(R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) Catalyzed Kinetic Resolution of Racemic Secondary Benzylic Alcohols with Free Carboxylic Acids by Asymmetric Esterification

Kenya Nakata and Isamu Shiina*

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Electronic Supplementary Information (ESI)

S 1	General Information
S2-3	Procedure for the Synthesis of (R) -NMBG $((R)$ -1)
S4	Typical Procedure for the Asymmetric Esterification
S5-21	Analytical Data of Compounds for Tables 2–4
S22-30	Cartesian Coordinates of (R) -ts-1, (S) -ts-2a, and (S) -ts-2b
S31-112	Spectroscopic Data of Compounds

General Information. All melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane (TMS) or chloroform (in chloroform-*d*) as internal standard. Thin layer chromatography was performed on Wakogel B5F. All reactions were carried out under argon atmosphere in dried glassware. Dichloromethane was distilled from diphosphorus pentoxide, then calcium hydride, and dried over MS 4Å, benzene and toluene were distilled from diphosphorus pentoxide, and dried over MS 4 Å, and THF and diethyl ether were distilled from sodium/benzophenone immediately prior to use. All reagents were purchased from Tokyo Kasei Kogyo Co., Ltd., Kanto Chemical Co., Inc. or Aldrich Chemical Co., Inc., and used without further purification unless otherwise noted.

Procedure for the Synthesis of (R)-NMBG ((R)-1)

To a solution of *N*-methylbenzimidazole(**2**) (655.3 mg, 4.96 mmol) in THF (20.0 mL) at -78 °C was slowly added *n*-BuLi in hexane (1.66 M, 3.20 mL, 5.31 mmol). The reaction mixture was stirred for 1 h at the same temperature and then CCl₄ (507 µL, 5.25 mmol) was slowly added. After the reaction mixture had been stirred for 1.5 h, the reactant was quenched with H₂O and diluted with CH₂Cl₂ at -78 °C. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄. After filtration of the mixture and evaporation of the solvent, the crude product was purified by column chromatography on silica (eluant; CH₂Cl₂) to afford the mixture of **3** and **4** (581.2 mg). The mixture was separated by thin layer chromatography (eluant; CH₂Cl₂) to afford **3** (435.4 mg, 53%) as a pale ocher solid and **4** (123.6 mg, 13%) as a brown solid, respectively.

A 20 mL autoclave was charged with 2-chloro-*N*-methylbenzimidazole(**3**) (1.45 g, 8.70 mmol), (*R*)-phenylglycinol (1.25 g, 9.11 mmol), and *i*-Pr₂NEt (6.80 mL, 39.0 mmol). The vessel was sealed and then the whole mixture was stirred for 48 h at 130 °C. After cooling to room temperature, the reactant was diluted with MeOH and CH₂Cl₂, and it was transferred into a 300 mL two-necked flask. The mixture was concentrated in vacuo at 50 °C to afford the crude intermediate (*R*)-**5**, which was used for the next reaction

without purification.

To a mixture of the above product (*R*)-**5** and Et₃N (7.28 mL, 52.2 mmol) in CH₂Cl₂ (87.0 mL) at 0 °C was added MsCl (2.02 mL, 26.1 mmol). After stirring for 1 h at 0 °C, MeOH (1.76 mL, 43.4 mmol) and Et₃N (18.2 mL, 130.6 mmol) were successively added at room temperature and the reaction mixture was stirred for 19.5 h at 55 °C. After cooling to 0 °C, it was quenched with 1.0 M NaOH. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layer was dried over Na₂SO₄. After filtration of the mixture and evaporation of the solvent, the crude product was purified by column chromatography on silica (first eluant; ethyl acetate/hexane/formic acid = 20/80/2, second eluant; ethyl acetate, and third eluant; CHCl₃/MeOH = 9/1 (saturated with 35% NH₃)) to afford (*R*)-NMBG ((*R*)-1) (1.72 g, 79%) as a pale brown amorphous solid.

