; C H_2 CH₃), 0.80 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 179.1 (C=O), 159.4 (Ar-C), 143.5 (Ar-C), 140.6 (CH=CH₂), 136.5 (Ar-C), 136.1 (Ar-C), 130.1 (Ar-CH), 128.4 (Ar-CH), 127.8 (Ar-CH), 127.4 (Ar-CH), 127.1 (Ar-CH), 126.9 (Ar-CH), 126.2 (Ar-CH), 124.9 (Ar-C), 116.2 (CH=CH₂), 105.1 (Ar-CH), 95.6 (Ar-CH), 75.3 (CHPh), 64.2 (CH₂CHN), 57.3 (C-C=O), 55.3 (OCH₃), 53.3 (NCH₂Ph), 41.6 (NCH₂CH₂), 41.2 (CH₂CHN), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (film): v_{max} 2966, 2930, 1711 (C=O), 1624, 1597, 1501, 1455, 1379, 1210, 1106 cm⁻¹; MS (ES+): m/z (%): 475 (100, $[M + Na]^+$), 453 (70, [M+ H]⁺); HRMS (ES+): m/z: calcd (%) for C₃₀H₃₂N₂O₂: 453.2537 [M + H⁺]; found: 453.2547.

rac-(2'*R*,5'*S*,3*S*)-1'-Benzyl-2'-furan-2-yl-1-(4-methoxybenzyl)-5'-vinyl-1*H*-spiro[indole-3,3'-pyrrolidin]-2-one 26

Using general procedure I, oxindole 12 (138 mg, 0.17 mmol) and SmI₂ (3.4 mL of a 0.1 M solution in THF, 0.34 mmol) in THF (4 mL), and a solution of imine (62 mg, 0.25 mmol) in THF (1 mL) gave the crude product as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 20% Et_2O in petroleum ether gave 26 (56 mg, 0.11 mmol, 68%) as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Further purification by slow crystallisation from ethanol gave the major diastereoisomer as a white solid, m.p. (EtOH) 138–140 °C: ¹H NMR (500 MHz, CDCl₃): δ 7.46 (dd, J = 7.7, 0.8 Hz, 1H; Ar-CH), 7.28-7.25 (m, 2H; 2 × Ar-CH), 7.22-7.20 (m, 1H; Ar-CH), 7.17-7.15 (m, 2H; 2 × Ar-CH), 7.07-7.01 (m, 4H; 3 × Ar-CH and furyl-CH), 6.96 (td, J = 7.7, 0.8 Hz, 1H; Ar-CH), 6.78 (d, J = 8.8Hz, 2H; $2 \times$ Ar-CH), 6.52 (d, J = 7.7 Hz, 1H; Ar-CH), 6.04 (dd, J = 3.2, 1.9 Hz, 1H; furyl-CH), 5.91 (ddd, *J* = 17.3, 10.1, 8.2 Hz, 1H; CH=CH₂), 5.90 (d, *J* = 3.2 Hz, 1H; furyl-CH), 5.30 (dd, J = 17.3, 1.0 Hz, 1H; CH=CH_AH_B), 5.14 (dd, J = 10.1, 1.6 Hz, 1H; CH=CH_A H_B), 5.01 (d, J = 15.6 Hz, 1H; NC $H_AH_BC_6H_4OCH_3$), 4.58 (d, J = 15.6Hz, 1H; NCH_A $H_BC_6H_4OCH_3$), 4.32 (s, 1H; CHfuryl), 3.94 (d, J = 14.2 Hz, 1H; NCH_AH_BPh), 3.82 (d, J = 14.2 Hz, 1H; NCH_AH_BPh), 3.77 (s, 3H; OCH_3), 3.68-3.63 (m, 1H; CH₂CHN), 2.59 (dd, J = 13.3, 8.9 Hz, 1H; CH_AH_BCHN), 1.99 (dd, J = 13.3, 7.6 Hz, 1H; CH_A H_B CHN); ¹³C NMR (125 MHz, CDCl₃): δ 178.7 (C=O), 158.8 (Ar-C), 151.3 (Ar-C), 142.1 (Ar-C), 141.4 (furyl-CH), 140.1 (CH=CH₂), 136.5 (Ar-C), 132.6 (Ar-C), 129.8 (Ar-CH), 128.2 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-C), 127.6 (Ar-CH), 126.8 (Ar-CH), 125.2 (Ar-CH), 122.1 (Ar-CH), 117.0 (CH=CH₂), 113.9 (Ar-CH), 109.9 (furyl-CH), 108.8 (furyl-CH), 108.5 (Ar-CH), 69.3 (CHfuryl), 64.8 (CH₂CHN), 56.3 (C-C=O), 55.2 (OCH₃), 54.1 (NCH₂Ph), 43.1 (NCH₂C₆H₄OMe), 41.8 (CH₂CHN); IR (film): v_{max} 2924, 2835, 1712 (C=O), 1611, 1513, 1485, 1466, 1359, 1245, 1178, 1155, 1029, 1010, 920, 814, 736, 694 cm⁻¹; MS (ES+): m/z (%): 513 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₃₂H₃₀N₂O₃: 513.2149 $[M + Na^+]$; found: 513.2164.

rac-(1'S,3'S,8a'S)-1-Benzyl-6-methoxy-3'-vinyl-3',5',6',7',8',8a'-hexahydro-2'*H*-spiro[indoline-3,1'-indolizin]-2-one 27

Using general procedure I, oxindole 16 (134 mg, 0.16 mmol) and SmI₂ (3.3 mL of a 0.1 M solution in THF, 0.33 mmol) in THF (3 mL), and a solution of imine (41 mg, 0.33 mmol) in THF (0.5 mL) gave the crude product as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by **FSPE** eluting with MeOH (100 mL) gave the non-fluorous crude product, then eluting with THF (100 mL) gave fluorous disulfide (52 mg, 0.05 mmol, 66%) as a white solid. Further purification of the non-fluorous crude product by flash column chromatography on silica gel eluting with 10% EtOAc in petroleum ether gave 27 (37 mg, 0.10 mmol, 58%) as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Further purification by flash column chromatography on silica gel eluting with 10% EtOAc in petroleum ether gave the major diastereoisomer as a pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.23 (m, 6H; 6 × Ar-CH), 6.53 (dd, J = 8.3, 2.3 Hz, 1H; Ar-CH), 6.29 (d, J = 2.3 Hz, 1H; Ar-CH), 5.81 (ddd, J = 17.1, 9.9, 8.2 Hz, 1H; CH=CH₂), 5.25 (dd, J = 17.1, 1.8 Hz, 1H; CH=CH_AH_B), 5.17 (dd, J = 9.9, 1.8 Hz, 1H; CH=CH_A H_B), 5.03 (d, J = 15.6 Hz, 1H; NC H_A H_BPh), 4.75 (d, J = 15.6 Hz, 1H; NCH_A H_B Ph), 3.73 (s, 3H; OCH₃), 3.20-3.14 (m, 1H; NC H_A H_BCH₂), 3.04 (q, J =8.2 Hz, 1H; NCHCH=CH₂), 2.63-2.57 (m, 2H; NCHCH_AH_BC and NCHCH₂CH₂), 1.92 (td, J = 12.1, 2.5 Hz, 1H; NCH_AH_BCH₂), 1.76 (dd, J = 13.4, 7.8 Hz, 1H; NCHCH_A H_BC), 1.66-1.57 (m, 2H; 2 × CH), 1.46-1.35 (m, 1H; CH), 1.26-1.10 (m, 2H; 2 × CH), 0.97-0.87 (m, 1H; CH); ¹³C NMR (100 MHz, CDCl₃): δ 180.2 (C=O), 159.5 (Ar-C), 143.4 (Ar-C), 139.7 (CH=CH₂), 136.0 (Ar-C), 128.8 (Ar-CH), 127.6 (Ar-CH), 127.2 (Ar-CH), 125.7 (Ar-C), 125.4 (Ar-CH), 117.1 (CH=CH₂), 105.9 (Ar-CH), 96.9 (Ar-CH), 72.2 (NCHCH2CH2), 68.6 (CHCH=CH2), 55.4 (C-C=O and OCH₃), 51.9 (NCH₂CH₂), 43.9 (NCH₂Ph), 42.4 (CH₂C-C=O), 26.6 (CH₂), 25.0 (CH₂), 23.7 (CH₂); IR (film): *v*_{max} 2937, 2852, 2790, 1707 (C=O), 1624, 1598, 1499, 1455, 1378, 1341, 1263, 1210, 1164, 1147, 1119, 1036, 922, 825, 732; MS (ES+): m/z

(%): 411 (60, $[M + Na]^+$), 389 (100, $[M + H]^+$); HRMS (ES+): m/z: calcd for C₂₅H₂₈N₂O₂: 389.2224 $[M + H]^+$; found: 389.2224.

rac-(2'*S*,38,5'S)-1'-Benzyl-5-bromo-2'-isopropyl-1-propyl-5'-vinylspiro[indoline-3,3'-pyrrolidin]-2-one 28

