Synthesis of $\alpha, \boldsymbol{\beta}$-unsaturated γ-amino esters with unprecedented high (\boldsymbol{E})stereoselectivity and their conformational analysis in peptides.

Sachitanand M. Mali, Anupam Bandyopadhyay, Sandip V. Jadhav, Mothukuri Ganesh Kumar and Hosahudya N. Gopi*
hn.gopi@iiserpune.ac.in

Table of Content

1. General Information.
2. General Procedure for Synthesis of Boc/Fmoc- Weinreb amide.
3. General Procedure for Synthesis of Boc/Fmoc-Aldehyde.
4. General Procedure for Synthesis of Vinylogous amino ester.
5. Spectroscopic Data for N-protected Vinylogous amino ester.
6. Procedure for Synthesis of Boc-Ala-dgVOEt \& its Spectroscopic Data .
7. Procedure for Synthesis of BocAla-(D)dgVOEt \& its Spectroscopic Data.
8. ORTEP diagrams of Vinylogous amino acids and peptides
9. References.
10. X-Ray Crystal Structure Analysis
11. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass Spectra for Products.

General Information.

All amino acids, Weinreb amine hydrochloride salt, DCC , LAH, DIPEA, PPh_{3} were purchased from Aldrich. The solvents THF, DCM, toluene were purchased from Merck. THF and DIPEA was dried over sodium and distilled prior to use. Ethyl bromoacetate, di-tert-butyl dicarbonate, Fmoc-OSu were purchased from Spectrochem and used without further purification. Column chromatography was performed on Merck silica gel (100-200 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Jeol 400 MHz and ${ }^{13} \mathrm{C}$ NMR on 100 MHz spectrometer using residual solvent as internal standard $\left(\mathrm{CDCl}_{3} \delta_{\mathrm{H}}, 7.24 \mathrm{ppm}, \delta_{\mathrm{c}}\right.$ 77.0 ppm). The chemical shifts (δ) were reported in ppm and coupling constant (J) in Hz. Specific rotations were recorded using methanol and DMF (Rudolph Analytical Research). Mass spectra were obtained from MALDI-TOF/TOF (Applied Biosystem).

General Procedure for the Synthesis of Boc/Fmoc-amino Weinreb Amide .

In a typical experimental procedure, protected amino acid (20 mmol) was dissolved in a DCM and to this solution hydrochloride salt of weinreb amide (30 mmol) was added. The reaction mixture was then cooled at $0{ }^{\circ} \mathrm{C}$. This reaction mixture was treated with DIPEA, DCC and HOBt. The progress of the reaction was monitored by TLC. After the completion of reaction(12 h) DCM was evaporated and residue was diluted with 150 mL of ethyl acetate and washed with $5 \% \mathrm{HCl}(50 \mathrm{~mL})$, $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ fallowed by brine soultion. The organic layer was then dried over the anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure. The pure N -protected amino acid Weinreb amide was isolated after the column chromatography using EtOAc/ pet.ether ($60-80^{\circ} \mathrm{C}$) solvent system.

General Procedure for Synthesis of Synthesis of Boc/Fmoc Amino Aldehyde.

The N-Protected Weinreb amide (20 mmol) was dissolved in 130 mL of dry THF under N_{2} atmosphere, cooled to $0{ }^{\circ} \mathrm{C}$, and then $\mathrm{LiAlH}_{4}(22 \mathrm{mmol})$ was added slowly during 10 min . Reaction mixture was stirred for another 20 min . After completion, the reaction was quenched with $5 \% \mathrm{HCl}(5 \%$ by volume in water) very slowly in ice cool condition ($p \mathrm{H} 3$). THF was evaporated from the reaction mixture and the N-protected amino aldehyde was extracted with ethyl acetate ($3 \times 80 \mathrm{~mL}$). Combined organic layer was washed with brine (40 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Organic layer was concentrated under reduced pressure to get oily product and immediately used for next step without purification.

General Procedure for Synthesis of Boc/Fmoc Vinylogous Amino Ester.

The N-protected amino aldehyde (10 mmol) was dissolved in dry THF (40 mL) under the N_{2} atmosphere. To this solution Wittig ylide (11.5 mmol) was added. The progress of reaction was monitored by TLC. After the completion of reaction (8h) the THF was evaporated and product was purified by coloumn chromatography using 5:95 ethyl acetate /pet ether solvent system.