The product was re-purified for analysis by thin layer chromatography (eluant; acetate/hexane = 4/1 (saturated with 35% NH₃)) to provide a white precipitate and it was filtrated with diethyl ether to afford (*R*)-NMBG ((*R*)-1) (843.7 mg, 39%) as a white solid: $[]_D^{22} = +116.1$ (c 1.00, benzene); Mp. 101–102 °C; IR (KBr): 1653, 1604, 1496, 763, 737, 704 cm⁻¹; ¹H NMR (CDCl₃): 7.42–7.39 (m, 2H, Ph), 7.37–7.32 (m, 2H, Ph), 7.26 (dt, *J* = 7.3, 1.5 Hz, 1H, Ph), 6.96 (ddd, *J* = 8.3, 7.5, 2.0 Hz, 2H, Ar), 6.85–6.79 (m, 1H, Ar), 6.74–6.68 (m, 1H, Ar), 5.57 (dd, *J* = 9.0, 8.0 Hz, 1H, 2-H), 4.26 (dd, *J* = 9.0, 9.0 Hz, 1H, 3-H), 3.70 (dd, *J* = 9.0, 8.0 Hz, 1H, 3-H), 3.43 (s, 3H, Me); ¹³C NMR (CDCl₃): 162.3, 144.2, 138.0, 130.7, 128.5, 127.2, 126.6, 120.9, 120.3, 107.0, 106.7, 73.4, 53.3, 28.6; HR MS: calcd for C₁₆H₁₆N₃ (M+H⁺) 250.1339, found 250.1328.

Typical Procedure for the Asymmetric Esterification

Typical procedure for the NMBG-catalyzed asymmetric esterification of racemic 1phenyl-1-propanol ((\pm)-**9b**) with diphenylacetic acid using Piv2O was described (**Table 3**, Entry 2): To a solution of diphenylacetic acid (47.8 mg, 0.225 mmol) in diethyl ether (1.5 mL) at room temperature were successively added Piv₂O (54.8 µL, 0.269 mmol), (*R*)-MNBG (**1**) (3.7 mg, 0.015 mmol), and racemic 1-phenyl-1-propanol ((\pm)-**9b**) (40.8 µL, 0.300 mmol). The reaction mixture was stirred for 12 h at room temperature and then it was quenched with saturated aqueous NaHCO₃ and diluted with CH₂Cl₂. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layer was dried over Na₂SO₄. After filtration of the mixture and evaporation of the solvent, the crude product was purified by preparative thin layer chromatography on silica (eluant; ethyl acetate/hexane = 1/4) to afford the corresponding optically active ester (*R*)-**10b** (49.6 mg, 50% yield, 92% ee) and the recovered optically active alcohol (*S*)-**9b** (20.4 mg, 50% yield, 87% ee). [*s* = 67.8] (Optically Active Secondary Alcohols)

(S)–**9a**

(S)-1-Phenyl-1-ethanol ((S)-9a) [Table 3, Entry 1, 80% ee]: HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/50, flow rate = 1.0 mL/min): $t_{\rm R}$ = 18.8 min (10.2%), $t_{\rm R}$ = 23.3 min (89.8%); ¹H NMR (CDCl₃): 7.41–7.23 (m, 5H, Ar), 4.88 (q, J = 6.5 Hz, 1H, 1-H), 1.90 (br s, 1H, OH), 1.48 (d, J = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 145.8, 128.5, 127.4, 125.3, 70.4, 25.1.

(*S*)–**9b** (= (*S*)–**7**)

(*S*)-1-Phenyl-1-propanol ((*S*)-9b) (= (*S*)-7) [Table 3, Entry 2, 87% ee]: HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/100, flow rate = 0.75 mL/min): $t_{\rm R}$ = 26.3 min (6.5%), $t_{\rm R}$ = 31.8 min (93.5%); ¹H NMR (CDCl₃): 7.12–6.96 (m, 5H, Ph), 4.31 (dt, J = 3.0, 6.6 Hz, 1H, 1-H), 1.79 (d, J = 3.0 Hz, 1H, OH), 1.64–1.38 (m, 2H, 2-H), 0.65 (t, J = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 144.5, 128.3, 127.4, 125.9, 75.9, 31.8, 10.1.