Using general procedure I, oxindole 11 (109 mg, 0.13 mmol) and SmI₂ (2.7 mL of a 0.1 M solution in THF, 0.27 mmol) in THF (2 mL), and a solution of imine (43 mg, 0.27 mmol) in THF (0.5 mL) gave the crude product as a 3:1:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by **FSPE** eluting with MeOH (100 mL) gave the non-fluorous crude product, then eluting with THF (100 mL) gave fluorous disulfide (38 mg, 0.04 mmol, 60%) as a white solid. Further purification of the non-fluorous crude product by flash column chromatography on silica gel eluting with 20% Et₂O in petroleum ether gave **28** (37 mg, 0.08 mmol, 60%, 3:1:1 mixture of diastereoisomers) as a yellow solid. Recrystallisation from Et₂O gave the major diastereoisomer, m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 2.0 Hz, 1H; Ar-CH), 7.38-7.30 (m, 5H; 5 × Ar-CH), 7.28-7.21 (m, 1H; Ar-CH), 6.71 (d, J = 8.3 Hz, 1H; Ar-CH), 5.76 (ddd, J = 17.2, 10.1, 7.8 Hz, 1H; CH=CH₂), 5.06 (br dd, J = 17.2, 1.5 Hz, 1H; CH=CH_AH_B), 4.93 (br dd, J = 10.1, 1.5 Hz, 1H; CH=CH_A H_B), 3.94 (d, J = 14.4 Hz, 1H; NC H_AH_BPh), 3.82 (d, J = 14.4 Hz, 1H; NCH_AH_BPh), 3.71 (dt, J = 14.1, 6.8 Hz, 1H, $NCH_AH_BCH_2$), 3.57 (dt, J = 14.1, 7.1 Hz, 1H, NCH_A H_B CH₂), 3.54-3.48 (m, 1H; CH₂CHN), 3.14 (d, J = 5.0 Hz, 1H; NCHCH(CH₃)₂), 2.44 (dd, J = 13.1, 9.3 Hz, 1H; CH_AH_BCHN), 2.05-1.96 (m, 1H; $CH(CH_3)_2$, 1.75-1.63 (m, 3H; CH_AH_BCHN and CH_2CH_3), 0.96 (t, J = 7.3 Hz, 3H; CH_2CH_3), 0.77 (d, J = 6.8 Hz, 3H; $CH(CH_3)_A(CH_3)_B$, 0.48 (d, J = 7.0 Hz, 3H; CH(CH₃)_A(CH₃)_B; ¹³C NMR (100 MHz, CDCl₃): δ 179.4 (C=O), 141.6 (Ar-C), 140.9 (CH=CH₂), 139.1 (Ar-C), 135.9 (Ar-C), 130.2 (Ar-CH), 129.9 (Ar-CH), 129.2 (ArCH), 128.0 (Ar-CH), 126.7 (Ar-CH), 115.8 (CH=CH₂), 114.4 (Ar-C), 109.4 (Ar-CH), 76.4 (NCHCH(CH₃)₂), 66.6 (CH₂CHN), 56.4 (CH₂Ph), 55.5 (C-C=O), 43.9 (CH₂CHN), 41.8 (NCH₂CH₂CH₃), 29.1 (CHCH(CH₃)₂), 20.5 (CH₂CH₃), 19.5 (CH(CH₃)_A(CH₃)_B), 18.8 (CH(CH₃)_A(CH₃)_B), 11.4 (CH₂CH₃); IR (film): v_{max} 2965, 2929, 1698 (C=O), 1601, 1606, 1478, 1424, 1346, 1217, 1199, 1176, 1107, 917, 826, 704 cm⁻¹; MS (ES+): m/z (%): 491 (80, [⁸¹BrM + Na]⁺), 489 (100, [⁷⁹BrM + Na]⁺); HRMS (ES+): m/z: calcd for C₂₆H₃₁N₂O⁷⁹Br: 489.1512 [M + Na⁺]; found: 489.1510.

rac-(2'*S*,5'*S*,3*S*)-1'Benzyl-6-methoxy-2'-phenyl-5'-vinyl-1*H*-spiro[indole-3,3'pyrrolidin]-2-one 29

Using general procedure I, oxindole 10 (252 mg, 0.35 mmol) and SmI₂ (6.9 mL of a 0.1 M solution in THF, 0.69 mmol) in THF (6 mL), and a solution of imine (135 mg, 0.69 mmol) in THF (1 mL) gave the crude product as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by flash column chromatography on silica gel eluting with 30% EtOAc in petroleum ether gave 29 (109 mg, 0.27 mmol, 76%) as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow oil. Recrystallisation from EtOAc-hexane (1:1) gave the major diastereoisomer as an off-white solid, m.p. (Et₂O) 137-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.3 Hz, 1H; Ar-CH), 7.25-7.20 (m, 3H; Ar-CH), 7.19-7.12 (m, 3H; $3 \times$ Ar-CH), 7.10-7.05 (m, 5H; $4 \times$ Ar-CH and NH), 6.46 (dd, J =8.3, 2.3 Hz, 1H; Ar-CH), 6.13 (d, J = 2.3 Hz, 1H; Ar-CH), 5.93 (ddd, J = 17.3, 10.2, 8.2 Hz, 1H; CH=CH₂), 5.26 (dd, J = 17.3, 1.0 Hz, 1H; CH=CH_AH_B), 5.11 (dd, J =10.2, 1.0 Hz, 1H; CH=CH_A H_B), 4.10 (s, 1H; CHPh), 3.94 (d, J = 14.3 Hz, 1H; NCH_AH_BPh), 3.705 (s, 3H; OCH₃), 3.702 (d, J = 14.3 Hz, 1H; NCH_AH_BPh), 3.66-3.59 (m, 1H; CHCH=CH₂), 2.61 (dd, J = 13.4, 9.3 Hz, 1H; CH_AH_BCHN), 1.89 (dd, J = 13.4, 7.1 Hz, 1H; CH_A H_B CHN); ¹³C NMR (100 MHz, CDCl₃): δ 181.4 (C=O), 159.4 (Ar-C), 140.6 (Ar-C), 140.5 (CH=CH₂), 136.6 (Ar-C), 136.0 (Ar-C), 130.1 (2 × Ar-CH), 128.4 (2 × Ar-CH), 127.8 (2 × Ar-CH), 127.5 (2 × Ar-CH), 127.2 (Ar-CH), 126.9 (Ar-CH), 126.6 (Ar-CH), 125.0 (Ar-C), 116.4 (CH=CH₂), 106.7 (Ar-CH), 96.1 (Ar-CH), 75.2 (CHPh), 64.2 (CHCH=CH₂), 57.8 (C-C=O), 55.3 (OCH₃), 53.3 (NCH₂Ph), 41.5 (CH₂CHN); IR (film): v_{max} 3220 (NH), 2923, 2835, 1705 (C=O), 1627, 1596, 1501, 1453, 1335, 1305, 1277, 1191, 1152, 1119, 1108, 1024, 920, 823, 749, 698; MS (ES-): m/z (%): 409 (100, $[M - H]^+$); HRMS (ES-): m/z: calcd for C₂₇H₂₅N₂O₂: 409.1921 $[M - H]^+$; found: 409.1916.

rac-(2'*S*,38,5'S)-1'-Benzyl-6-methoxy-2'-(pyridin-3-yl)-5'-vinylspiro[indoline-3,3'-pyrrolidin]-2-one 30

Using general procedure I, oxindole 10 (87 mg, 0.12 mmol) and SmI₂ (2.4 mL of a 0.1 M solution in THF, 0.24 mmol) in THF (2 mL), and a solution of imine (47 mg, 0.24 mmol) in THF (0.5 mL) gave the crude product as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by **FSPE** eluting with MeOH (100 mL) gave the non-fluorous crude product, then eluting with THF (100 mL) gave fluorous disulfide (41 mg, 0.04 mmol, 72%) as a white solid. Further purification of the non-fluorous crude product by flash column chromatography on silica gel eluting with EtOAc gave 30 (34 mg, 0.08 mmol, 69%) as a 5:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a vellow oil. Further purification by flash column chromatography on silica gel eluting with EtOAc gave the major diastereoisomer as a yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 8.36-8.29 (m, 3H; 2 × pyridyl-CH and NH), 7.41 (d, J = 5.0 Hz, 1H; pyridyl-CH), 7.24-7.18 (m, 4H; 4 × Ar-CH), 7.03-7.01 (m, 2H; 2 × Ar-CH), 6.97 (dd, J = 7.6, 5.0 Hz, 1H; pyridyl-CH), 6.44 (dd, J = 8.3, 2.3 Hz, 1H; Ar-CH), 6.15 (d, J = 2.3 Hz, 1H; Ar-CH), 5.96 (ddd, J =17.3, 10.1, 8.0 Hz, 1H; CH=CH₂), 5.31 (dd, J = 17.3, 0.9 Hz, 1H; CH=CH_AH_B), 5.17 (dd, J = 10.1, 0.9 Hz, 1H; CH=CH_AH_B), 4.12 (s, 1H; CH-pyridyl), 3.86 (d, J = 14.2Hz, 1H; NCH_AH_BPh), 3.73 (d, J = 14.2 Hz, 1H; NCH_AH_BPh), 3.69 (s, 3H; OCH₃), 3.71-3.65 (m, 1H; NCHCH=CH₂), 2.63 (dd, J = 13.4, 9.1 Hz, 1H; CH_AH_BCHN), 1.93

(dd, J = 13.4, 7.0 Hz, 1H; CH_A H_B CHN); ¹³C NMR (100 MHz, CDCl₃): δ 181.0 (C=O), 159.6 (Ar-C), 149.5 (pyridyl-CH), 148.5 (pyridyl-CH), 140.9 (Ar-C), 140.0 (CH=CH₂), 136.0 (pyridyl-CH), 135.7 (Ar-C), 132.7 (Ar-C), 129.9 (Ar-CH), 128.0 (Ar-CH), 127.1 (Ar-CH), 126.3 (Ar-CH), 124.1 (Ar-C), 122.5 (pyridyl-CH), 117.0 (CH=CH₂), 106.7 (Ar-CH), 96.5 (Ar-CH), 73.1 (CH-pyridyl), 64.6 (NCHCH=CH₂), 57.8 (*C*-C=O), 55.3 (OCH₃), 53.6 (N*C*H₂Ph), 41.1 (*C*H₂CHN); IR (film): v_{max} 3204 (NH), 2924, 2834, 1697 (C=O), 1632, 1594, 1502, 1345, 1315, 1262, 1150, 1122, 1074, 1023, 923; MS (ES+): m/z (%): 434 (100, [M + Na]⁺); HRMS (ES+): m/z: calcd for C₂₆H₂₅N₃O₂: 434.1839 [M + H]⁺; found: 434.1834.

Benzylidene-[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)-benzyl]amine

Benzaldehyde (0.09 mL, 0.90 mmol, 1.0 eq) and MgSO₄ (excess) were added to a solution of 4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)-benzylamine (500 mg, 0.90 mmol, 1.0 eq) in CH₂Cl₂ (5.00 mL). The resulting mixture was stirred for 18 h, then filtered through Celite. Evaporation of the filtrate gave benzylidene-[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)-benzyl]-amine (296 mg, 0.46 mmol, 51%) as a white powder, m.p. 95-97 °C (MeOH); ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H; CH=N), 7.77-7.82 (m, 2H; 2 × Ar-CH), 7.40-7.47 (m, 3H; 3 × Ar-CH), 7.31 (d, *J* = 8.1 Hz, 2H; 2 × Ar-CH), 7.21 (d, *J* = 8.1 Hz, 2H; 2 × Ar-CH), 4.82 (s, 2H; NCH₂), 2.88-2.95 (m, 2H; CH₂CH₂C₈F₁₇), 2.28-2.45 (m, 2H; CH₂C₈F₁₇); ¹³C NMR (400 MHz, CDCl₃): δ 162.0 (CH=N), 137.8 (2 × Ar-C), 136.1 (Ar-C), 130.8 (Ar-CH), 128.6 (Ar-CH), 128.45 (Ar-CH), 128.43 (Ar-CH), 128.3 (Ar-CH), 64.7 (NCH₂), 33.0 (t, *J* = 21.2 Hz; CH₂C₈F₁₇), 26.1 (t, *J* = 4.2 Hz; CH₂CH₂C₈F₁₇); IR (film): *v* 2917, 2848, 1640 (C=N), 1371, 1332, 1198, 1144, 1114, 1085, 955, 825, 703, 655; MS (ES+): *m/z* (%): 642 (100, [*M* + H]⁺); HRMS (ES+): *m/z*: calcd for C₂₂H₁₇NF₁₇: 642.1084 [*M* + H]⁺; found: 642.1079.