Spectroscopic Data for N-Protected vinylogous Amino Esters

(S,E)-ethyl 4-(tert-butoxycarbonylamino)pent-2-enoate : Colourless Oil (Yield 2.25g, 93\%); [$\alpha]_{\mathrm{D}}$ ${ }^{25}=-20.8(\mathrm{c}=1 \mathrm{MeOH}) \mathrm{UV}=216 \mathrm{~nm}, t_{R}=5.59 \min { }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.876-6.827(\mathrm{dd}, 1 \mathrm{H}$ vinylic β proton), 5.898-5.859 (d, 1H vinylic α proton) , 4.5 (br, NH), 4.38 (br, α proton), 4.198-4.144 (q, $\left.J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.432\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Boc}\right), 1.265-1.247\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$ CDCl_{3}) 166.472, 154.974, 120.201, 79.851, 60.534, 47.080, 28.431, 20.422, 14.301;

MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})$ 266.1368 Observed.266.1365.

(S,E)-ethyl 4-(tert-butoxycarbonylamino)-5-methylhex-2-enoate : Colourless solid (yield 2.43g, $90 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}=-3.40(\mathrm{c}=1 \mathrm{MeOH}) ; \mathrm{mp}=59{ }^{0} \mathrm{C}$ UV $=216 \mathrm{~nm}, t_{R}=8.02 \mathrm{~min} .{ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.855-6.816$ (dd, 1H vinylic β proton) $5.924-5.880(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 4.55 (d, 1 H , NH), 4.187-4.168 (q, J=6.88 Hz, 2H, OCH_{2}), 1.862-1.84 (m, $1 \mathrm{H}, \gamma$ proton), $1.429\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Boc}\right)$, 1.292-1.256 ($\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.932-0.885\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}); 166.2437, 155.3170, 147.3461, 121.4025, 79.6125, 60.3812, 56.6151, 32.1875, 28.2974, 18.8105, 17.9428, 14.1862 MALDI. TOF/TOF Calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4}$ 294.1681 Observed 294.1686;

(S,E)-ethyl 4-(tert-butoxycarbonylamino)-6-methylhept-2-enoate: Colorless crystalline soild (2.70 g , $95 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}=-25.50(\mathrm{c}=1 \mathrm{MeOH}) ; \mathrm{mp}=55{ }^{0} \mathrm{C}, \mathrm{UV}=218 \mathrm{~nm}, t_{R}=11.5 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \quad 6.854-6.811\left(\mathrm{dd}, J=16 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.936-5.904(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}$), 4.451 (br, 1H, NH), 4.334 (br, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}$), 4.215-4.172 (q, J=7 Hz, 2H, $-\mathrm{OCH}_{2}$), 1.726-1.671 (m, 1H, CH- $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.446\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Boc}\right), 1.400-1.372(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.304-1.276\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.945-0.932\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR (100MHz, CDCl_{3}) $\delta 166.4153,155.0501,148.8907,120.3537,79.6506,60.4098,49.7597,43.7815$, 28.3164, 24.6742, 22.6815, 22.1476, 14.2053; MALDI.TOF/TOF m/z Calcd. For $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ 308.1838, Observed. 308.1840.

(4S,5R,E)-ethyl 4-(tert-butoxycarbonylamino)-5-methylhept-2-enoate: Colourless solid,(yield 2.62.g, 92%); $[\alpha]_{\mathrm{D}}{ }^{25}=-11.20$ ($\left.\mathrm{c}=1 \mathrm{MeOH}\right) ; \mathrm{mp}=62{ }^{0} \mathrm{C}, \mathrm{UV}=216 \mathrm{~nm}, t_{R}=10.41 \mathrm{~min} .{ }^{1} \mathbf{H N M R}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.858-6.819 (d, 1 H vinylic β proton), 5.917-5.878 ($\mathrm{d}, J=14.36 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 4.568 ($\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$), 4.255 (br, 1 H , α proton), $4.197-4.161$ ($\mathrm{q}, \mathrm{J}=6.88 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{3}$), 1.655$1.595\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.421\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Boc}\right), 1.284-1.248\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.9152-0.8659$ ($\left.\mathrm{m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.310,155.317,147.155,121.612,79.651,60.448$,
55.757, 39.043, 28.402, 25.322, 15.321, 14.281, 11.679; MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}$ (M+Na) 308.1838 Observed. 308.1837

(\boldsymbol{E})-ethyl 4-(tert-butoxycarbonylamino)-4-methylpent-2-enoate: Colourless solid (yield 1.92g, 75\%); $\mathrm{mp}=58{ }^{0} \mathrm{C}, \mathrm{UV}=221 \mathrm{~nm}, t_{R}=6.30 \mathrm{~min} .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.020-6.980(\mathrm{~d}, J=16.04 \mathrm{~Hz}$, 1 H , vinylic β proton), $5.860-5.820(\mathrm{~d}, J=16.04 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 4.710 (br, $1 \mathrm{H}, \mathrm{NH}$), 4.216$4.164\left(\mathrm{q}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.428\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Boc}\right), 1.408\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.306-1.270(\mathrm{t}$, $\left.J=6.88 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 166.787, 154.201, 153.629, 118.523, 79.479, 60.410, 52.963, 29.747, 28.421, 27.411, 14.310; MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})$ 280.1525 Observed. 280.1526.