(S)–**9c**

(*S*)-2-Methyl-1-phenyl-1-propanol ((*S*)-9c) [Table 3, Entry 5, 97% ee]: HPLC (CHIRALCEL OD-Hx2, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R}$ = 21.9 min (98.6%), $t_{\rm R}$ = 24.5 min (1.4%); IR (neat): 3398, 3029, 1604, 1492, 760, 701 cm⁻¹; ¹H NMR (CDCl₃): 7.31–7.15 (m, 5H, Ph), 4.27 (dd, *J* = 6.6, 3.0 Hz, 1H, 1-H), 1.95–1.79 (m, 2H, 2-H, OH), 0.92 (d, *J* = 6.6 Hz, 3H, Me), 0.72 (d, *J* = 6.6 Hz, 3H, Me); ¹³C NMR (CDCl₃): 143.6, 128.1, 127.4, 126.5, 80.0, 35.2, 19.0, 18.2; HR MS: calcd for C₁₀H₁₄ONa (M+Na⁺) 173.0937, found 173.0930.

(S)–**9d**

(S)-2,2-Dimethyl-1-phenyl-1-propanol ((S)-9d) [Table 3, Entry 6, 72% ee]: HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 19.4 min (86.1%), $t_{\rm R}$ = 29.6 min (13.9%); ¹H NMR (CDCl₃): 7.26–7.13 (m, 5H, Ph), 4.30 (d, J = 2.7 Hz, 1H, 1-H), 1.78 (br s, 1H, OH), 0.83 (s, 9H, *t*-Bu); ¹³C NMR (CDCl₃): 142.1, 127.6, 127.5, 127.2, 82.4, 35.6, 25.9.

(S)-12Aa

(S)-1-(4-Methylphenyl)-1-ethanol ((S)-12Aa) [Table 4, Entry 1, 78% ee]: HPLC (CHIRALPAK AS-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 25.4 min (11.1%), $t_{\rm R}$ = 28.0 min (88.9%); ¹H NMR (CDCl₃): 7.25 (d, J = 8.0 Hz, 2H, Ar), 7.15 (d, J = 8.0 Hz, 2H, Ar), 4.84 (q, J = 6.5 Hz, 1H, 1-H), 2.34 (s, 3H, *p*-Me), 2.00 (br s, 1H, OH), 1.47 (d, J = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 142.8, 137.1, 129.1, 125.3, 70.2, 25.0, 21.1.

(S)-1-(4-Methoxyphenyl)-1-ethanol ((S)-12Ab) [Table 4, Entry 2, 85% ee]: HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.75 mL/min): $t_{\rm R}$ = 31.8 min (7.5%), $t_{\rm R}$ = 35.9 min (92.5%); ¹H NMR (CDCl₃): 7.34–7.26 (m, 2H, Ar), 6.92–6.84 (m, 2H, Ar), 4.86 (q, *J* = 6.3 Hz, 1H, 1-H), 3.81 (s, 3H, *p*-MeO), 1.81 (br s, 1H, OH), 1.48 (d, *J* = 6.3 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 158.9, 138.0, 126.6, 113.8, 70.0, 55.3, 25.0.

(*S*)-1-(4-Fluorophenyl)-1-ethanol ((*S*)-12Ac) [Table 4, Entry 3, 75% ee]: HPLC (CHIRALPAK AS-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 35.7 min (12.7%), $t_{\rm R}$ = 40.0 min (87.3%); ¹H NMR (CDCl₃): 7.36–7.27 (m, 2H, Ar), 7.05–6.96 (m, 2H, Ar), 4.86 (q, *J* = 6.3 Hz, 1H, 1-H), 2.13 (br s, 1H, OH), 1.46 (d, *J* = 6.3 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 162.0 (d, *J* = 244.4 Hz), 141.5 (d, *J* = 3.1 Hz), 127.0 (d, *J* = 8.1 Hz), 115.2 (d, *J* = 21.1 Hz), 69.7, 25.2.