rac-(2'S,3S,5'S)-1'-(4-(3,3,4,4,5,5,6,6,7,7,8,8,9,910,10,10-Heptafluorodecyl)benzyl-6-methoxy-2'-phenyl-5'-vinylspiro[indoline-3,3'-pyrrolidin]-2-one 41

Using general procedure I, oxindole 10 (109 mg, 0.15 mmol) and SmI₂ (3.0 mL of a 0.1 M solution in THF, 0.30 mmol) in THF (4 mL), and imine (115 mg, 0.18 mmol) gave the crude product as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy). Purification by FSPE eluting with 60% aqueous MeCN gave the nonfluorous reaction components, then elution with MeOH (100 mL) gave spirooxindole 41 (87 mg, 0.10 mmol, 68%) as a 4:1 mixture of diastereoisomers (by ¹H NMR spectroscopy) as a pale yellow solid, then eluting with THF (100 mL) gave fluorous disulfide (60 mg, 0.06 mmol, 84%) as an off-white solid. Further purification of the fluorous fraction by flash column chromatography on silica gel eluting with 3% acetone in CHCl₃ allowed separation of the diastereoisomers. 41 (major diastereoisomer): m.p. (Et₂O) 131-134 °C; ¹H NMR (400 MHz, CDCl₃): δ7.81 (s, 1H; NH), 7.30 (d, J = 8.3 Hz, 1H; Ar-CH), 7.40-7.00 (m, 7H; Ar-CH), 6.99 (d, J = 8.0 Hz, 2H; $2 \times$ Ar-CH), 6.46 (dd, J = 8.3, 2.4 Hz, 1H; Ar-CH), 6.16 (d, J = 2.4 Hz, 1H; Ar-CH), 5.95 (ddd, J = 17.2, 10.1, 8.3 Hz, 1H; CH=CH₂), 5.29 (dd, J = 17.2, 1.1 Hz, 1H; CH=CH_AH_B), 5.15 (dd, J = 10.1, 1.1 Hz, 1H; CH=CH_AH_B), 4.08 (s, 1H; CHPh), 3.91 (d, J = 14.1 Hz, 1H; NCH_AH_BAr), 3.72 (d, J = 14.1 Hz, 1H; NCH_AH_BAr), 3.70 (s, 3H; OCH₃), 3.65-3.59 (m, 1H; CHCH=CH₂), 2.90-2.86 (m, 2H; CH₂S), 2.60 (dd, J = 13.4, 9.6 Hz, 1H; CH_AH_BCHN), 2.40-2.30 (m, 2H; $CH_2C_8F_{17}$), 1.89 (dd, J = 13.4, 7.0 Hz, 1H; CH_AH_BCHN); ¹³C NMR (100 MHz, CDCl₃): δ181.5 (C=O), 159.4 (Ar-C), 140.6 (CH=CH₂), 140.4 (Ar-C), 137.7 (Ar-C), 136.5 (Ar-C), 134.1 (Ar-C), 130.6 (Ar-CH), 128.4 (Ar-CH), 127.8 (Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 126.6 (Ar-CH), 124.9 (Ar-C), 116.6 (CH=CH₂), 106.7 (Ar-CH), 96.2 (Ar-CH), 74.9 (CHPh), 63.8 (CHCH=CH₂), 57.9 (C-C=O), 55.3 (OCH₃), 52.5 (NCH₂Ar), 41.3 (CH₂CHN), 33.0 (t, J = 22.2 Hz; CH₂C₈F₁₇), 26.0 (t, J = 3.7 Hz; CH₂S); IR (film): v_{max} 3200 (NH), 3016, 2959, 2937, 1714 (C=O), 1624, 1505, 1455, 1237, 1199, 1146, 12113, 984,

835, 802, 701; MS (ES+): m/z (%): 879 (100, $[M + Na]^+$), 857 (20, $[M + H]^+$); HRMS (ES+): m/z: calcd for C₃₇H₂₉N₂O₂: 857.2031 $[M + Na]^+$; found: 857.2031.

Reduction of fluorous disulfide to fluorous thiol:

In all tag-removal cyclisation reactions to form spirooxindoles, **FSPE** can be used to isolate fluorous disulfide for recycling.

$$C_8F_{17}$$
 S C_8F_{17} PBu_3P, H_2O, THF C_8F_{17} SH

A solution of water (0.57 mL of a 1.0 M solution in THF, 0.57 mmol) and n-Bu₃P (141 µL, 0.57 mmol) were added sequentially to a stirred solution of disulfide⁹ (500 mg, 0.52 mmol) in THF (15 mL) at room temperature under nitrogen. The resulting solution was stirred at room temperature for 9 h, then evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation (bp 60-70 °C, 10 mm Hg) gave fluorous thiol⁹ (349 mg, 0.73 mmol, 70%) as a colorless oil.

Use of recycled fluorous thiol in a Pummerer reaction:

Using general procedure D, hydroxyamide S7 (289 mg, 1.29 mmol) was oxidized to the corresponding glyoxamide. Using general procedure F, the crude glyoxamide, recycled fluorous thiol (621 mg, 1.29 mmol) and TFAA (360 μ L, 2.59 mmol) in CH₂Cl₂ (10 mL) gave the crude product. Purification by **FSPE** eluting with 60% MeCN in water gave the non-fluorous components of the mixture, then elution with MeCN gave oxindoles **17** (688 mg, 1.01 mmol, 78%) as a 5:1 mixture of regioisomers (by ¹H NMR spectroscopy) as a pale brown oil.

rac-(2'*S*,5'*S*,3*S*)-1'-Benzyl-6-methoxy-2-oxo-2'-phenyl-1-propyl-1,2dihydrospiro[indole-3,3'-pyrrolidine]-5'-carbaldehyde 31

Using general procedure J, OsO₄ (207 µL of a 2.5% w/v solution in *tert*-butanol, 20.3 µmol), NMO (71 mg, 0.6 mmol) and spirooxindole 25 (92 mg, 0.20 mmol) in acetone (12 mL) and water (1.5 mL), then NaIO₄ (61 mg, 0.29 mmol) in THF (10 mL) and water (2 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 20% EtOAc in petroleum ether gave aldehyde 31 (80 mg, 0.18 mmol, 87% over two steps) as a white solid, m.p. (Et₂O) 148-151 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.22 (d, J = 1.8 Hz, 1H; CHO), 7.30-7.17 (m, 7H; 7 × Ar-CH), 7.13 (d, J = 8.3 Hz, 1H; Ar-CH), 7.08-7.03 (m, 3H; $3 \times$ Ar-CH), 6.38 (dd, J = 8.3, 2.2Hz, 1H; Ar-CH), 6.06 (d, J = 2.2 Hz, 1H; Ar-CH), 4.27 (s, 1H; CHPh), 4.02 (d, J =12.7 Hz, 1H; NCH_AH_BPh), 3.67 (OCH₃), 3.63-3.56 (m, 2H; CH₂CHN and $NCH_AH_BCH_2$), 3.31 (d, J = 12.7 Hz, 1H; NCH_AH_BPh), 3.32-3.25 (m, 1H; $NCH_AH_BCH_2$), 2.71 (dd, J = 13.8, 11.4 Hz, 1H; CH_AH_BCHN), 1.97 (dd, J = 13.8, 5.6 Hz, 1H; CH_A H_B CHN), 1.51-1.38 (m, 2H; CH₂CH₃), 0.74 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 201.7 (C=O), 177.8 (C=O), 159.8 (Ar-C), 143.6 (Ar-C), 137.0 (Ar-C), 135.9 (Ar-C), 130.0 (Ar-CH), 128.6 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.74 (Ar-CH), 127.71 (Ar-CH), 125.8 (Ar-CH), 123.0 (Ar-C), 105.4 (Ar-CH), 96.1 (Ar-CH), 76.8 (CHPh), 70.3 (CH₂CHN), 57.8 (NCH₂Ph), 57.3 (C-C=O), 55.4 (OCH₃), 41.7 (NCH₂CH₂), 36.3 (CH₂CHN), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (film): v_{max} 2961, 2934, 1726 (C=O), 1713 (C=O), 1624, 1600, 1503, 1455, 1379, 1210, 1107 cm⁻¹; MS (ES+): m/z (%): 477 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd (%) for $C_{29}H_{30}N_2O_3$: 477.2149 [$M + Na^+$]; found: 477.2161.

rac-(2'*S*,5'*S*,3*S*)-1'-Benzyl-6-methoxy-2-oxo-2'-phenyl-1,2-dihydrospiro[indole-3,3'pyrrolidine]-5'-carbaldehyde 32

OsO₄ (0.27 mL of a 2.5% w/v solution in *tert*-butanol, 0.03 mmol) and NMO (95 mg, 0.81 mmol) were added to a stirred suspension of spirooxindole 29 (110 mg, 0.27 mmol) in acetone (9 mL) and water (1.5 mL) at room temperature under nitrogen. The resulting suspension was stirred at room temperature for 48 h, then a saturated aqueous solution of Na₂S₂O₃ (10 mL) and CH₂Cl₂ (10 mL) were added. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 15 mL). The combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude diol product. The crude product was dissolved in EtOAc (6.8 mL), Pb(OAc)₄ (180 mg, 0.41 mmol) was added and the resulting suspension was stirred at room temperature for 15 min. The resulting mixture was filtered through a short silica plug, washing with EtOAc. The filtrate was evaporated under reduced pressure to give aldehyde **32** (100 mg, 0.24 mmol, 94% over two steps) as a white foam; ¹H NMR (500 MHz, CDCl₃): δ 9.29 (d, J = 3.5 Hz, 1H; CHO), 7.64 (s, 1H; NH), 7.38-7.28 (m, 7H; 7 × ArCH), 7.19-7.11 (m, 4H; 4 × ArCH), 6.46 (dd, J = 8.2, 2.3 Hz, 1H; ArCH), 6.20 (d, J = 2.3 Hz, 1H; ArCH), 4.34 (s, 1H; CHPh), 4.10 (d, J = 12.7 Hz, 1H; $CH_{A}H_{B}Ph$), 3.71 (s, 3H; OCH₃), 3.66 (ddd, J = 10.9, 5.4, 3.5 Hz, 1H; CHCHO), 3.40 (d, J = 12.7 Hz, 1H; CH_AH_BPh), 2.78 (dd, J = 13.7, 10.9 Hz, 1H; CH_AH_BCHN), 2.10 (dd, J = 13.7, 5.4 Hz, 1H; CH_AH_BCHN); ¹³C NMR (100 MHz, CDCl₃): δ 201.5 (C=O), 179.9 (C=O), 159.8 (Ar-C), 140.7 (Ar-C), 136.8 (Ar-C), 136.0 (Ar-C), 130.0 (2 × Ar-CH), 128.6 (3 × Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.9 (2 × Ar-CH), 127.8 (Ar-CH), 126.2 (Ar-CH), 123.1 (Ar-C), 106.9 (Ar-CH), 96.7 (Ar-CH), 76.6 (CHPh), 70.3 (CHCHO), 57.9 (C-C=O), 57.8 (PhCH₂), 55.3 (OCH₃), 36.4 (CH₂CHN); IR (film): v_{max} 3238 (NH), 2928, 2825, 1722 (2 × C=O), 1629, 1596, 1501, 1453, 1342, 1307, 1272, 1191, 1154, 1122, 1027, 825, 753, 698; MS (ES-): m/z (%): 411 (100, $[M - H]^+$); HRMS (ES+): m/z: calcd for C₂₆H₂₅N₂O₃: 413.1860 [M +H⁺]; found: 413.1877.