(S,E)-tert-butyl2-(3-ethoxy-3-oxoprop-1-enyl)pyrrolidine-1-carboxylate: Colourless oil (yield, 2.23g, $83 \%)[\alpha]_{\mathrm{D}}{ }^{25}=-72(\mathrm{c}=1 \mathrm{MeOH}) ; \mathrm{UV}=214 \mathrm{~nm}, t_{R}=7.5 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.836-6.783$ (dd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic β proton), $5.838-5.800(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic α proton), 4.514\&4.373 (br, 1H CH γ proton), 4.213-4.179 (q, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{OCH}_{2}$), 3.446-3.431 (t, $J=6 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.146-2.056 \& 1.892-1.821 (m, 4H, β \& $\gamma \mathrm{CH}_{2}$), 1.421($\left.\mathrm{s}, 9 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Boc}\right) 1.313-1.279(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.107, 154.306, 148.538, 120.478, 79.631, 60.324 , 57.845, 46.232, 31.720, 28.393, 22.910, 14.234; MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}$ (M+Na) 292.1525 Observed 292.1520.

($\boldsymbol{R}, \boldsymbol{E}$)-ethyl 5-tert-butoxy-4-(tert-butoxycarbonylamino)pent-2-enoate: Coluorless oil(2.55g, 81%); $[\alpha]_{\mathrm{D}}{ }^{25}=+4.4(\mathrm{c}=1, \mathrm{MeOH}) ; \mathrm{UV}=211 \mathrm{~nm}, t_{R}=10.03 \mathrm{~min} .{ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 6.918-6.866$ (dd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic β proton), $5.948-5.909(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic α proton), 5.012 (br, 1H, NH), 4.355 (br 1H, CH γ proton), 4.191-4.137 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 3.478-3.445 (d, $J=4.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.423\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Boc}\right), 1.135\left(\mathrm{~s}, 9 \mathrm{H} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{OtBu}\right) ;{ }^{13} \mathbf{C N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.377,155.336,146.917,121.708,79.736,73.415,63.232,60.400,51.762,28.404,27.391$, 14.272;MALDI.TOF/TOF m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{Na})$ 338.1943 Observed.338.1904 .

(S,E)-benzyl 4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-8(tertbutoxycarbonylamino)oct enoate: White solid, ($4.55 \mathrm{~g}, 78 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}=-9.30$ ($\left.\mathrm{c}=1 \mathrm{MeOH}\right) ; \mathrm{mp}=107^{\circ} \mathrm{C}$, UV $=211 \mathrm{~nm}, 264 \mathrm{~nm}$, $289 \mathrm{~nm}, t_{R}=8.05 \mathrm{~min} .{ }^{1}$ HNMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.773-7.755(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc), 7.603-7.585 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc-), 7.391-7.300 (m, 9H aromatic Fmoc \& Benzylic), 6.909-6.858 (dd, $J=15.6 \mathrm{~Hz} \mathrm{1H}$, vinylic β proton), $5.967-5.928$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 5.186 ($\mathrm{s}, 2 \mathrm{H}$, benzylic), 4.460-4.429 (t, $J=6.4 \mathrm{~Hz} \quad 1 \mathrm{H}, \mathrm{CH}$ Fmoc-), 4.975 (br, 2H , CH_{2}), 4.225-4.193 ($\mathrm{m}, 1 \mathrm{H}, \gamma$ proton), 3.121-3.106 (t, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.620-1.543 (m, $4 \mathrm{H}, \beta \mathrm{CH}_{2} \delta \mathrm{CH}_{2}$), 1.392-1.356 (m, 2H, $\gamma \mathrm{CH}_{2}$), $1.438\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Boc}\right) ;{ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.10,155.89,148.57$, $143.86,141.42$, $135.89,128.69$, 128.47, 127.82, 127.18, 125.08, 120.75, 120.08, 79.35, 67.23, 66.75, 66.51, 52.02, 47.33, 40.01, 33.90, 31.05, 29.87, 29.80, 28.50, 22.78; MALDI.TOF/TOF m/z Calcd. For $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})=607.2784$ Observed. 607.2787.