(*S*)-1-(2-Methylphenyl)-1-ethanol ((*S*)-12Ad) [Table 4, Entry 4, 87% ee]: HPLC (CHIRALPAK IA, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 25.7 min (6.6%), $t_{\rm R}$ = 29.0 min (93.4%); ¹H NMR (CDCl₃): 7.53–7.46 (m, 1H, Ar), 7.27–7.08 (m, 3H, Ar), 5.10 (q, *J* = 6.5 Hz, 1H, 1-H), 2.33 (s, 3H, *o*-Me), 1.88 (br s, 1H, OH), 1.45 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 143.8, 134.2, 130.3, 127.1, 126.3, 124.4, 66.7, 23.9, 18.9.

(S)-12Ae

(*S*)-1-(1-Naphthyl)-1-ethanol ((*S*)-12Ae) [Table 4, Entry 5, 87% ee]: HPLC (CHIRALCEL OB-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R}$ = 18.1 min (93.5%), $t_{\rm R}$ = 21.9 min (6.5%); ¹H NMR (CDCl₃): 8.12–8.04 (m, 1H, Ar), 7.89–7.82 (m, 1H, Ar), 7.76 (d, *J* = 8.4 Hz, 1H, Ar), 7.65 (d, *J* = 6.9 Hz, 1H, Ar), 7.54–7.42 (m, 3H, Ar), 5.64 (dq, *J* = 2.3, 6.5 Hz, 1H, 1-H), 2.06 (d, *J* = 2.3 Hz, OH), 1.64 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 141.3, 133.7, 130.2, 128.8, 127.9, 126.0, 125.5, 125.5, 123.1, 121.9, 67.0, 24.3.

(S)-**12Af**

(S)-1-(2-Naphthyl)-1-ethanol ((S)-12Af) [Table 4, Entry 6, 83% ee]: HPLC (CHIRALCEL OB-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R}$ = 17.6 min

(91.5%), $t_{\rm R} = 20.1 \text{ min } (8.5\%)$; ¹H NMR (CDCl₃): 7.84–7.72 (m, 4H, Ar), 7.50–7.40 (m, 3H, Ar), 5.00 (q, J = 6.3 Hz, 1H, 1-H), 2.17 (br s, 1H, OH), 1.54 (d, J = 6.3 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 143.1, 133.2, 132.8, 128.2, 127.9, 127.6, 126.1, 125.7, 123.8, 123.7, 70.4, 25.1.

(S)-**13Ba**

(*S*)-1-(4-Methylphenyl)-1-propanol ((*S*)-13Ba) [Table 4, Entry 7, 80% ee]: HPLC (CHIRALPAK AS-H, *i*-PrOH/hexane = 1/50, flow rate = 0.75 mL/min): $t_{\rm R}$ = 7.5 min (9.9%), $t_{\rm R}$ = 18.2 min (90.1%); ¹H NMR (CDCl₃): 7.17 (d, *J* = 8.3 Hz, 2H, Ar), 7.10 (d, *J* = 8.3 Hz, 2H, Ar), 4.52–4.47 (m, 1H, 1-H), 2.29 (s, 3H, *p*-Me), 1.85–1.62 (m, 3H, 2-H, OH), 0.85 (dd, *J* = 7.5, 7.0 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 141.6, 137.1, 129.0, 125.9, 75.9, 31.8, 21.1, 10.2.

