Supporting Information

Synthesis of a [2]Rotaxane Operated in basic

Environment

Wenlong Yang,^{a,b} Yongjun Li, *^{,a} Jianhong Zhang,^{a,b} Yanwen Yu,^{a,b} Taifeng Liu,^{a,b} Huibiao Liu,^a Yuliang Li *^a

^a Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China,

^bGraduate University of Chinese Academy of Sciences, Beijing 100080, P.R. China

E-mail: liyj@iccas.ac.cn, ylli@iccas.ac.cn

Table of Contents

§1.
Materials
······S2
§2.
Instruments·····
······S2
§3. Synthetic
route·····
·····\$3
§4. Synthesis and characterization data of all
compounds
§5. NMR and MS
spectra·····S11
§6. COSY-NMR
spectra······S2
1
§7. UV/Vis and FL spectra and titrational ¹ H NMR spectra of
R-2-b

§1. Materials

Unless stated otherwise, all reagents and anhydrous solvents were purchased from Aldrich Chemicals and used without further purification.

§2. Instruments

Column chromatography: SiO_2 (200 – 300 mesh). TLC glass plates coated with SiO_2 F254 were visualized by UV light. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 or 600 MHz instrument at a constant temperature of 298 K. Chemical

shifts are reported in parts per million from low to high field and referenced to TMS. MALDI-TOF mass spectra were recorded on a Bruker Biflex III MALDI-TOF spectrometer. UV/Vis spectra were measured on a Hitachi U-3010 spectrometer. Fluorescence excitation and emission spectra were recorded using a Hitachi F-4500 FL fluorimeter at a constant temperature of 298 K. Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

§3. Synthetic route

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

§4. Synthesis and characterization data of all compounds

Compound 1: compound 1 was synthesized according to reference S1. M.p. = 174-175 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.65 (m, 2 H), 7.51 (m, 2 H), 7.25-7.50 (m, 7H), 7.23 (m, 1H), 7.08 (m, 3H), 6.50 (m, 1H), 6.43 ppm (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ = 158.36, 144.86, 141.16, 136.09, 133.53, 132.65, 131.34, 130.54, 130.09, 129.70, 129.23, 129.08, 128.94, 128.81, 128.46, 127.98, 127.44, 126.99, 126.13, 118.28, 118.07, 117.64, 113.23, 112.43 ppm; EI-MS: m/z 413.4; elemental analysis (%) calcd for C₂₈H₁₉N₃O : C 81.34, H 4.63, N 10.16; found: C 81.66, H 4.64, N 10.12.

Compound 2: LiAlH₄ (0.74 g, 20 mmol) was added slowly to a solution of the compound 1 (2 g, 4.8 mmol) in anhydrous THF at 0 °C. After being at room temperature overnight, the mixture was quenched with aqueous Na₂SO₄. After filtration, the solvent was evaporated off, and the residue was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄. After concentrated in vacuo, the crude product was purified by chromatography (SiO₂: CH₂Cl₂/MeOH, 20:1) to afford compound **2** as slightly yellow oil in 58% yield. M.p. = 141-142 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.54 (m, 2 H), 7.06-7.36 (m, 14 H), 6.57 (m, 1 H), 6.46 (m, 1 H), 3.92 ppm (s, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ = 158.55, 145.08, 144.23, 141.81, 135.80, 135.73, 135.26, 133.23, 131.46, 130.64, 129.98, 129.18, 128.75, 128.60, 128.39, 128.25, 128.17, 127.10, 127.01, 126.13, 118.02, 117.77, 113.16, 45.78 ppm; EI-MS: m/z 417; elemental analysis (%) calcd for C₂₈H₂₃N₃O: C 80.55, H 5.55, N 10.06; found: C 80.79, H 5.52, N 10.10.