(S,E)-benzyl 4-(((9H-fluoren-9-yl)methoxy)carbonylamino)pent-2-enoate : White solid (4g, 94\%); $[\alpha]_{\mathrm{D}}{ }^{25}=-16.70(\mathrm{c}=1, \mathrm{MeOH}) ; \mathrm{mp}=116{ }^{0} \mathrm{C}, \mathrm{UV}=210 \mathrm{~nm}, 264 \mathrm{~nm}, 289 \mathrm{~nm}, t_{R}=8.15 \mathrm{~min} .{ }^{1} \mathbf{H N M R}$
(400 MHz, CDCl3) $\delta 7.762-7.743$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ aromatic Fmoc-), 7.583-7.565 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc-) 7.416-7.300 (m, 9H, aromatic Fmoc \& benzylic), 6.941-6.890 (dd, $J=16 \mathrm{~Hz}, 1 \mathrm{H}$ vinylic β proton), $5.955-5.916$ ($\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$ vinylic α proton), 5.178 ($\mathrm{s}, 1 \mathrm{H}$ benzylic), 4.782-4.762 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 4.507-4.490 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 4.445-4.429 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fmoc), 4.215-4.182 (m, $1 \mathrm{H} \gamma$ proton), 1.292-1.275 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 166.151, 155.548, 149.436, 143.858, 141.427, 135.887,133.846, 128.764, 128.697, 128.468, 127.181, 125.064, 124.950, 120.240, 120.097, 66.777, 66.519, 47.659, 47.306, 31.059, 20.322; MALDI.TOF/TOF m/z Calcd. For $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})$ 450.1681 Obeserved.450.1641.

(\boldsymbol{R}, E)-benzyl 4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(tritylthio)pent-2-enoate: Coluorless solid ($5.6 \mathrm{~g}, 80 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}=+6.70(\mathrm{c}=1, \mathrm{MeOH}) ; \mathrm{UV}=212 \mathrm{~nm}, 264 \mathrm{~nm}, 289 \mathrm{~nm}, t_{R}=7.12 \mathrm{~min} .{ }^{1} \mathbf{H M N R} \delta$ 7.747-7.732 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc), 7.573-7.555 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc), 7.3887.347 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc) 7.334-7.186 (m, 17H, aromatic Ph), 6.717-6.69 (dd, $J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}$, vinylic β proton), $5.820-5.782$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 5.140 (s, 1 H , benzylic), 4.850-4.805 (t, 1H, CH Fmoc), 4.407-4.391 (d, J=6.4 Hz, 2H, OCH 2), 4.222-4.160 (m, 1H, γ proton), 2.449-2.436 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, ~ \beta \mathrm{CH}_{2}$); ${ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.836,155.548,146.823$, $144.382,143.848,141.427,135.849,129.632,128.201,127.086,125.093,121.594,120.116,98.509$, $82.081,68.064,67.425,66.586,65.356,51.525,50.453,47.325,35.988,34.358,33.318,31.068,30.448$, 25.719; MALDI TOF/TOF m/z Calcd. for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 724.2497 Observed.724.2491.

(S,E)-benzyl 4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(4-tert-butoxyphenyl)pent-2-enoate : Colourless solid ($5.3 \mathrm{~g}, 93 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}=-28.6(\mathrm{c}=1, \mathrm{MeOH}) ; \mathrm{UV}=210 \mathrm{~nm}, 264 \mathrm{~nm}, 289 \mathrm{~nm}, t_{R}=8.57 \mathrm{~min}$. ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.775-7.757(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc), 7.560-7.529 (t, $J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic Fmoc-), 7.415-7.397 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc-), 7.385-7.289 (m, 11H, aromatic proton), 6.996-6.913 (dd, 1 H , vinylic β proton), $5.914-5.875(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 5.186 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), 4.790-4.769 ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.453-4.353 (m, 1H, CH γ proton), 4.200-4.167 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.885-2.850 (t, J=7.2 Hz, $2 \mathrm{H}, \beta \mathrm{CH}_{2}$), $1.327(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{tBu}\right) ;{ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 164.110, 155.596, 151.295, 147.844, 144.544, 143.801, $141.388,132.931,132.235,131.892,128.564,128.344,127.791,127.620,127.153,126.724,124.340$, 124.054, 120.106, 68.055, 66.443, 65.242, 47.278, 33.957, 31.040, 28.894, 25.691; MALDI.TOF/TOF m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{Na})$ 598.2569 Obsrved.598.2574.

(S,E)-3-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-(benzyloxy)-6-oxohex-4-enoic acid: Colourless solid (3.76g, 80\%); [$\alpha]_{\mathrm{D}}{ }^{25}=-16.60(\mathrm{c}=1, \mathrm{MeOH}), \mathrm{mp}=146{ }^{\circ} \mathrm{C}, \mathrm{UV}=213 \mathrm{~nm}, 263 \mathrm{~nm}$, $289 \mathrm{~nm}, t_{R}=18.09 \mathrm{~min} .{ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.760-7.742$ ($\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ aromatic Fmoc-), 7.583-7.564 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc-) 7.395-7.297 (m, 9H, aromatic), 6.993-6.941 (dd, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic β proton), $6.038-6.001$ ($\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$ vinylic α proton), $5.568-5.545$ (d, $J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.185(\mathrm{~s}, 2 \mathrm{H}$, benzylic), 4.768(b, $1 \mathrm{H}, \mathrm{Fmoc}), 4.439-4.423\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right)$, 4.223-4.188 (m, 1H, CH γ proton), 2.764-2.725(m, J=4.8 Hz, 2H, $\beta \mathrm{CH}_{2}$) ${ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 174.599,166.027,155.710,146.366,143.725,141.398,135.677,132.988,128.707,127.200,125.103$, 121.947, 120.106, 67.130, 66.758, 48.317, 47.230, 37.943, 31.059); MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{Na})$ 494.1580 Observed.494.1555.