rac-(2'*S*,5'*S*,3*S*)-1'-Benzyl-6-methoxy-2-oxo-2'-phenyl-1-propyl-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylic acid methyl ester 33

Using general procedure K, oxidant solution (1.60 mL), aldehyde **31** (77 mg, 0.17 mmol) in tert-butanol (4 mL), MeCN (4 mL) and 2-methyl-2-butene (2 mL) then trimethylsilyldiazomethane (1.50 mL of a 2.0 M solution in hexanes, 3.00 mmol) in anhydrous MeOH (8 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 20% EtOAc in petroleum ether gave methyl ester **33** (66 mg, 0.14 mmol, 80%) as a white solid, m.p. (Et₂O) 116-118 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz, 1H; Ar-CH), 7.32-7.22 (m, 7H; 7 × Ar-CH), 7.10-7.08 (m, 3H; 3 × Ar-CH), 6.51 (dd, J = 2.5, 8.3 Hz, 1H; Ar-CH), 6.09 (d, J = 2.5 Hz, 1H; Ar-CH), 4.19 (s, 1H; CHPh), 4.04 (d, J = 13.6 Hz, 1H; NCH_AH_BPh), $3.77 \text{ (dd, } J = 11.1, 5.6 \text{ Hz}, 1\text{H}; \text{NCHCO}_2\text{CH}_3\text{)}, 3.75 \text{ (s, 3H; OCH}_3\text{)}, 3.64 \text{ (ddd, } J = 11.1, 5.6 \text{ Hz}, 1\text{H}; \text{NCHCO}_2\text{CH}_3\text{)}, 3.75 \text{ (s, 3H; OCH}_3\text{)}, 3.64 \text{ (ddd, } J = 11.1, 5.6 \text{ Hz}, 1\text{H}; \text{NCHCO}_2\text{CH}_3\text{)}, 3.75 \text{ (s, 3H; OCH}_3\text{)}, 3.64 \text{ (ddd, } J = 11.1, 5.6 \text{ Hz}, 1\text{H}; \text{NCHCO}_2\text{CH}_3\text{)}, 3.75 \text{ (s, 3H; OCH}_3\text{)}, 3.64 \text{ (ddd, } J = 11.1, 5.6 \text{ Hz}, 11.$ 14.5, 8.5, 6.3 Hz, 1H; NCH_AH_BCH₂), 3.51 (d, J = 13.6 Hz, 1H; NCH_AH_BPh), 3.45 (s, 3H; OCH₃), 3.31 (ddd, J = 14.5, 8.2, 6.6 Hz, 1H; NCH_AH_BCH₂), 2.80 (dd, J = 13.5, 11.1 Hz, 1H; CH_AH_BCHN), 2.13 (dd, J = 13.5, 5.6 Hz, 1H; CH_AH_BCHN), 1.54-1.44 (m, 2H; CH₂CH₃), 0.79 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 178.1 (C=O), 174.1 (C=O), 159.7 (Ar-C), 143.4 (Ar-C), 136.1 (Ar-C), 135.8 (Ar-C), 130.0 (Ar-CH), 128.3 (Ar-CH), 128.0 (Ar-CH), 127.5 (Ar-CH), 127.3 (Ar-CH), 127.2 (Ar-CH), 123.5 (Ar-C), 105.4 (Ar-CH), 95.7 (Ar-CH), 76.3 (CHPh), 63.3 (NCHCO₂Me), 57.4 (C-C=O), 56.2 (NCH₂Ph), 55.3 (OCH₃), 51.6 (OCH₃), 41.7 (NCH₂CH₂), 38.2 (CH₂CHN), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (film): v_{max} 2951, 2930, 1747 (C=O), 1711 (C=O), 1624, 1504, 1435, 1382, 1367, 1209, 1173, 1106 cm⁻¹; MS (ES+): m/z (%): 507 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₃₀H₃₂N₂O₄: $507.2254 [M + Na^+]$; found: 507.2262.

rac-(2'*S*,5'*S*,3*S*)-1'-Benzyl-6-methoxy-2-oxo-2'-phenyl-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylic acid methyl ester 34

Using general procedure K, oxidant solution (2.4 mL), aldehyde 32 (100 mg, 0.24 mmol) in tert-butanol (10.4 mL), MeCN (10.4 mL) and 2-methyl-2-butene (5.2 mL) then trimethylsilyldiazomethane (2.1 mL of a 2.0 M solution in hexanes, 4.20 mmol) in anhydrous MeOH (14.9 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 40% EtOAc in petroleum ether gave methyl ester 34 (85 mg, 0.13 mmol, 80%) as a white solid, m.p. (EtOAc/hexane) 172 -175 °C; ¹H NMR (500 MHz, CDCl₃): δ7.79 (s, 1H; NH), 7.72 (d, *J* = 8.5 Hz, 1H; ArCH), 7.33-7.22 (m, 7H; 7 × ArCH), 7.13-7.10 (m, 3H; 3 × ArCH), 6.52 (dd, J = 8.5, 2.4 Hz, 1H; ArCH), 6.16 (d, J = 2.4 Hz, 1H; ArCH), 4.19 (s, 1H; CHPh), 4.04 (d, J = 13.6 Hz, 1H; NCH_AH_BPh), 3.77-3.74 (m, 1H; CHCO₂CH₃), 3.71 (s, 3H; OCH₃), 3.51 (d, J =13.6 Hz, 1H; NCH_AH_BPh), 3.46 (s, 3H; OCH₃), 2.80 (dd, J = 13.4, 10.9 Hz, 1H; $CH_{A}H_{B}CHN$), 2.18 (dd, J = 13.4, 6.2 Hz, 1H; $CH_{A}H_{B}CHN$); ¹³C NMR (100 MHz, CDCl₃): *δ* 180.3 (C=O), 174.0 (C=O), 159.6 (Ar-C), 140.5 (Ar-C), 136.8 (Ar-C), 135.9 (Ar-C), 130.0 (Ar-CH), 129.5 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.0 (2 × Ar-CH), 127.7 (Ar-CH), 127.65 (Ar-CH), 127.63 (Ar-CH), 127.3 (Ar-CH), 123.6 (Ar-C), 106.9 (Ar-CH), 96.2 (Ar-CH), 76.1 (CHPh), 63.2 (CHCO₂CH₃), 57.9 (C-C=O), 56.1 (NCH₂Ph), 55.4 (OCH₃), 51.7 (OCH₃), 38.4 (CH₂CHN); IR (film): v 3243 (NH), 3030, 2941, 2830, 1708 (C=O), 1624 (C=O), 1596, 1453, 1342, 1240, 1200, 1149, 1024, 1110, 1027, 827, 751, 700, 668; MS (ES+): m/z (%): 465 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₇H₂₆N₂O₄: $465.1785 [M + Na]^+$; found: 465.1779.

rac-(2'*S*,5'*S*,3*S*)-6-Methoxy-2-oxo-2'-phenyl-1-propyl-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylic acid methyl ester 35

Using general procedure L, N-benzyl amine 33 (38 mg, 0.08 mmol) and Pd(OH)₂ (8 mg, 20% wt.) in a 0.05 M solution of HCl in MeOH (8 mL) gave amine 35 (30 mg, 0.08 mmol, 97%) as a white solid, m.p. (Et₂O) 66-69 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 8.3 Hz, 1H; Ar-CH), 7.12-7.06 (m, 5H; 5 × Ar-CH), 6.41 (dd, J = 8.3, 2.3 Hz, 1H; Ar-CH), 6.15 (d, J = 2.3 Hz, 1H; Ar-CH), 4.68 (s, 1H; CHPh), 4.43 $(dd, J = 10.6, 5.8 Hz, 1H; NCHCO_2CH_3), 3.85 (s, 3H; OCH_3), 3.72 (s, 3H; OCH_3),$ 3.68 (ddd, J = 14.5, 8.3, 6.3 Hz, 1H; NCH_AH_BCH₂), 3.41 (ddd, J = 14.5, 8.1, 6.8 Hz, 1H; NCH_A H_B CH₂), 3.21 (br s, 1H; NH), 2.95 (dd, J = 13.5, 10.6 Hz, 1H; CH_AH_BCHN), 2.33 (dd, J = 13.5, 5.8 Hz, 1H; CH_AH_BCHN), 1.62-1.48 (m, 2H; CH_2CH_3), 0.85 (t, J = 7.3 Hz, 3H; CH_3); ¹³C NMR (100 MHz, $CDCl_3$): δ 178.0 (C=O), 173.9 (C=O), 159.7 (Ar-C), 143.5 (Ar-C), 136.1 (Ar-C), 127.6 (Ar-CH), 126.6 (Ar-CH), 125.7 (Ar-CH), 122.8 (Ar-C), 105.5 (Ar-CH), 96.1 (Ar-CH), 71.2 (CHPh), 58.0 (C-C=O), 57.4 (NCHCO₂CH₃), 55.3 (OCH₃), 52.5 (OCH₃), 41.8 (CH₂N), 40.2 (CH₂CHN), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (neat): v_{max} 3337 (NH), 2956, 2933, 1739 (C=O), 1701 (C=O), 1625, 1599, 1500, 1380, 1204, 1175, 1097, 1013 cm⁻¹; MS (ES+): m/z (%): 395 (100, $[M + H]^+$); HRMS (ES+): m/z: calcd for C₂₃H₂₆N₂O₄: 395.1965 [*M* + Na⁺]; found: 395.1978.

rac-(2'*S*,5'*S*,3*S*)-6-Methoxy-2-oxo-2'-phenyl-1,2-dihydro-spiro[indole-3,3'pyrrolodine]-5'-carboxylic acid methyl ester 36

Using general procedure L, *N*-benzyl amine **34** (70 mg, 0.16 mmol) and Pd(OH)₂ (14 mg, 20% wt.) in a 0.05 M solution of HCl in MeOH (4.6 mL) gave amine **36** (41 mg, 0.25 mmol, 74%) as a white foam; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (s, 1H; NH), 7.18-7.07 (m, 6H; 6 × Ar-CH), 6.41 (dd, *J* = 8.3, 2.4 Hz, 1H; Ar-CH), 6.19 (d, *J* = 2.4 Hz, 1H; Ar-CH), 4.64 (s, 1H; CHPh), 4.35 (dd, *J* = 10.3, 6.1 Hz, 1H; NCHCO₂Me), 3.84 (s, 3H; OCH₃), 3.70 (s, 3H; OCH₃), 2.93 (dd, *J* = 13.5, 10.3 Hz, 1H; CH_AH_BCHN), 2.87 (br s, 1H; NHCHCO₂Me), 2.36 (dd, *J* = 13.5, 6.1 Hz, 1H; CH_AH_BCHN); ¹³C NMR (100 MHz, CDCl₃): δ 180.5 (C=O), 174.1 (C=O), 159.6 (Ar-C), 140.6 (Ar-C), 136.9 (Ar-C), 127.7 (2 × Ar-CH), 127.5 (Ar-CH), 126.7 (Ar-CH and Ar-C), 126.1 (Ar-CH), 123.4 (Ar-CH), 106.9 (Ar-CH), 96.5 (Ar-CH), 71.3 (CHPh), 58.5 (CHCO₂CH₃), 57.6 (*C*-C=O), 55.3 (OCH₃), 52.3 (OCH₃), 40.5 (CH₂CHN); IR (film): *v*_{max} 3202 (NH), 2951, 2921, 2849, 1718 (broad; C=O), 1628, 1598, 1506, 1457, 1340, 1311, 1276, 1193, 1154, 1125, 1031, 833, 754, 699; MS (ES+): *m/z* (%): 353 (100, [*M* + H]⁺); HRMS (ES+): *m/z*: calcd for C₂₀H₂₁N₂O₄: 353.1496 [*M* + H]⁺; found: 353.1498.