Compound 5: A solution of the compound 2 (0.418 g, 1 mmol) and 3 (0.16 g, 1 mmol) in toluene (50 mL) was heated under reflux overnight by using a Dean-Stark apparatus. The solvent was removed under reduced pressure after the reaction was cooled to room temperature. The residue was dissolved in THF (50 mL), then NaBH₄ (0.4 g, 10.5 mmol) was added cautiously at 0 °C. The mixture was stirred at room temperature for a further 4 h. Water was added to quench the excess NaBH₄. The solvent was evaporated off, and the residue was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄. After concentrated in vacuo, the crude product compound 4 (300 mg, 0.53 mmol) was dissolved in acetone and a few drops of trifluroacetic acid were added. After 0.5 hour, the solvent was removed under vacuo. The residue was dissolved in a mixture of acetone and water. Then the aqueous of NH₄PF₆ (122 mg, 0.75 mmol) was added. The mixture was stirred for 1 h and then the acetone was evaporated off. The aqueous solution was extracted with CH₂Cl₂ several times. The collected organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo to yield 5 as a yellow solid (600 mg, 85%). M.p. = 115-116 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.53$ (m, 2 H), 7.46 (m, 2 H), 7.16-7.38 (m, 10 H), 6.95-6.99 (m, 4 H), 6.65 (m, 1 H), 6.45 (m, 1 H), 4.78 (s, 2 H), 3.81 (s, 2 H), 3.67 ppm (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ = 158.49, 157.03, 144.22, 136.5, 132.89, 132.22, 131.96, 131.62, 131.19, 130.69, 129.69, 128.75, 127.56, 122.7, 119.22, 117.89, 115.47, 114.98, 111.17, 78.06, 76.15, 55.77 ppm; MS (MALDI-TOF): m/z 562.3; elemental analysis (%) calcd for $C_{38}H_{31}N_3O_2$: C 81.26, H 5.56, N 7.48; found: C 81.59, H 5.53, N 7.51.

Rotaxane R-1-a: A mixture of compound 5 (354 mg, 0.50 mmol), compound 6 (117 mg, 0.50 mmol), macroycle DB24C8 (211 mg, 0.48 mmol), and [Cu(MeCN)₄]PF₆ (175 mg, 0.47 mmol) was stirred in dry CH₂Cl₂ at room temperature under nitrogen for 24 h. After removal of the solvent, the crude product was purified by column chromatography (SiO₂: CH₂Cl₂/MeOH 60:1) to afford rotaxane R-1-a (845 mg, 68%). M.p. = 139-140 °C. ¹H NMR (CD₃CN, 400 MHz, 298 K): δ = 8.56 (s, 1 H), 8.36 (m, 2H), 8.06 (m, 2H), 7.52 (m, 2H), 7.19-7.46 (m, 17H), 7.15 (m, 1H), 7.01 (m, 1H), 6.98 (m, 2H), 6.88 (m, 4H), 6.72 (m, 4H), 6.68 (m, 2H), 6.42 (m, 1H), 6.27 (m, 1H), 4.92 (s, 2H), 4.61 (s, 2H), 4.20 (s, 2H), 4.08 (m, 4H), 3.99 (m, 4H), 3.59 (m, 8H), 3.33 (m, 4H), 3.28 ppm (m, 4H); ¹³C NMR (CD₃CN, 100 MHz, 298 K) δ = 160.22, 159.75, 150.04, 148.83, 146.26, 144.78, 138.93, 136.22, 135.87, 134.58, 133.23, 132.94, 132.61, 132.5, 132.13, 131.85, 131.72, 131.35, 131.02, 130.81, 130.64, 130.43, 130.19, 129.92, 128.91, 127.82, 127.44, 126.96, 126.61, 124.94, 124.87, 124.75, 122.83, 116.56, 115.78, 114.43, 114.12, 71.94, 71.39, 69.46, 62.51, 53.67, 52.59, 47.49 ppm; MS (MALDI-TOF): m/z: 1243.5 [M]⁺, 1275.5 [M+O₂]⁺; elemental analysis (%) calcd for C₇₇H₇₅N₆F₆O₁₀P : C 66.56, H 5.44, N 6.05; found: C 66.78, H 5.42, N 6.09.