(S,E)-benzyl 4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-amino-6-oxohex-2-enoate: Colourless solid $(6.4 \mathrm{~g}, 90 \%),[\alpha]_{\mathrm{D}}{ }^{25}=-3.7(\mathrm{c}=1, ~ M e O H) ; \mathrm{UV}=275 \mathrm{~nm}, 293 \mathrm{~nm}, 306 \mathrm{~nm}, t_{R}=8.55 \mathrm{~min}$. ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.773-7.755(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic Fmoc-), 7.591-7.572 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic Fmoc-), 7.391-7.142 (m, 24H, aromatic protons), 7.049-6.999 (dd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic β proton), $6.450-6.429(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}$ amide) , $6.052-6.013(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), 5.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), 4.695 (b, $1 \mathrm{H}, \mathrm{NH} \mathrm{Boc}$), $4.390-4.301$ ($\mathrm{m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \gamma$ proton), 4.190-4.154 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc}$), $2.688\left(\mathrm{~b}, 2 \mathrm{H}, \beta \mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.756$, $169.469,165.932,155.929,147.005,144.192$, 141.350, 135.849, 128.726, 128.173, 127.372, 125.265, 120.049, 71.077, 67.111, 66.567, 49.528, 47.211, 40.107, 33.948, 25.671; MALDI TOF/TOF m/z Calcd. for $\mathrm{C}_{47} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})$ 735.2835 Observed 735.2889.

Synthesis of dipeptide Boc-Ala-(D)dgVal-OEt

Boc-Ala- $\mathrm{OH}(0.129 \mathrm{~g} 0.68 \mathrm{mmol})$ and $\mathrm{NH}_{2}-\mathrm{dgDVal}-\mathrm{OEt}(0.185 \mathrm{~g}, 0.68 \mathrm{mmol})$ were dissolved in dissolved in DMF (1.5 ml). The reaction mixture was cooled at $0^{\circ} \mathrm{C}$. Then DCC $(0.141 \mathrm{~g}, 0.68 \mathrm{mmol})$, HOBt $(0.092 \mathrm{~g}, 0.68 \mathrm{mmol})$ were added together. The reaction mixture was then allowed to stir for further 12 h . After the completion of reaction, the reaction mixture was diluted with ethyl acetate and DCU generated in the reaction mixture was filtered and the filtrate was then washed with $5 \% \mathrm{HCl}, 10 \%$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was then concentrated under reduced pressure. The dipeptide was purified using ethyl acetate/pet ether solvent system (1:3). The pure
dipeptide BocAla-dgDVOEt obtained as colourless oil. Yield $74.85 \%(0.250 \mathrm{~g}) .[\alpha]_{\mathrm{D}}{ }^{25}=+2.7(\mathrm{c}=1$ MeOH) ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 6.893-6.842$ (dd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic β proton), 6.60 (br, $1 \mathrm{H}, \mathrm{NH}$), $5.891-5.852(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic α proton), $5.037-5.020(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ Boc), 4.529-4.476 (m, CH γ proton Val), 4.202-4.150 (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 1.953-1.871(m, CH α proton Ala), 1.457(s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Boc}\right), 1.380-1.363\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ala}\right), 1.293-1.257(\mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.955-0.907\left(\mathrm{dd}, J=6.8 \mathrm{~Hz} 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C N M R} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.355$, $166.282,155.975,146.745,121.603,80.585,60.505,55.070,53.516,50.189,32.092,28.354,19.011$, 17.943, 14.291; MALDI TOF/TOF m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na}) .365 .2052$ observed.365.2050.

Dipeptide D1

Synthesis of Boc-Ala-dgVal-OEt

Same protocol described above was used for the synthesis of dipeptide BocAla-dgVal-OEt. $93 \%(0.392 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-50.8(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.891-6.338(\mathrm{dd}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic β proton), $6.637(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.919-5.879(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ vinylic α proton), 5.042-5.024 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Boc}$), 4.527-4.477 (m, 1H, CH α proton Val), 4.205-4.152 (q, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 1.915-1.851 (m, 1H, CH α proton), 1.444 ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{Boc}$), 1.368-1.350 (d $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ala}$), 1.293-1.254 (t, $J=8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.929-0.894\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Val}\right)$; ${ }^{13}$ CNMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.336,166.272,155.965,146.745,121.746,80.451,60.515,55.061$, 53.507, 32.159, 28.364, 21.118, 19.011, 17.895, 14.281;MALDI.TOF/TOF m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})$ 365.2052 Observed 365.2057.