(S)-13Bb

(*S*)-1-(4-Methoxyphenyl)-1-propanol ((*S*)-13Bb) [Table 4, Entry 8, 86% ee]: HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.75 mL/min): $t_{\rm R}$ = 30.3 min (6.9%), $t_{\rm R}$ = 34.1 min (93.1%); ¹H NMR (CDCl₃): 7.10 (dt, *J* = 9.5, 2.3 Hz, 2H, Ar), 6.73 (dt, *J* = 9.5, 2.3 Hz, 2H, Ar), 4.35 (t, *J* = 6.5 Hz, 1H, 1-H), 3.65 (s, 3H, *p*-MeO), 2.58 (br s, 1H, OH), 1.71–1.51 (m, 2H, 2-H), 0.75 (dd *J* = 7.5, 7.0 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 158.7, 136.7, 127.1, 113.5, 75.3, 55.0, 31.6, 10.0.

(S)-1-(4-Fluorophenyl)-1-propanol ((S)-13Bc) [Table 4, Entry 9, 78% ee]: HPLC (CHIRALCEL OB-H, *i*-PrOH/hexane = 1/50, flow rate = 0.35 mL/min): $t_{\rm R}$ = 29.1 min (89.2%), $t_{\rm R}$ = 31.4 min (10.8%); ¹H NMR (CDCl₃): 7.32–7.28 (m, 2H, Ar), 7.05–7.00 (m, 2H, Ar), 4.58 (t, J = 6.5 Hz, 1H, 1-H), 2.10 (br s, 1H, OH), 1.80 (ddq, J = 14.3, 6.5, 7.5 Hz, 1H, 2-H), 1.71 (ddq, J = 14.3, 6.5, 7.0 Hz, 1H, 2-H), 0.90 (dd, J = 7.5, 7.0 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 162.1 (d, J = 244.9 Hz), 140.3 (d, J = 3.1 Hz), 127.5 (d, J = 8.3 Hz), 115.1 (d, J = 20.6 Hz), 75.3, 32.0, 10.0.

(*S*)-1-(2-Methylphenyl)-1-propanol ((*S*)-13Bd) [Table 4, Entry 10, 83% ee]: HPLC (CHIRALCEL OB-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 16.4 min (91.7%), $t_{\rm R}$ = 22.8 min (8.3%); ¹H NMR (CDCl₃): 7.29 (d, *J* = 7.5 Hz, 1H, Ar), 7.09–6.96 (m, 3H, Ar), 4.65 (dt, *J* = 2.5, 6.3 Hz, 1H, 1-H), 2.41 (br s, 1H, OH), 2.18 (s, 3H, *o*-Me), 1.62–1.56 (m, 2H, 2-H), 0.82 (t, *J* = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 142.7, 134.4, 130.1, 126.8, 126.0, 125.2, 71.7, 30.7, 18.9, 10.2.

(S)-**13Be**

(*S*)-1-(1-Naphthyl)-1-propanol ((*S*)-13Be) [Table 4, Entry 11, 82% ee]: HPLC (CHIRALCEL OB-H, *i*-PrOH/hexane = 1/50, flow rate = 0.75 mL/min): $t_{\rm R}$ = 23.1 min (90.9%), $t_{\rm R}$ = 27.2 min (9.1%); ¹H NMR (CDCl₃): 8.05 (d, *J* = 8.5 Hz, 1H, Ar), 7.82–7.78 (m, 1H, Ar), 7.71 (d, *J* = 8.0 hz, 1H, Ar), 7.56 (d, *J* = 7.0 Hz, 1H, Ar), 7.47–7.37 (m, 3H, Ar), 5.36–5.31 (m, 1H, 1-H), 2.00–1.81 (m, 3H, 2-H, OH), 0.96 (dd, *J* = 8.0, 7.0 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 140.2, 133.8, 130.5, 128.9, 127.9, 125.9, 125.5, 125.4, 123.2, 122.9, 72.6, 31.1, 10.5.