Thread **T-1-a**: A mixture of compound **5** (354 mg, 0.50 mmol), compound **6** (117 mg, 0.47 mmol), and [Cu(MeCN)₄]PF₆ (175 mg, 0.47 mmol) was stirred in dry CH₂Cl₂ at room temperature under nitrogen for 24 h. After removal of the solvent, the crude product was purified by column chromatography (SiO₂: CH₂Cl₂/MeOH 30:1) to afford Thread **T-1-a** (700 mg, 88%). M.p. = 132-133 °C. ¹H NMR (CD₃CN, 400 MHz, 298 K): δ = 8.69 (s, 1 H), 8.49 (d, 2H, *J* = 8.87 Hz), 8.15 (d, 2H, *J* = 8.38 Hz), 7.64-7.68 (m, 3H), 7.58-7.60 (m, 2H), 7.25-7.55 (m, 17H), 7.20 (t, 1H, *J* = 9.72, 7.22 Hz), 7.03 (d, 1H, *J* = 8.12 Hz), 6.98 (d, 2H, *J* = 7.52 Hz), 6.77-6.80 (m, 8H), 6.61 (s, 2H), 6.53-6.55 (m, 3H), 6.42 (t, 1H, *J* = 7.10 Hz), 4.99 (s, 2H), 3.88 (s, 2H), 3.77 ppm (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, 298 K) δ = 159.71, 144.88, 143.55, 137.72, 135.36, 132.93, 131.39, 131.20, 131.05, 130.73, 130.34, 129.62, 129.55, 129.20, 128.54, 128.35, 127.77, 127.15, 126.86, 125.93, 125.44, 123.56, 122.87, 118.01, 117.79, 115.05, 112.85, 61.24, 50.25, 50.03, 46.57 ppm; MS (MALDI-TOF): m/z: 795.3 [M]⁺; elemental analysis (%) calcd for C₅₃H₄₃N₆F₆O₂P : C 67.65, H 4.61, N 8.93; found: C 67.93, H 4.58, N 8.97.

Rotaxane R-2-a: Rotaxane R-1-a (100 mg, 0.08 mmol) was dissolved in iodomethane (2 mL) and the mixture was stirred for 24 h at 40 °C. Then iodomethane was evaporated and the solid was washed with Et₂O to give an orange solid. Then, to a suspension of the previous solid in H₂O (10 mL) were added NH₄PF₆ (16.3 mg, 0.1 mmol) and CH₂Cl₂ (15 mL). Then the resulted bilayer solution was vigorously stirred for 1h. After separation, the aqueous layer was extracted with CH₂Cl₂ (x3). The organic layers were combined, dried over Na₂SO₄, and concentrated to obtain guantitatively the rotaxane **R-2-a** (123 mg) as a yellow solid. M.p. = 128-129 °C. ¹H NMR (CD₃CN, 400 MHz, 298 K): $\delta = 8.85$ (s, 1 H), 8.36 (d, 2H, J = 9.14 Hz), 8.24 (m, 3H), 7.74 (t, 2H, J = 6.81, 7.62 Hz), 7.65 (t, 2H, J = 7.84, 6.81 Hz), 7.52-7.55 (m, 4H), 7.49 (m, 2H), 7.38 (d, 1H, J = 8.33 Hz), 7.27-7.32 (m, 7H), 7.19 (m, 1H), 7.09 (d, 2H, J = 8.65 Hz), 7.03 (m, 1H), 6.78-6.84 (m, 10H), 6.57 (m, 1H), 6.54 (d, 2H, J =8.62 Hz), 6.44 (m, 1H), 4.95 (s, 2H), 4.75 (m, 2H), 4.42 (m, 2H), 4.16 (s, 3H), 4.05-4.09 (m, 4H), 3.93-3.96 (m 4H), 3.65-3.68 (m, 8H), 3.51-3.55 (m, 4H), 3.31-3.35 ppm (m, 4H); ¹³C NMR (CD₃CN, 100 MHz, 298 K) δ = 159.20, 158.30, 149.52, 148.28, 148.15, 145.67, 140.53, 139.54, 132.64, 132.36, 132.18, 132.15, 131.21, 130.49, 130.17, 129.97, 129.58, 129.35, 129.07, 127.20, 126.68, 115.44, 115.25, 113.83, 113.63, 71.46, 71.29, 70.92, 70.74, 69.85, 69.52, 68.88, 58.77, 52.96, 52.19, 50.98, 39.60 ppm; MS (MALDI-TOF): m/z: 1257.6 [M-H]⁺; elemental analysis (%) calcd for C₇₈H₇₈N₆F₁₂O₁₀P₂ : C 60.46, H 5.07, N 5.42; found: C 60.69, H 5.04, N

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is @ The Royal Society of Chemistry 2011

5.44.