Synthesis of homo-dipeptide Boc-dgL-dgL-OEt

(S,E)-4-(tert-butoxycarbonylamino)-6-methylhept-2-enoic acid(Boc-dgL-OH): Boc-dgL-
OEt, $4 \mathbf{C}(1.86 \mathrm{~g} 6.8 \mathrm{mmol})$ was dissolved in 4 mL of ethanol followed by 10 mL of 1 N NaOH was added slowly to the solution. The reaction mixture was then stirred for about 8 h . The progress of reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated under reduced pressure. The aqueous layer was diluted with water $(50 \mathrm{~mL})$ and then acidified $(\sim \mathrm{pH} 3.0)$ with $5 \% \mathrm{HCl}$ and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Product was concentrated under reduced pressure to get 1.67 g (95\%) of oily Boc-dgL-OH.
($\mathbf{S}, \boldsymbol{E}$)-ethyl 4-amino-6-methylhept-2-enoate $\left(\mathbf{H}_{2} \mathbf{N d g L}-\mathbf{O E t}\right)$: The solution of Boc-dgL-OEt (1.95 g , 7.2 mmol) in 5 mL of DCM was cooled to $0^{\circ} \mathrm{C}$ followed by 5 mL of neat TFA was added. The reaction mixture was stirred for about 1.5 h at the same temperature. The progress of the reaction was monitored by TLC. After completion of the reaction (1.5 h), the solvent was evaporated under reduced pressure. The residue was then treated with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in cold condition. This aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure to 4 mL .

The solution of $\mathrm{H}_{2} \mathrm{~N}$-dgL-OEt in ethyl acetate (4 mL) was added to the ice-cold solution of Boc-dgLOH ($1.67 \mathrm{~g}, 6.5 \mathrm{mmol})$ in DMF (4 ml). The reaction mixture was then treated with DCC $(1.34 \mathrm{~g}, 6.5$ $\mathrm{mmol})$ followed by HOBt ($0.884 \mathrm{~g}, 6.5 \mathrm{mmol}$). The reaction mixture was stirred for about 12 h at room temperature and the progress of the reaction was monitored by TLC. After completion of reaction, the reaction mixture was diluted with ethyl acetate (100 mL) and DCU formed in reaction was filtered. This filtrate was washed with brine ($3 \times 50 \mathrm{~mL}$), $5 \% \mathrm{HCl}\left(3 \times 50 \mathrm{~mL}\right.$), $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 50 \mathrm{~mL})$, brine (30 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure and the crude product was purified by column chromatography using ethyl acetate/ pet ether to get $1.2 \mathrm{~g}(40 \%)$ of the pure dipeptide D4.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 6.858-6.805$ (dd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$ vinylic $\beta \mathrm{CH}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Et}$), 6.709-6.656 (dd, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$ vinylic $\beta \mathrm{CH}=\mathrm{CH}-\mathrm{CONH}$), $5.924-5.885(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$ vinylic $\alpha \mathrm{CH}=\mathrm{CH}-\mathrm{CO}$), 5.655 (br, 1 H NH amide), $4.773-4.737$ ($\mathrm{m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H} \gamma$ proton), 4.547 (br, 1 H NH Boc), 4.297 (m, 1H, γ proton), $4.205-4.151\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.696-1.630\left(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}\right), 1.464-$ $1.43\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}\right), 1.439\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Boc}\right), 1.398-1.363(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{CH}-\mathrm{CH} 2-$ $\mathrm{CH}), 1.294-1.258\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.934-0.918\left(\mathrm{~d}, J=6.4 \mathrm{~Hz} 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{4}\right) ;{ }^{13} \mathbf{C N M R}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $166.434,164.975,147.985,145.296,122.728,120.973,60.572,49.950,48.492,44.020$, 43.543, 28.459, 24.703, 22.796, 14.301; MALDI.TOF/TOF; m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{K})$ 463.2574 Observed 463.1999.

Crystal structure analysis of Boc-dgV-OEt: Crystals of peptide were grown by slow evaporation from a solution of EtOAc and Hexane. A single crystal $(0.50 \times 0.35 \times 0.20 \mathrm{~mm})$ was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 200K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA$), ω-scans $(2 \theta=55.84)$, for a total of 3650 independent reflections. Space group P2(1), 2(1), 2(1), $a=9.978(4), b=10.083(3), c=16.904(6)$, $\mathrm{V}=1700.7(10) \AA^{3}$, Orthorhombic $\mathrm{P}, \mathrm{Z}=4$ for chemical formula $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4}$, with one molecule in asymmetric unit; ρ Calcd $=1.060 \mathrm{gcm}^{-3}, \mu=0.077 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=592, \mathrm{R}_{\mathrm{int}}=0.0268$. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0581 ($\mathrm{wR} 2=0.1589$) 1978 observed reflections ($F_{0} \geq 4 \sigma\left(\left|\mathrm{~F}_{0}\right|\right)$) and 178 variables, $\mathrm{S}=1.011$. The largest difference peak and hole were 0.344 and $-0.160 \mathrm{e} \AA^{3}$, respectively.

