Kopsihainanines A and B, two unusual alkaloids from

Kopsia hainanensis

Jia Chen, Jian-Jun Chen, Xiaojun Yao, and Kun Gao*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

Supporting information	Page
Kopsihainanine A: ¹ H NMR in CDCl ₃ (Varian Mercury-600)	S2
Kopsihainanine A: ¹ H NMR in CDCl ₃ (Varian Mercury-600)	S 3
Kopsihainanine A: ¹³ C NMR in CDCl ₃ (Varian Mercury-600, 125 MHz)	S4
Kopsihainanine A: HSQC in CDCl ₃	S 5
Kopsihainanine A: HMBC in CDCl ₃	S6
Kopsihainanine A: ¹ H- ¹ H COSY in CDCl ₃	S7
Kopsihainanine A: ¹ H- ¹ H COSY in CDCl ₃	S8
Kopsihainanine A: ROESY in CDCl ₃	S 9
Kopsihainanine A: IR	S10
Kopsihainanine A: HRESIMS	S11
Kopsihainanine B: ¹ H NMR in CDCl ₃ (Varian Mercury-600)	S12
Kopsihainanine B: ¹³ C NMR in CDCl ₃ (Varian Mercury-600, 125 MHz)	S13
Kopsihainanine B: HSQC in CDCl ₃	S14
Kopsihainanine B: HMBC in CDCl ₃	S15
Kopsihainanine B: IR	S16
Kopsihainanine B: HRESIMS	S17
Table S1: Cartesian coordinates of calculated Kopsihainanine A (1)	S18
Microplate assay for AChE activity.	S19

Structure of kopsihainanine A (1)

Kopsihainanine A: ¹H NMR in CDCl₃ (Varian Mercury-600)

Kopsihainanine A: ¹³C NMR in CDCl₃ (Varian Mercury-600, 125 MHz)

Kopsihainanine A: HSQC in CDCl₃

Kopsihainanine A: HMBC in CDCl₃

Kopsihainanine A: ¹H-¹H COSY in CDCl₃

Kopsihainanine A: ¹H-¹H COSY in CDCl₃

Kopsihainanine A: ROESY in CDCl₃

Kopsihainanine A: IR

Kopsihainanine A: HRESIMS

/u/data/TRAINING/chenjia0505/1/pdata/1 xspec Wed May 5 12:21:44 2010

Structure of Kopsihainanine B (2)

Kopsihainanine B: ¹H NMR in CDCl₃ (Varian Mercury-600)

Kopsihainanine B: ¹³C NMR in CDCl₃ (Varian Mercury-600, 125 MHz)

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Kopsihainanine B: HSQC in CDCl₃

Kopsihainanine B: HMBC in CDCl₃

Kopsihainanine B: IR

Kopsihainanine B: HRESIMS

/u/data/TRAINING/chenjia0716/2/pdata/1 xspec Fri Jul 16 09:44:29 2010

Atoms	x (Å)	y (Å)	z (Å)	Atoms	x (Å)	y (Å)	z (Å)
С	2.9467	0.6849	0.121	Η	-2.5166	-2.5919	-1.3954
С	1.9399	-0.2144	-0.4052	С	-2.9904	0.8696	-1.1908
С	0.7004	0.5258	-0.3982	Η	-3.8472	1.4515	-0.7615
С	0.9775	1.8047	0.1043	Η	-2.7865	1.2808	-2.2153
Ν	2.3346	1.9044	0.4261	С	-3.3893	-0.5898	-1.3138
Н	2.7846	2.7023	0.7847	Η	-3.9012	-0.9149	-0.3691
С	-0.6388	0.1638	-0.9171	Η	-4.127	-0.7014	-2.1498
Н	-0.6009	0.3476	-2.0382	С	-1.2525	-1.5949	0.6212
С	-0.0215	2.8809	0.291	0	-1.4461	-2.7675	0.9748
Н	-0.2259	3.0076	1.3898	С	-1.2264	-0.4605	1.6481
Н	0.3757	3.8617	-0.0866	С	4.2842	0.2792	0.2539
С	-1.31	2.5518	-0.4463	С	2.3114	-1.5051	-0.7882
Н	-2.1292	3.2101	-0.0545	С	4.6072	-1.0103	-0.1378
Н	-1.1744	2.7899	-1.5351	Η	5.6471	-1.3581	-0.0455
С	-1.7424	1.0927	-0.3207	С	3.6368	-1.8896	-0.6516
С	-2.0383	0.7339	1.1387	Η	3.9424	-2.9038	-0.9482
Н	-1.8197	1.6046	1.8101	Н	1.5579	-2.2003	-1.1874
Н	-3.1286	0.4983	1.2658	Η	5.0457	0.9605	0.6546
Ν	-1.0374	-1.2415	-0.7465	Η	-0.1543	-0.165	1.8356
С	-2.2049	-1.5265	-1.5818	0	-1.814	-0.8653	2.8725
Н	-1.8815	-1.4348	-2.6555	Η	-1.5975	-1.8	3.0049

Table S1: Cartesian coordinates of calculated Kopsihainanine A (1)

Microplate assay for AChE activity.

The compounds **1** and **2** were tested for AChE inhibiting activity by Ellman's method in 96-well microplates. Briefly, 140 μ L of 0.1M sodium phosphate buffer (pH = 8.0), 20 μ L sample solution and 15 μ L enzyme solution were mixed and incubated at 4°C for 20 mins. 10 μ L of 0.075 mM DTNB was added and the reaction was then started by adding 10 μ L of 0.01 mM ATCI. After incubating the reaction solution at 37°C for 20 mins, the optical densities were measured in a 96-well plate reader at 405 nm immediately. A blank positive control was set up by adding 20 μ L Physostigmine (100 μ M in phosphate buffered saline) instead of 20 μ L sample solution. Experiment control was set up by adding 15 μ L buffer solutions instead of 15 μ L enzyme solution in order to deduct sample background. The experiments were performed on triplicates. The inhibition rate (%) was calculated by the following equation:

Inhibition% =
$$\frac{(Blank - Blank positive control) - (Experiment - Experiment control)}{(Blank - Blank positive control)} \times 100\%$$

The concentrations of test compounds that inhibited the hydrolysis of substrates (acetylthiocholine and butyrylthiocholine) by 50% (IC₅₀) were determined by monitoring the effect of increasing concentrations of these compounds in the assays on the inhibition values. The IC₅₀ values were then calculated using the EZ-Fit Enzyme Kinetics program (Perrella Scientific Inc., Amherst, U.S.A.).