(S)-13Bf

(S)-1-(2-Naphthyl)-1-propanol ((S)-13Bf) [Table 4, Entry 12, 91% ee]: HPLC (CHILALPAK IC, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R}$ = 10.3 min (4.6%), $t_{\rm R}$ = 15.5 min (95.4%); ¹H NMR (CDCl₃): 7.89–7.74 (m, 4H, Ar), 7.53–7.43 (m, 3H, Ar), 4.81–4.70 (m, 1H, 1-H), 2.19 (br s, 1H, OH), 1.92 (ddq, J = 14.0, 7.1, 7.5 Hz, 1H, 2-H), 1.85 (ddq, J = 14.0, 7.1, 7.5 Hz, 1H, 2-H), 0.95 (t, J = 7.5

Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 141.9, 133.2, 132.9, 128.2, 127.9, 127.6, 126.0, 125.7, 124.7, 124.1, 76.1, 31.7, 10.1.

(Optically Active Esters)

(R)-**8a**

(*R*)-1-Phenylpropyl 3-phenylpropanoate ((*R*)-8a) [Table 2, Entry 1, 87% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min); $t_R = 11.9$ min (93.6%), $t_R = 16.4$ min (6.4%); IR (neat): 3031, 1741, 1604, 1496, 752, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.27–7.14 (m, 7H, Ph), 7.13–7.07 (m, 3H, Ph), 5.59 (t, J = 7.0Hz, 1H, 1-H), 2.87 (t, J = 8.0 Hz, 2H, 2'-H), 2.61 (ddd, J = 16.0, 9.0, 9.0 Hz, 1H, 3'-H), 2.57 (ddd, J = 16.0, 9.6, 9.0 Hz, 1H, 3'-H), 1.86–1.66 (m, 2H, 2-H), 0.76 (t, J = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 172.2, 140.48, 140.46, 128.4, 128.3, 128.2, 127.7, 126.5, 126.2, 77.4, 36.1, 30.9, 29.3, 9.8; HR MS: calcd for C₁₈H₂₀O₂Na (M+Na⁺) 291.1356, found 291.1344.

(R)-**8b**

(*R*)-1-Phenylpropyl 4-phenylbutanoate ((*R*)-8b) [Table 2, Entry 2, 90% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min); $t_{\rm R}$ = 12.6 min (95.0%), $t_{\rm R}$ = 16.6 min (5.0%); IR (neat): 3030, 1734, 1603, 1496, 749, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.23–6.99 (m, 10H, Ph), 5.60 (t, *J* = 7.0 Hz, 1H, 1-H), 2.53 (t, *J* = 7.5 Hz, 2H, 2'-H), 2.29 (dt, *J* = 16.2, 7.5 Hz, 1H, 4'-H), 2.24 (dt, *J* = 16.2, 6.6 Hz, 1H, 4'-H), 1.93–1.65 (m, 4H, 2-H, 3'-H), 0.80 (t, *J* = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 172.7, 141.4, 140.6, 128.4, 128.3, 128.3, 127.7, 126.5, 125.9, 77.2, 35.0, 33.8, 29.3, 26.5, 9.9; HR MS: calcd for C₁₉H₂₂O₂Na (M+Na⁺) 305.1512, found 305.1507.

(R)-**8c**

(*R*)-1-Phenylpropyl propanoate ((*R*)-8c) [Table 2, Entry 3, 92% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.35 mL/min); $t_{\rm R}$ = 13.5 min (96.1%), $t_{\rm R}$ = 15.7 min (3.9%); IR (neat): 3034, 1734, 1604, 1495, 756, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.30–7.16 (m, 5H, Ph), 5.60 (dd, *J* = 7.5, 6.6 Hz, 1H, 1-H), 2.34–2.22 (m, 2H, 2'-H), 1.93 –1.65 (m, 2H, 2-H), 1.06 (t, *J* = 7.5 Hz, 3H, 3'-H), 0.81 (t, *J* = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 173.8, 140.7, 128.3, 127.7, 126.5, 77.1, 29.4, 27.8, 9.9, 9.1; HR MS: calcd for C₁₂H₁₆O₂Na (M+Na⁺) 215.1043, found 215.1049.