(2'S,5'S,3S)-6-Methoxy-2-oxo-2'-phenyl-1-propyl-1'-[1-(3,3,3trichloroethoxycarbonyl)-pyrrolidine-2S-carbonyl]-1,2-dihydrospiro[indole-3,3'pyrrolidine]-5'-carboxylic acid methyl ester 37b and (2'R,5'R,3R)-6-Methoxy-2-oxo-2'-phenyl-1-propyl-1'-[1-(3,3,3trichloroethoxycarbonyl)-pyrrolidine-2S-carbonyl]-1,2-dihydrospiro[indole-3,3'pyrrolidine]-5'-carboxylic acid methyl ester 37a

Using general procedure M, a solution of *N*-Troc (*S*)-prolinyl chloride (136 mg, 0.44 mmol) in CH₂Cl₂ (3 mL), amine **35** (58 mg, 0.15 mmol) and Et₃N (123 μ L, 0.88

mmol) in CH₂Cl₂ (12 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 50% EtOAc in hexane gave amide 37b (49 mg, 0.07 mmol, 50%) as a white solid, m.p. (Et₂O) 158-160 °C; $[\alpha]_D^{21} = +38.4$ (c 0.75, CHCl₃); ¹H NMR (500 MHz; CDCl₃, 3:1 mixture of rotamers; data given for major rotamer only): δ 8.32 (d, J = 7.6 Hz, 1H; Ar-CH), 7.53 (t, J = 7.6 Hz, 1H; Ar-CH), 7.33 (t, J = 7.6 Hz, 1H; Ar-CH), 7.15 (t, J = 7.6 Hz, 1H; Ar-CH), 6.48 (d, J = 7.6 Hz, 1H; Ar-CH), 6.35 (d, J = 2.3 Hz, 1H; Ar-CH), 6.08 (dd, J = 8.5, 2.3 Hz, 1H; Ar-CH), 5.46 (d, J = 8.5 Hz, 1H; Ar-CH), 5.44 (s, 1H; CHPh), 5.36 (d, J = 12.0 Hz, 1H; $CH_{A}H_{B}CCl_{3}$, 5.18 (dd, J = 11.3, 6.8 Hz, 1H; NCHCO₂CH₃), 4.59 (d, J = 12.0 Hz, 1H; $CH_AH_BCCl_3$), 4.34 (dd, J = 8.5, 3.8 Hz, 1H; NCHC(O)N), 3.85 (s, 3H; OCH_3), 3.80-3.72 (m, 1H; CHN), 3.73 (s, 3H; OCH₃), 3.66-3.60 (m, 1H; CHN), 3.50-3.44 (m, 2H; 2 × CHN), 2.43 (dd, J = 13.3, 6.8 Hz, 1H; CH_AH_BCHCO₂CH₃), 2.34 (dd, J =13.3, 11.3 Hz, 1H; CH_AH_BCHCO₂CH₃), 2.12-2.04 (m, 1H; CH), 1.77-1.61 (m, 4H; 2 × CH₂), 1.46-1.38 (m, 1H; CH), 0.98 (t, J = 7.3 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, 3:1 mixture of rotamers; data given for major rotamer only): δ 178.1 (C=O), 173.3 (C=O), 172.7 (C=O), 160.5 (C=O), 151.7 (Ar-C), 144.2 (Ar-C), 139.6 (Ar-C), 129.0 (Ar-CH), 128.7 (Ar-CH), 128.4 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 126.2 (Ar-CH), 117.2 (Ar-C), 105.5 (Ar-CH), 97.1 (CCl₃), 96.2 (Ar-CH), 73.5 (OCH₂CCl₃), 66.1 (CHPh), 58.0 (NCHCO₂CH₃), 57.3 (C-C=O), 56.7 (NCHC(O)N), 55.4 (OCH₃), 52.4 (OCH₃), 47.6 (NCH₂CH₂CH₂), 41.6 (NCH₂CH₂CH₃), 36.5 (CH₂CHN), 30.5 (CH₂), 23.3 (CH₂), 20.7 (CH₂CH₃), 11.4 (CH₃); IR (neat): v_{max} 2951, 2931, 1732 (C=O), 1717 (C=O), 1703 (C=O), 1656 (C=O), 1623, 1408, 1348, 1310, 1211, 1170, 1112, 1173 cm⁻¹; MS (ES+): m/z (%): 690 (85, $[{}^{35}Cl_{2}{}^{37}ClM + Na]^{+}$); 688 (100, $[{}^{35}\text{Cl}_3M + \text{Na}]^+$; HRMS (ES+): m/z: calcd for C₃₁H₃₄N₃O₇Cl₃: 688.1365 [M + Na⁺]; found: 688.1355; and amide 37a (47 mg, 0.07 mmol, 48%) as an amorphous white solid, $[\alpha]_D^{21} = +43.2$ (c 0.84, CHCl₃); ¹H NMR (500 MHz; D₆-DMSO, complex mixture of rotamers; data given for the two major rotamers only): $\delta 8.55-8.23$ (br m, 2H; Ar-CH, both rotamers), 7.57-7.36 (br m, 2H; Ar-CH, both rotamers), 7.34 (t, J =7.3 Hz, 1H; Ar-CH, one rotamer), 7.30 (t, J = 7.3 Hz, 1H; Ar-CH, one rotamer), 7.22-7.08 (br m, 2H; Ar-CH, both rotamers), 6.88-6.72 (br m, 2H; Ar-CH, both rotamers), 6.66 (d, J = 2.2 Hz, 1H; Ar-CH, one rotamer), 6.64 (d, J = 2.2 Hz, 1H; Ar-CH, one rotamer), 6.14 (dd, J = 8.2, 2.2 Hz, 1H; Ar-CH, one rotamer), 6.10 (d, J = 8.2, 2.2 Hz, 1H; Ar-CH, one rotamer), 5.32 (d, J = 8.2 Hz, 1H; Ar-CH, one rotamer), 5.27 (d, J =

8.2 Hz, 1H; Ar-CH, one rotamer), 4.98 (s, 2H; CHPh, both rotamers), 4.83 (d, J =12.3 Hz, 1H; CH_AH_BCCl₃, one rotamer), 4.79-4.75 (m, 1H; C(O)NCH, one rotamer), 4.76 (d, J = 12.3 Hz, 1H; CH_AH_BCCl₃, one rotamer), 4.72 (dd, J = 11.4, 7.3 Hz, 1H; C(O)NCH, one rotamer), 4.64 (d, J = 12.3 Hz, 1H; CH_AH_BCCl₃, one rotamer), 4.21 (d, J = 12.3 Hz, 1H; CH_AH_BCCl₃, one rotamer), 4.16 (dd, J = 8.8, 2.5 Hz, 1H; C(O)NCH, one rotamer), 4.03 (dd, J = 9.2, 2.2 Hz, 1H; C(O)NCH, one rotamer), 3.74 (s, 3H; OCH₃, one rotamer), 3.72 (s, 3H; OCH₃, one rotamer), 3.72-3.61 (m, 4H; NCH₂CH₂CH₃, both rotamers), 3.69 (s, 3H; OCH₃, one rotamer), 3.68 (s, 3H; OCH₃, one rotamer), 3.66-3.51-3.34 (m, 4H; NCH₂CH₂CH₂, both rotamers), 2.37-2.30 (m, 4H; 2 × CH, both rotamers), 1.94-1.79 (m, 4H; 2 × CH, both rotamers), 1.71-1.57 (m, 4H; CH_2CH_3 , both rotamers), 0.898 (t, J = 7.3 Hz, 3H; CH_3 , one rotamer), 0.895 (t, J = 7.3 Hz, 3H; CH₃, one rotamer); ¹³C NMR (125 MHz, D_6 -DMSO, complex mixture of rotamers; data given for the two major rotamers only): δ 178.4 (C=O, one rotamer), 178.3 (C=O, one rotamer), 172.0 (C=O, one rotamer), 171.8 (C=O, one rotamer), 171.3 (C=O, one rotamer), 171.2 (C=O, one rotamer), 160.2 (C=O, both rotamers), 152.0 (Ar-C, one rotamer), 151.5 (Ar-C, one rotamer), 144.2 (Ar-C, both rotamers), 138.3 (Ar-C, one rotamer), 138.2 (Ar-C, one rotamer), 128.2-127.5 (3 × Ar-CH, both rotamers), 125.6 (Ar-CH, one rotamer), 125.4 (Ar-CH, one rotamer), 116.8 (Ar-C, one rotamer), 116.7 (Ar-C, one rotamer), 106.0 (Ar-CH, both rotamers), 96.1 (Ar-CH, one rotamer), 95.9 (Ar-CH, one rotamer), 95.4 (CCl₃, both rotamers), 74.0 (OCH₂CCl₃, one rotamer), 73.7 (OCH₂CCl₃, one rotamer), 65.0 (CHPh, both rotamers), 58.4 (NCHC(O), both rotamers), 58.2 (NCHC(O), both rotamers), 56.4 (C-C=O, both rotamers), 55.4 (OCH₃, both rotamers), 52.1 (OCH₃, one rotamer), 52.0 (OCH₃, one rotamer), 47.6 (NCH₂CH₂CH₂, one rotamer), 46.7 (NCH₂CH₂CH₂, one rotamer), 40.7 (NCH₂CH₂CH₃, both rotamers), 35.5 (CH₂, one rotamer), 35.1 (CH₂, one rotamer), 29.3 (CH₂, one rotamer), 28.5 (CH₂, one rotamer), 23.2 (CH₂, one rotamer), 22.2 (CH₂, one rotamer), 20.3 (CH₂CH₃, both rotamers), 11.1 (CH₃, both rotamers); IR (film): v 2955, 2930, 1704 (broad; C=O), 1668 (C=O), 1622, 1407, 1356, 1206, 1170, 1124, 1110 cm⁻¹; MS (ES+): m/z (%): 690 (80, $[{}^{35}Cl_{2}{}^{37}ClM +$ Na]⁺); 688 (100, $[^{35}Cl_3M + Na]^+$); HRMS (ES+): m/z: calcd for $C_{31}H_{34}N_3O_7Cl_3$: 666.1535 $[M + H^+]$; found: 666.1537.