Crystal structure analysis of Boc-dgL-OEt: Crystals of peptide were grown by slow evaporation from a solution of EtOAc and Hexane. A single crystal $(0.45 \times 0.34 \times 0.24 \mathrm{~mm})$ was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 296K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA\{), \omega$-scans $(2 \theta=48.56)$, for a total of 2788 independent reflections. Space group $\mathrm{P} 2(1), \mathrm{a}=10.340(3), \mathrm{b}=9.733(3), \mathrm{c}=18.073(5), \beta=$
106.331(5), $\mathrm{V}=1700.7$ (10) A^{3}, Monoclinic $\mathrm{P}, \mathrm{Z}=2$ for chemical formula $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{8}$, with two molecule in asymmetric unit; ρ Calcd $=1.086 \mathrm{gcm}^{-3}, \mu=0.078 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=624, \mathrm{R}_{\mathrm{int}}=0.0277$. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0341 ($\mathrm{wR} 2=0.0804$) 2413 observed reflections ($F_{0} \geq 4 \sigma\left(\left|\mathrm{~F}_{0}\right|\right)$) and 373 variables, $\mathrm{S}=0.985$. The largest difference peak and hole were 0.110 and -0.130 e \AA^{3}, respectively.

Crystal structure analysis of Boc-dgU-OEt: Crystals of peptide were grown by slow evaporation from a solution of EtOAc and Hexane. A single crystal $(0.45 \times 0.30 \times 0.23 \mathrm{~mm})$ was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 296 K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA\{)$, ω-scans $(2 \theta=60.56)$, for a total of 4448 independent reflections. Space group $\mathrm{P} 21 / \mathrm{c}$, $\mathrm{a}=10.669(2), \mathrm{b}=9.092(2), \mathrm{c}=15.882(4), \beta=$ 90.923(5), $\mathrm{V}=1540.3(6) \AA^{3}$, Monoclinic $\mathrm{P}, \mathrm{Z}=4$ for chemical formula $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{8}$, with one molecule in asymmetric unit; ρ Calcd $=1.114 \mathrm{gcm}^{-3}, \mu=0.082 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=564, \mathrm{R}_{\mathrm{int}}=0.0579$. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0651 ($\mathrm{wR} 2=0.1879$) 1713 observed reflections $\left(F_{0} \geq 4 \sigma\left(\left|F_{0}\right|\right)\right)$ and 169 variables, $S=1.031$. The largest difference peak and hole were 0.303 and $-0.283 \mathrm{e} \AA^{3}$, respectively.

Crystal structure analysis of Boc-dgI-OEt: Crystals of peptide were grown by slow evaporation from a solution of EtOAc and Hexane. A single crystal $(0.54 \times 0.43 \times 0.32 \mathrm{~mm})$ was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 200K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA ́)$, ω-scans $(2 \theta=59.20)$, for a total of 3650 independent reflections. Space group P2(1), 2(1), 2(1), $a=10.153(3), b=10.273(3), c=16.191$ (5), $\mathrm{V}=1688.8(9) \AA^{3}$, Orthorhombic $\mathrm{P}, \mathrm{Z}=4$ for chemical formula $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}$, with one molecule in asymmetric unit; ρ calcd $=1.122 \mathrm{gcm}^{-3}, \mu=0.080 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=624, \mathrm{R}_{\mathrm{int}}=0.0265$. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0378 ($\mathrm{wR} 2=0.0912$) 3750 observed reflections ($F_{0} \geq 4 \sigma\left(\left|F_{0}\right|\right)$) and 188 variables, $\mathrm{S}=1.023$. The largest difference peak and hole were 0.185 and - $-0.190 \mathrm{e}^{\prime}{ }^{3}$, respectively.