Thread **T-2-a**: Thread **T-2-a** was synthesized by using the same procedure as described for the preparation of rotaxane **R-2-a**. M.p. = 121-122 °C. ¹H NMR (CD₃CN, 400 MHz, 298 K): $\delta = 8.81$ (s, 1 H), 8.33 (d, 2H, J = 8.88 Hz), 8.24 (m, 3H), 7.71 (m, 2H), 7.63 (m, 2H), 7.62 (m, 3H), 7.18-7.52 (m, 16H), 6.93-7.01(m, 4H), 6.75 (s, 2H), 6.57 (m, 1H), 6.45 (m, 1H), 5.16 (s, 2H), 4.17 (s, 3H), 3.93 (s, 2H), 3.84 ppm (s, 2H); ¹³C NMR (CD₃CN, 100 MHz, 298 K) $\delta = 159.21$, 145.75, 135.74, 135.22, 132.47, 132.37, 132.16, 132.06, 130.73, 130.51, 130.20, 129.48, 129.38, 129.06, 126.65, 118.38, 116.37, 115.92, 115.80, 59.04, 55.26, 51.01, 39.57 ppm; MS (MALDI-TOF): m/z: 812.4 [M+H]⁺; elemental analysis (%) calcd for C₅₄H₄₆N₆F₁₂O₂P₂: C 58.91, H 4.21, N 7.63; found: C 59.12, H 4.19, N 7.65.

deprotonation procedure:

To a solution of the rotaxane **R-1(2)-a** or thread **T-1(2)-a** (1 equiv) in acetone was added a large excess of DIEA (100 equiv) and the mixture was stirred for 1h. After evaporation, and in order to remove the diisopropylethylammonium hexafluorophosphate, the crude was diluted with CH_2Cl_2 and water was added. The aqueous layer was extracted with CH_2Cl_2 (x3) then the organic layers were combined, dried over Na_2SO_4 and concentrated. Et₂O was added to dissolve the excess of DIEA then removed to obtain the rotaxane **R-1(2)-b**.

§5. NMR and MS spectra

¹ H NMR (CDCl₃, 400 MHz) of Compound **2**

¹³C NMR (CDCl₃, 100 MHz) of compound **2**

¹³C NMR (CDCl₃, 100 MHz) of **R-1-a**

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

¹³ C NMR (CDCl₃, 100 MHz) of T-2-a

¹³C NMR (CD₃CN, 100 MHz) of **R-2-a**

¹ H NMR (CD₃CN, 400 MHz) of **R-2-b**

MS of compound **2**

MALDI-TOF of compound **5**

D:\Data_IC\2010\10-11\20101112\2010111220\0_B7\1

printed: 11/12/2

11/12/2010 4:32:24 PM

2250 m/z

MALDI-TOF,CCA,A,2010,11,12

MALDI-TOF of T-1-a

0

250

500

750

1000

1250

1500

1750

2000

MALDI-TOF of R-1-a

D:\Data_IC\2010\10-08\20100825\2010082531\0_P1\1

printed: 8/25/2010 4:41:42 PM

MALDI-TOF of T-2-a

T-CH

MALDI-TOF,CCA,C,2010,11,16

MALDI-TOF of **R-2-a**

MALDI-TOF,CCA,B,2010,11,16

Figure S0. The COSY-NMR spectra (600 MHz, CD₃CN, 298 K) of **R-2-a**.

§7. UV/Vis and FL spectra and titrational 1H NMR spectra of R-2-b

Fig. S1. Absorption spectra of compound 6, 5, T-1-a, T-2-a, R-1-a and R-2-a $(1 \times 10^{-5} \text{ M}, 298 \text{ K})$ in CH₃CN.

Fig. S2. Fluorescence spectra of **R-2-b** ($\lambda_{exc} = 370$ nm, 1×10^{-5} M) in CH₃CN (addition and removal of DIEA).

Fig. S3. Fluorescence spectra of **R-2-b** ($\lambda_{exc} = 310 \text{ nm}, 1 \times 10^{-5} \text{ M}$) in CH₃CN with various equivalents of DIEA (0 equiv to 50 equiv).

Fig. S4. Fluorescence spectra of **T-2-b** ($\lambda_{exc} = 370 \text{ nm}, 1 \times 10^{-5} \text{ M}$) in CH₃CN with various equivalents of DIEA (0 equiv to 50 equiv).

Fig. S5 ¹H NMR spectra of **R-2-b** in CD₃CN at 298 K upon titrational addition of DIEA

Reference:

S1. Park S.; Kwon O-H.; Lee Y-S.; Jang D-J.; Park S. Y. J. Phys. Chem. A 2007, 111, 9649-9653