(2'S,5'S,3S)-6-Methoxy-2-oxo-2'-phenyl-1'-[1-(3,3,3-trichloroethoxycarbonyl)pyrrolidine-2S-carbonyl]-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylic acid methyl ester 38b and

(2'*R*,5'*R*,3*R*)-6-Methoxy-2-oxo-2'-phenyl-1'-[1-(3,3,3-trichloroethoxycarbonyl)pyrrolidine-2*S*-carbonyl]-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylic acid methyl ester 38a

Using general procedure M, a solution of N-Troc-(S)-prolinyl chloride (14.0 mg, 0.05 mmol) in CH₂Cl₂ (5.60 mL), amine **36** (16 mg, 0.05 mmol) and Et₃N (6.60 µL, 0.05 mmol) gave the crude product. Purification by flash column chromatography on silica gel eluting with 50% EtOAc in hexane gave amide 38b (14 mg, 0.02 mmol, 50%) as a white solid, m.p. (Et₂O) 110-113 °C; $[\alpha]_D^{26} = +1.65$ (c 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, 1.5:1 mixture of rotamers): δ 8.29-8.37 (m, 2H; 2 × ArCH, both rotamers), 7.91 (s, 1H; NH, one rotamer), 7.61 (s, 1H; NH; one rotamer), 7.57-7.50 (m, 2H; $2 \times$ ArCH, both rotamers), 7.37-7.30 (m, 2H; $2 \times$ ArCH, both rotamers), 7.19-7.12 (m, 2H; 2 × ArCH, both rotamers), 6.63 (d, J = 7.1 Hz, 1H; ArCH, one rotamer), 6.53 (d, J = 7.8 Hz, 1H; ArCH, one rotamer), 6.43 (d, J = 2.3 Hz, 1H; ArCH, one rotamer), 6.41 (d, J = 2.3 Hz, 1H; ArCH, one rotamer), 6.12-6.07 (m, 2 H; ArCH, both rotamers), 5.48-5.46 (m, 3 H; ArCH both rotamers and CHPh, one rotamer), 5.45 (s, 1H; CHPh, one rotamer), 5.36 (d, J = 12.2 Hz, 1H; CH_AH_BCCl₃; one rotamer), 5.15-5.24 (m, 2H; CHCO₂CH₃, both rotamers), 4.95 (d, J = 12.2 Hz, 1H; $CH_AH_BCCl_3$; one rotamer), 4.52 (d, J = 12.2 Hz, 1H; $CH_AH_BCCl_3$; one rotamer), 4.51 (d, J = 12.2 Hz, 1H; $CH_AH_BCCl_3$; one rotamer), 4.37 (dd, J = 8.4, 4.2 Hz, 1H; NCHCH₂CH₂, one rotamer), 4.30 (dd, J = 8.4, 4.2 Hz, 1H; NCHCH₂CH₂, one rotamer), 3.87 (s, 3H; OCH₃, one rotamer), 3.86 (s, 3H; OCH₃, one rotamer), 3.73-3.71 (m, 6H; OCH₃, both rotamers), 3.69-3.60 (m, 2H; NCHCH₂CH₂CH₄H_B, both rotamers), 3.55-3.45 (m, 2H; NCHCH₂CH₂CH₂H_B, both rotamers), 2.47-2.40 (m, 4H; $2 \times \text{NCHCH}_2\text{C}$, both rotamers), 2.13-2.01 (m, 2H; NCHCH $_2\text{CH}_A\text{H}_B$, both rotamers),

1.78-1.63 (m, 4H; NCHCH₂CH_A H_B and NCHCH_A H_B CH₂, both rotamers), 1.47-1.29 ppm (m, 2H; NCHCH_A H_B CH₂); ¹³C NMR (100 MHz, CDCl₃, 1.5:1 mixture of rotamers): δ 180.6 (C=O, one rotamer), 180.3 (C=O, one rotamer), 171.1 (C=O, one rotamer), 173.3 ($2 \times C=O$, both rotamers), 172.9 (C=O, one rotamer), 172.8 (C=O, one rotamer), 172.6 (C=O, one rotamer), 160.45 (ArC, one rotamer), 160.47 (ArC, one rotamer), 152.9 (ArC, one rotamer), 151.8 (ArC, one rotamer), 142.1 (ArC, one rotamer), 141.7 (ArC, one rotamer), 139.5 (ArC, one rotamer), 139.3 (ArC, one rotamer), 129.0 (Ar-CH, one rotamer), 128.8 (Ar-CH, one rotamer), 128.6 (2 × Ar-CH, both rotamers), 128.4 (Ar-CH, one rotamer), 128.3 (Ar-CH, one rotamer), 127.73 (Ar-CH, one rotamer), 127.68 (Ar-CH, one rotamer), 126.70 (Ar-CH, one rotamer), 126.66 (Ar-CH, one rotamer), 126.4 (Ar-CH, one rotamer), 126.3 (Ar-CH, one rotamer), 117.7 (CCl₃, one rotamer), 117.6 (CCl₃, one rotamer), 107.0 (Ar-CH, one rotamer), 106.8 (Ar-CH, one rotamer), 96.7 (Ar-CH, one rotamer), 96.2 (Ar-CH, one rotamer), 75.1 (CH₂CCl₃, one rotamer), 73.7 (CH₂CCl₃, one rotamer), 66.5 (CHPh, one rotamer), 66.3 (CHPh, one rotamer), 58.6 (C-C=O, one rotamer), 58.5 (C-C=O, one rotamer), 58.1 ($2 \times CHCO_2CH_3$, both rotamers), 57.6 (NCHCH₂C, one rotamer), 57.4 (NCHCH₂C, one rotamer), 52.5 (OCH₃, one rotamer), 52.5 (OCH₃, one rotamer), 47.8 (NCHCH₂CH₂CH₂, one rotamer), 47.1 (NCHCH₂CH₂CH₂, one rotamer), 36.2 (2 × CHCH₂C, both rotamers), 29.8 (NCHCH₂, one rotamer), 29.7 (NCHCH₂, one rotamer), 24.4 (NCHCH₂CH₂, one rotamer), 23.1 (NCHCH₂CH₂, one rotamer); IR (film): v 3238 (NH), 2955, 2918, 2844, 1719 (C=O), 1659 (C=O), 1655 (C=O), 1634 (C=O), 1599, 1504, 1453, 1432, 1413, 1339, 1307, 1284, 1256, 1205, 1193, 1159, 1124, 1031, 811, 753, 702; MS (ES+): m/z (%): 646 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₈H₂₈N₃O₇Cl₃Na: 646.0885 [M + Na⁺]; found:646.0894; and amide 38a (12.5 mg, 0.02 mmol, 45%) as a white solid, m.p. (Et₂O) 155-157 °C; $[\alpha]_D^{26} = +29.45$ (c 2.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, complex mixture of rotamers; data given for the two major rotamer only): δ 8.64 -8.42 (m, 2 H; 2 × ArCH, both rotamers), 7.85-7.79 (m, 2 H; NH, both rotamers), 7.67-7.44 (m, 2 H; 2 \times ArCH, both rotamers), 7.37-7.09 (m, 2 H; 2 \times ArCH, both rotamers), 6.66-6.48 (m, 2 H; 2 × ArCH, both rotamers), 6.43 (d, J = 2.4 Hz, 1 H; ArCH, one rotamer), 6.42 (d, J = 2.4 Hz, 1 H; ArCH, one rotamer), 6.15 (dd, J = 8.5, 2.4 Hz, 1 H; ArCH, one rotamer), 6.11 (dd, *J* = 8.5, 2.4 Hz, 1 H; ArCH, one rotamer), 5.45 (d, J = 8.4 Hz, 1 H; ArCH, one rotamer), 5.34 (d, J = 8.4 Hz, 1 H; ArCH, one

rotamer), 5.05-4.99 (m, 2 H; CHCO₂CH₃, both rotamers), 4.98 (s, H; CHPh, one rotamer), 4.97 (s, H; CHPh, one rotamer), 4.86 (d, J = 11.9 Hz, 1 H; CH_AH_BCCl₃, one rotamer), 4.74 (d, J = 11.9 Hz, 1 H; CH_AH_BCCl₃, one rotamer), 4.52 (d, J = 11.9 Hz, 1 H; $CH_AH_BCCl_3$, one rotamer), 4.33 (t, J = 6.1 Hz, 1 H; NCHCH₂, one rotamer), 4.22 (t, J = 6.1 Hz, 1 H; NCHCH₂, one rotamer), 4.21 (d, J = 11.9 Hz, 1 H; CH_AH_BCCl₃, one rotamer), 3.86 (s, 6 H; OCH₃, both rotamers), 3.75 (s, 3 H; OCH₃, one rotamer), 3.73 (s, 3 H; OCH₃, one rotamer), 3.68 - 3.72 (m, 2 H; NCHCH₂CH₂CH₂, both rotamers), 3.41 - 3.52 (m, 2 H; NCHCH₂CH₂CH₂, both rotamers), 2.37 - 2.50 (m, 4 H; $2 \times CHCH_2C$, both rotamers), 2.22 - 2.30 (m, 2 H, NCHCH₂; both rotamers), 2.11 -2.15 (m, 4 H, NCHCH₂ and NCHCH₂CH₂; both rotamers), 1.94 - 1.85 ppm (m, 2 H, NCHCH₂CH₂; both rotamers); ¹³C NMR (100 MHz, CDCl₃, complex mixture of rotamers, data given only for the major rotamers): δ 180.9 (C=O), 180.6 (C=O), 174.1 (C=O), 173.3 (C=O), 172.5 (C=O), 172.2 (C=O), 171.8 (C=O), 171.7 (C=O), 160.53 (Ar-C, one rotamer), 160.51 (Ar-C, one rotamer), 152.6 (Ar-C, one rotamer), 152.3 (Ar-C, one rotamer), 141.6 ($2 \times$ Ar-C, both rotamers), 137.8 (Ar-C, one rotamer), 137.3 (Ar-C, one rotamer), 129.68 (Ar-CH, one rotamer), 128.7 (Ar-CH, one rotamer), 128.6 (Ar-CH, one rotamer), 126.9 (2 \times Ar-CH, both rotamers), 126.5 (2 \times Ar-CH, both rotamers), 117.6 (CCl₃, one rotamer), 117.4 (CCl₃, one rotamer), 106.98 (Ar-CH, one rotamer), 106.93 (Ar-CH, one rotamer), 100 (2 × Ar-CH, both rotamers), 96.91 (Ar-CH, one rotamer), 96.87 (Ar-CH, one rotamer), 96.64 (Ar-CH, one rotamer), 96.62 (Ar-CH, one rotamer), 75.1 (CH₂CCl₃, one rotamer), 74.5 (CH₂CCl₃, one rotamer), 65.9 (CHPh, one rotamer), 65.8 (CHPh, one rotamer), 58.8 (CHCO₂CH₃, one rotamer), 58.6 (CHCO₂CH₃, one rotamer), 58.51 (NCHCH₂, one rotamer), 58.47 (NCHCH₂, one rotamer), 57.63 (C-C=O, one rotamer), 57.59 (C-C=O, one rotamer), 52.53 (OCH₃), 52.50 (OCH₃), 47.7 (NCHCH₂CH₂CH₂, one rotamer), 46.9 (NCHCH₂CH₂CH₂, one rotamer), 36.1 (CHCH₂C, one rotamer), 35.8 (CHCH₂C, one rotamer), 30.0 (NCHCH₂, one rotamer), 29.7 (NCHCH₂, one rotamer), 23.7 (NCHCH₂CH₂, one rotamer), 22.6 (NCHCH₂CH₂, one rotamer); IR (film): v 3238 (NH), 2955, 2918, 2844, 1719 (C=O), 1659 (C=O), 1655 (C=O), 1634 (C=O), 1599, 1504, 1453, 1432, 1413, 1339, 1307, 1284, 1256, 1205, 1193, 1159, 1124, 1031, 811, 753, 702; MS (ES+): m/z (%): 646 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for $C_{28}H_{28}N_3O_7Cl_3Na$: 646.0885 [*M* + Na⁺]; found:646.0894.