Crystal structure analysis of Boc-Ala-dgVal-OEt : Crystals of peptide were grown by slow evaporation from a solution of ethylacetate. A single crystal $(0.25 \times 0.24 \times 0.20 \mathrm{~mm})$ was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100 K temperature on a

Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA ́)$, ω-scans $(2 \theta=56.56)$, for a total of 25408 independent reflections. Space group P1, $\mathrm{a}=13.3376$ (19), $\mathrm{b}=14.030$ (2), $\mathrm{c}=$ 17.956(3), $\alpha=88.064(5), \beta=70.670(4), \gamma=73.874(5), \mathrm{V}=3039.6(7) \AA^{3}$, Triclinic $\mathrm{P}, \mathrm{Z}=1$ for chemical formula $\mathrm{C}_{102} \mathrm{H}_{180} \mathrm{~N}_{12} \mathrm{O}_{30}$, with six molecule in asymmetric unit; ρ Calcd $=1.122 \mathrm{gcm}^{-3}, \mu=0.082 \mathrm{~mm}^{-1}$, $\mathrm{F}(000)=1116, \mathrm{R}_{\mathrm{int}}=0.0718$. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0881 ($\mathrm{wR} 2=0.1946$) 12742 observed reflections $\left(F_{0} \geq 4 \sigma\left(\left|\mathrm{~F}_{0}\right|\right)\right.$) and 1339 variables, $\mathrm{S}=$ 0.990 . The largest difference peak and hole were 0.587 and $-0.334 \mathrm{e} \AA^{3}$, respectively.

Crystal structure analysis of Boc-dgLeu-dgLeu-OEt: Crystals of peptide were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.35 \times 0.25 \times 0.11 \mathrm{~mm}$) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 200 K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_{α} radiation $(\lambda=0.71073 \AA ́)$, ω-scans $(2 \theta=58.26)$, for a total of 5271 independent reflections. Space group P1, $a=5.053(2), b=9.812(5), ~ c=13.498(6), \alpha=$ 73.640(9), $\beta=84.653(9), \gamma=78.566(9), V=628.8(5) \AA^{3}$, Triclinic $P, Z=1$ for chemical formula $C_{23} H_{40}$ $\mathrm{N}_{2} \mathrm{O}_{5}$, with one molecule in asymmetric unit; ρ calcd $=1.121 \mathrm{gcm}^{-3}, \mu=0.078 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=232, \mathrm{R}_{\text {int }}=$ 0.0613. The structure was obtained by direct methods using SHELXS-97. ${ }^{1}$ The final R value was 0.0663 (wR2=0.1509) 3557 observed reflections $\left(F_{0} \geq 4 \sigma\left(\left|F_{0}\right|\right)\right.$) and 305 variables, $\mathrm{S}=1.036$. The largest difference peak and hole were 0.575 and $-0.373 \mathrm{e} \AA^{3}$, respectively.

Figure 1: ORTEP diagram of Boc-dgV-OEt. All H -atoms are not labeled for clarity

Figure 2: ORTEP diagram of Boc-dgL-OEt. All H -atoms are not labeled for clarity. Two molecules are appeared in the asymmetric unit.

Figure 3: ORTEP diagram of Boc-dgI-OEt. All H-atoms are not labeled for clarity

Figure 4: ORTEP diagram of Boc-dgI-OEt. All H-atoms are not labeled for clarity

Figure 5: ORTEP diagram of Boc-Ala-dgV-OEt. Six molecules are appeared in the asymmetric unit. The double bonds are highlighted in different colors.

References

1. SHELXS-97: G. M. Sheldrick, Acta Crystallogr. Sect A, 1990, 46, 467 -473, b) G. M. Sheldrick, SHELXL-97, Universität Göttingen (Germany) 1997

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and Mass Spectra of all Compounds

Final - Shots 320 - HNG GROUP; Run \#273; Label G10

Spectrum Report

Spectrum Report

Final - Shots 320 - HNG GROUP; Run \#273; Label L15

Spectrum Report

Final - Shóts 320 - HNG GROUP; Run \#273; Label L17

170311-24-SM-A1B-DHY-CARBON-3.JDF

\therefore

Spectrum Report

Final - Shots $\mathbf{3 2 0}$ - HNG GROUP; Run \#273; Label G12

170311-01-SM-PRODHY-CARBON-3.JDF

Spectrum Report

180211-06-MGK-DGS-OTBU-CARBON-3.ESP

Spectrum Report

Final - Shots 320 - HNG GROUP; Run \#274; Label H22

Spectrum Report

Final - Shots 400 - HNG GROUP; Run \#221; Label E15

Spectrum Report

Final - Shots 400 - HNG GROUP; Run \#221; Label E7

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Spectrum Report

Final - Shots 400 - HNG GROUP; Run \#221; Label E18

Spectrum Report

Final - Shots 800 - HNG GROUP; Run \#266; Label P2

Spectrum Report

Final - Shots 400 - HNG GROUP; Run \#221; Label I10

Spectrum Report

Final - Shots 400 - HNG GROUP; Run \#222; Label A4

100311-20MGK.A-DGV_PROTON-3ESP

Spectrum Report

Final - Shots 320 - HNG GROUP; Run \#273; Label G13

Bochn

Spectrum Report

Final - Shots 320 - HNG GROUP; Run \#273; Label G16

WISER-NMRO1WETWORK NMRDATAUMARCH 20111310311-13-SM-DIDGHOET_PROTON-3.JDF

Final - Shots 320 - IISER; Run \#207; Label O12