(2*S*,3*S*,5*aS*,10*aS*)-6'-Methoxy-3-phenyl-1'-propyl-5*a*,6,7,8-tetrahydro-1*H*-spiro[dipyrrolo[1,2-*a*:1'2'-*d*]pyrazine-2,3'-indoline]-2',5,10(3*H*,10*aH*)-trione 39b

Using general procedure N, Zn dust (480 mg, 7.34 mmol), N-Troc amide 37b (49 mg, 0.07 mmol) in THF (4 mL), MeOH (4 mL) and a saturated solution of NH₄Cl (4 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 3% MeOH in CH₂Cl₂ gave diketopiperazine **39b** (32 mg, 0.07 mmol, 95%) as a white solid, m.p. (Et₂O) 129-132 °C; $[\alpha]_D^{20} = +141.0$ (c 0.52, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ7.42-7.30 (br m, 1H; Ar-CH), 7.26 (t, *J* = 7.3 Hz, 1H; Ar-CH), 7.20-7.07 (br m, 1H; Ar-CH), 7.04-6.91 (br m, 1H; Ar-CH), 6.70-6.54 (br m, 1H; Ar-CH), 6.37 (d, *J* = 2.2 Hz, 1H; Ar-CH), 6.09 (dd, *J* = 8.3, 2.2 Hz, 1H; Ar-CH), 5.43 (d, J = 8.3 Hz, 1H; Ar-CH), 5.24 (dd, J = 10.8, 6.9 Hz, 1H; CCH₂CHN), 5.08 (s, 1H; CHPh), 4.38 (t, J = 7.9 Hz, 1H; CH₂CH₂CHN), 3.79-3.69 (m, 2H; NCH_AH_BCH₂CH₃ and NCH_AH_BCH₂CH₂), 3.73 (s, 3H; OCH₃), 3.65-3.60 (m, 2H; $NCH_AH_BCH_2CH_3$ and $NCH_AH_BCH_2CH_2$, 2.73 (dd, J = 13.6, 10.8 Hz, 1H; CCH_AH_BCHN), 2.35-2.29 (m, 1H; NCHC $H_AH_BCH_2CH_2$), 2.32 (dd, J = 13.6, 6.9 Hz, 1H; CCH_AH_BCHN), 2.27-2.19 (m, 1H; NCHCH_AH_BCH₂CH₂), 2.05-1.94 (m, 2H; $CH_2CH_2CH_2$), 1.75 (sextet, J = 7.3 Hz, 2H; CH_2CH_3), 0.99 (t, J = 7.3 Hz, 3H; CH_3); ¹³C NMR (125 MHz, CDCl₃): δ179.3 (C=O), 167.1 (C=O), 166.9 (C=O), 160.5 (Ar-C), 144.2 (Ar-C), 138.0 (Ar-C), 128.1 (3 × Ar-CH), 126.2 (Ar-CH), 117.5 (Ar-C), 105.6 (Ar-CH), 96.3 (Ar-CH), 65.2 (CHPh), 61.0 (CH₂CH₂NCH), 58.8 (CCH₂NCH), 55.7 (C-C=O), 55.4 (OCH₃), 45.3 and 41.4 ($2 \times CH_2N$), 34.0 (CCH₂CHN), 27.4 (CH₂CH₂N), 23.7 (CH₂CH₂CH₂), 20.7 (CH₂CH₃), 11.3 (CH₃); IR (neat): v_{max} 2964, 2933, 2876, 1716 (C=O), 1662 (C=O), 1624, 1422, 1379, 1277, 1208, 1107 cm⁻¹; MS (ES+): m/z (%): 482 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for C₂₇H₂₉N₃O₄: $460.2231 [M + H^+]$; found: 460.2224.

(2*R*,3*R*,5a*S*,10a*R*)-6'-Methoxy-3-phenyl-1'-propyl-5a,6,7,8-tetrahydro-1*H*-spiro[dipyrrolo[1,2-*a*:1'2'-*d*]pyrazine-2,3'-indoline]-2',5,10(3*H*,10a*H*)-trione 39a

Using general procedure N, Zn dust (461 mg, 7.05 mmol), N-Troc amide 37a (47 mg, 0.07 mmol) in THF (4 mL). MeOH (4 mL) and a saturated solution of NH₄Cl (4 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 3% MeOH in CH₂Cl₂ gave diketopiperazine **39a** (30 mg, 0.07 mmol, 93%) as an amorphous white solid; $[\alpha]_D^{28} = +69.3$ (c 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.43-6.55 (br m, 5H; 5 × Ar-CH), 6.35 (d, J = 2.2 Hz, 1H; Ar-CH), 6.07 (dd, J = 8.6, 2.2 Hz, 1H; Ar-CH), 5.56 (d, J = 8.6 Hz, 1H; Ar-CH), 5.38 (ddd, J = 11.3, 6.0, 1.5 Hz, 1H; CCH₂CHN), 5.21 (s, 1H; CHPh), 4.17 (ddd, J = 12.1, 9.3, 6.3 Hz, 1H; NCH_AH_BCH₂CH₂), 4.11 (ddd, *J* = 12.1, 5.8, 1.8 Hz, 1H; CH₂CH₂CH₂N), 3.72 (s, 3H; OCH₃), 3.70-3.66 (m, 2H; NCH₂CH₂CH₃), 3.30 (ddd, J = 12.1, 9.8, 4.8 Hz, 1H; NCH_A H_B CH₂CH₂), 2.54 (dd, J = 12.8, 6.0 Hz, 1H; NCHCH_A H_B C), 2.48 (dd, J =12.8, 11.3 Hz, 1H; NCHCH_A H_BC), 2.40-2.30 (m, 1H; CH), 2.13-1.79 (m, 3H; 3 × CH), 1.78-1.69 (m, 2H; CH₂CH₃), 0.98 (t, J = 7.6 Hz, 3H; CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 179.4 (C=O), 166.4 (C=O), 164.5 (C=O), 160.3 (Ar-C), 144.0 (Ar-C), 137.8 (Ar-C), 128.4 (2 × Ar-CH), 128.0 (Ar-CH), 126.0 (Ar-CH), 118.0 (Ar-C), 105.7 (Ar-CH), 96.3 (Ar-CH), 66.5 (CHPh), 63.2 (CH₂CH₂CHN), 57.8 (CCH₂CHN), 55.4 (OCH₃), 54.6 (C-C=O), 44.4 (NCH₂CH₂CH₂), 41.4 (NCH₂CH₂CH₃), 36.7 (CCH₂CHN), 28.2 (CH₂), 22.4 (CH₂), 20.7 (CH₂CH₃), 11.3 (CH₃); IR (neat): v_{max} 2964, 2934, 2876, 1702 (C=O), 1661 (C=O), 1622, 1427, 1378, 1305, 1209, 1177, 1106 cm⁻¹; MS (ES+): m/z (%): 482 (100, $[M + Na]^+$); HRMS (ES+): m/z: calcd for $C_{27}H_{29}N_{3}O_{4}$: 460.2231 [*M* + H⁺]; found: 460.2233.

(2*S*,3*S*,5*aS*,10*aS*)-6'-Methoxy-3-phenyl-5a,6,7,8-tetrahydro-1*H*-spiro[dipyrrolo[1,2-*a*:1'2'-*d*]pyrazine-2,3'-indoline]-2',5,10(3*H*,10*aH*)-trione 40b

Using general procedure N, Zn dust (187 mg, 2.88 mmol), N-Troc amide 38b (18 mg, 0.03 mmol) in THF (1 mL), MeOH (1 mL) and a saturated solution of NH₄Cl (1 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 10% MeOH in EtOAc gave diketopiperazine **40b** (11.5 mg, 0.03 mmol, 96%) as a white solid, m.p. (EtOAc) 290-292 °C; $[\alpha]_D^{24} = -74.7$ (c 1.50, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (s, 1H; NH), 7.42-7.31 (m, 1H; ArCH), 7.27 (t, J = 7.3 Hz, 1H; Ar-CH), 7.19-7.08 (m, 1H; ArCH), 7.04-6.91 (m, 1H; ArCH), 6.71-6.60 (m, 1H; ArCH), 6.40 (d, J = 2.4 Hz, 1H; ArCH), 6.09 (dd, J = 8.4, 2.4 Hz, 1H; ArCH), 5.40 (d, J = 8.3 Hz, 1H; ArCH), 5.20 (dd, J = 11.0, 6.8 Hz, 1H; NCHCH₂C), 5.16 (s, 1 H; CHPh), 4.41 (t, J = 7.8 Hz, 1H; NCHCH₂CH₂), 3.81-3.73 (m, 1H; NCH_AH_B), 3.71 (s, 3H; OCH₃), 3.67-3.60 (m, 1H; NCH_AH_B), 2.73 (dd, J = 13.6, 11.0 Hz, 1H; NCHCH_AH_BC), 2.40 (dd, J = 13.6, 6.8 Hz, 1H; NCHCH_AH_BC), 2.36-2.28 (m, 1H; NCHCH_AH_B), 2.28-2.19 (m, 1H; NCHCH_AH_B), 2.05-1.96 (m, 2H; NCHCH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ 180.9 (C=O), 167.00 (C=O), 166.99 (C=O), 160.3 (ArC), 141.5 (ArC), 137.7 (ArC), 128.2 (ArCH), 126.5 (ArCH), 117.8 (ArC), 106.7 (ArCH), 96.8 (ArCH), 64.9 (CHPh), 61.1 (NCHCH₂CH₂), 58.7 (NCHCH₂C), 56.1 (C-C=O), 55.3 (OCH₃), 45.3 (NCHCH₂CH₂CH₂), 33.9 (NCHCH₂C), 27.4 (NCHCH₂), 23.7 (NCHCH₂CH₂); IR (film): v_{max} 3206 (NH), 2918, 2858, 1712 (C=O), 1661 (C=O), 1631 (C=O), 1594, 1501, 1453, 1425, 1337, 1307, 1281, 1189, 1156, 1124, 1108, 1031, 834, 749, 698; MS (ES+): m/z (%): 418 (100, [M + H]⁺); HRMS (ES+): m/z: calcd for C₂₄H₂₄N₄O₃: 418.1770 [M + H]⁺; found: 418.1761.

(2R,3R,5aS,10aR)-6'-Methoxy-3-phenyl-5a,6,7,8-tetrahydro-1*H*-spiro[dipyrrolo[1,2-*a*:1'2'-*d*]pyrazine-2,3'-indoline]-2',5,10(3*H*,10a*H*)-trione 40a

Using general procedure N, Zn dust (156 mg, 2.40 mmol), N-Troc amide **38a** (15 mg, 0.02 mmol) in THF (1 mL), MeOH (1 mL) and a saturated solution of NH_4Cl (1 mL) gave the crude product. Purification by flash column chromatography on silica gel eluting with 10% MeOH in EtOAc gave diketopiperazine 40a (8 mg, 0.02 mmol, 80%) as a white solid, m.p. (Et₂O) 239-241 °C; $[\alpha]_D^{25} = +10.8$ (c 0.75, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.80 (s, 1H; NH), 7.33-7.17 (m, 5H; 5 × ArCH), 6.39 (d, *J* = 2.5 Hz, 1H; ArCH), 6.08 (dd, *J* = 8.5, 2.5 Hz, 1H; ArCH), 5.52 (d, *J* = 8.5 Hz, 1H; ArCH), 5.34 (dd, J = 11.5, 6.1 Hz, 1H; NCHCH₂C), 5.29 (s, 1H; CHPh), 4.20-4.10 (m, 2H; NCHCH₂CH₂ and NCH_AH_B), 3.70 (s, 3H; OCH₃), 3.32 (m, 1H; NCH_AH_B), 2.50-2.00 (m, 2H; NCHCH₂C), 2.41-2.34 (m, 1H; NCHCH_AH_B), 2.14-2.06 (m, 1H; 2.03-1.92 (m, 1H; NCHCH_A H_B), 1.92-1.82 (m, NCHCH₂C $H_{\rm A}$ H_B), H; NCHCH₂CH_A H_B); ¹³C NMR (CDCl₃, 100 MHz) δ 181.1 (C=O), 166.2 (C=O), 164.6 (C=O), 160.2 (Ar-C), 141.4 (Ar-C), 137.6 (Ar-C), 128.5 (Ar-CH), 128.1 (Ar-CH), 126.3 (Ar-CH), 107.0 (Ar-CH), 96.7 (Ar-CH), 66.2 (CHPh), 63.2 (NCHCH₂CH₂), 57.7 (NCHCH₂C), 55.4 (C-C=O), 55.0 (OCH₃), 44.5 (NCHCH₂CH₂CH₂), 36.7 (NCHCH₂C), 28.2 (NCHCH₂), 22.4 (NCHCH₂CH₂); IR (film): v_{max} 3206 (NH), 2918, 2858, 1712 (C=O), 1661 (C=O), 1631 (C=O), 1594, 1501, 1453, 1425, 1337, 1307, 1281, 1189, 1156, 1124, 1108, 1031, 834, 749, 698; MS (ES+): m/z (%): 418 (100, [M + H]⁺); HRMS (ES+): m/z: calcd for C₂₄H₂₄N₄O₃: 418.1770 [M + H]⁺; found: 418.1761.

rac-(2'*S*,38,5'S)-Methyl 1'-(4-(3,3,4,4,5,5,6,6,7,7,8,8,9,910,10,10heptafluorodecyl)benzyl-6-methoxy-2-oxo-2'-phenylspiro[indoline-3,3'pyrrolidine]-5'-carboxylate 42

OsO₄ (82 µL of a 2.5% w/v solution in *tert*-butanol, 8.06 µmol) and NMO (28 mg, 0.24 mmol) were added to a stirred suspension of spirooxindole 41 (69 mg, 0.08 mmol) in acetone (5 mL) and water (1 mL) at room temperature under nitrogen. The resulting suspension was stirred at room temperature for 84 h, then a saturated aqueous solution of Na₂S₂O₃ (5 mL) and CH₂Cl₂ (5 mL) were added. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 5 mL). The combined organic layers were dried (Na_2SO_4) and evaporated under reduced pressure to give the crude diol product. The crude product was dissolved in EtOAc (5 mL), then $Pb(OAc)_4$ (54 mg, 0.12 mmol) was added and the resulting suspension was stirred at room temperature for 15 min. The resulting mixture was filtered through a short silica plug, washing with EtOAc. The filtrate was evaporated under reduced pressure to give the crude aldehyde product. Using general procedure K, oxidant solution (1.0 mL) and the crude aldehyde in tert-butanol (2 mL), MeCN (2 mL) and 2-methyl-2-butene (1 mL), then trimethylsilyldiazomethane (1.0 mL of a 2.0 M solution in hexanes, 2.0 mmol) in anhydrous MeOH (5 mL) gave the crude product. Purification by FSPE eluting with 60% aqueous MeCN gave the non-fluorous reaction components, then elution with MeOH (100 mL) gave methyl ester 42 (57 mg, 0.06 mmol, 80%) as a pale yellow solid, m.p. 69-71 °C (Et₂O); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H; NH), 7.69 (d, J = 8.3 Hz, 1H; Ar-CH), 7.29-7.11 (m, 9H; 9 × Ar-CH), 6.51 (dd, *J* = 8.3, 2.2 Hz, 1H; Ar-CH), 6.16 (d, *J* = 2.2 Hz, 1H; Ar-CH), 4.17 (s, 1H; CHPh), 4.00 (d, J = 13.9 Hz, 1H; NCH_AH_BAr), 3.77 (dd, J = 10.8, 6.0 Hz, 1H; NCHCO₂CH₃), 3.71 (s, 3H; OCH₃), 3.55 (d, J = 13.9 Hz, 1H; NCH_AH_BAr), 3.52 (s, 3H; OCH₃), 2.92-2.88 (m, 2H; CH₂S), 2.79 (dd, J = 13.4, 10.8 Hz, 1H; CH_AH_BCHN), 2.44-2.30 (m, 2H; CH₂C₈F₁₇), 2.18 (dd, J = 13.4, 6.0 Hz, 1H; CH_AH_BCHN); ¹³C NMR (100 MHz, CDCl₃): δ180.3 (C=O), 174.3 (C=O), 159.6 (Ar-C), 140.5 (Ar-C), 138.1

(Ar-C), 135.6 (Ar-C), 134.1 (Ar-C), 130.5 (Ar-CH), 128.3 (Ar-CH), 127.9 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 127.5 (Ar-CH), 123.6 (Ar-C), 106.8 (Ar-CH), 96.2 (Ar-CH), 75.7 (CHPh), 62.7 (NCHCO₂CH₃), 57.9 (C-C=O), 55.3 (OCH₃), 55.1 (NCH₂Ar), 51.7 (OCH₃), 38.3 (CH2), 32.9 (t, J = 22.1 Hz; CH₂C₈F₁₇), 26.1 (CH₂S); IR (film): v_{max} 3210 (NH), 2948, 2922, 2849, 1714 (2 × C=O), 1631, 1506, 1456, 1341, 1236, 1198, 1145, 1113, 1087, 1026, 806, 702; MS (ES+): m/z (%): 887 (100, $[M - \text{H}]^+$); HRMS (ES-): m/z: calcd for C₃₇H₂₉F₁₇N₂O₄: 887.1783 $[M - \text{H}]^+$; found: 887.1776.

¹H NMR (400 MHz, CDCl₃)

104 96 88 Chemical Shift (ppm)

112

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011 C₈F₁₇ P ¹H NMR (500 MHz, CDCl₃) 2.09 2.14 2.23 5.0 4.5 4.0 3.5 3.0 2.5 Chemical Shift (ppm) 1 1.00 2.01 3.07 2.132 2.0 1.5 1.0 0.5 0 6.5 6.0 5.5 ¹³C NMR (100 MHz, CDCl₃) 136 128 160 152 144 184 176 168 104 96 88 Chemical Shift (ppm) 120 112 72

X-ray crystal structure of 19a (CCDC 780379):

X-ray crystal structure of 19b (CCDC 780380):

X-ray crystal structure of 23 (CCDC 780381):

X-ray crystal structure of 35 (CCDC 780382):

X-ray crystal structure of 40b (CCDC 791298):

NOE study of diketopiperazines 39a and 39b:

39a

References for the Supporting Information:

- 1. T. Imamoto, M. Ono, Chem. Lett. 1987, 501
- S. Kodato, M. Nakagawa, M. Hongu, T. Kawate, T. Hino, *Tetrahedron* 1988, 44, 359
- 3. S. A. Boyd, W. J. Thompson, J. Org. Chem. 1987, 52, 1790
- 4. O.-Y. Lee, K.-L. Law, D. Yang, Org. Lett. 2009, 11, 3302
- 5. R. Nacario, S. Kotakonda, D. M. D. Fouchard, L. M. V. Tillekeratne, R. A. Hudson, *Org. Lett.* **2005**, *7*, 471
- 6. M. O. Sydnes, M. Kuse, I. Minoru, *Tetrahedron* **2008**, *64*, 6406
- 7. D. Gauthier, R. H. Dodd, P. Dauban, *Tetrahedron* 2009, 65, 8542
- 8. M. H. Ali.; S. L. Buchwald, J. Org. Chem. 2001, 66, 2560
- 9. L. A. McAllister, R. A. McCormick, S. Brand, D. J. Procter, *Angew. Chem. Int. Ed.* **2005**, *44*, 452
- C. Naud, P. Calas, H. Blancou, A. Commeyras, J. Fluorine Chem. 2000, 104, 173