(*R*)**–8d**

(*R*)-1-Phenylpropyl 4-methylpentanoate ((*R*)-8d) [Table 2, Entry 4, 92% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min); t_R = 9.7 min (96.0%), t_R = 11.6 min (4.0%); IR (neat): 3033, 1742, 1604, 1495, 757, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.31–7.13 (m, 5H, Ph), 5.59 (t, *J* = 7.5 Hz, 1H, 1-H), 2.33–2.17 (m, 2H, 2'-H), 1.93–1.63 (m, 2H, 2-H), 1.52–1.36 (m, 3H, 3'-H, 4'-H), 0.88–0.73 (m, 9H, 3-H, Me, Me); ¹³C NMR (CDCl₃): 173.3, 140.7, 128.3, 127.7, 126.5, 77.0, 33.7, 32.6, 29.3, 27.6, 22.19, 22.15, 9.9; HR MS: calcd for C₁₅H₂₂O₂Na (M+Na⁺) 257.1512, found 257.1509.

(*R*)-1-Phenylpropyl 4-pentenoate ((*R*)-8e) [Table 2, Entry 5, 84% ee]: Enantiomeric excess of (*R*)-8e has been determined after cleaving the ester moiety; HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/100, flow rate = 0.75 mL/min); t_R = 26.2 min (91.8%), t_R = 29.7 min (8.2%); IR (neat): 3033, 1735, 1642, 1495, 755, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.27–7.15 (m, 5H, Ph), 5.76–5.67 (m, 1H, 4'-H), 5.60 (t, *J* = 7.5 Hz, 1-H), 4.98–4.86 (m, 2H, 5'-H), 2.39–2.25 (m, 4H, 2'-H, 3'-H), 1.89–1.68 (m, 2H, 2-H), 0.80 (t, *J* = 7.5 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 172.3, 140.5, 136.6, 128.3, 127.7, 126.5, 115.4, 77.2, 33.7, 29.3, 28.8, 9.9; HR MS: calcd for C₁₄H₁₈O₂Na (M+Na⁺) 241.1199, found 241.1207.

(R)-8f

(*R*)-1-Phenylpropyl cyclohexanecarboxylate ((*R*)-8f) [Table 2, Entry 6, 90% ee]: Enantiomeric excess of (*R*)-8f has been determined after cleaving the ester moiety; HPLC (CHIRALCEL OD-H, *i*-PrOH/hexane = 1/100, flow rate = 0.75 mL/min): t_R = 31.6 min (94.8%), t_R = 35.8 min (5.2%); IR (neat): 3032, 1736, 1450, 756, 702 cm⁻¹; ¹H NMR (CDCl₃): 7.36–7.22 (m, 5H, Ar), 5.66 (dd, *J* = 7.2, 6.2 Hz, 1H, 1-H), 2.33 (tt, *J* = 11.3, 3.6 Hz, 1H, 2'-H), 1.99–1.15 (m, 12H, 2-H, *c*-Hex), 0.88 (t, *J* = 7.6 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 175.3, 140.9, 128.3, 127.6, 126.3, 76.7, 43.3, 29.5, 29.0, 28.9, 25.7, 25.42, 25.39, 9.9; HR MS: calcd for C₁₆H₂₂O₂Na (M+Na⁺) 269.1512, found 269.1525.

(R)-**8g**

(*R*)-1-Phenylpropyl diphenylacetate ((*R*)-8g) [Table 2, Entry 7, 87% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): t_R = 10.9 min (93.4%), t_R = 18.0 min (6.6%); IR (neat): 3031, 1736, 1601, 1495, 1453, 748, 699 cm⁻¹; ¹H NMR (CDCl₃): 7.32–7.15 (m, 15H, Ar), 5.71 (dd, *J* = 6.9, 6.6 Hz, 1H, 1-H), 5.06 (s, 1H, 2'-H), 1.88 (ddq, *J* = 14.1, 7.2, 6.9 Hz, 1H, 2-H), 1.77 (ddq, *J* = 14.1, 7.2, 6.6 Hz, 1H, 2-H), 0.79 (t, *J* = 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 140.1, 138.7, 138.5, 128.7, 128.6, 128.5, 128.4, 128.2, 127.7, 127.13, 127.07, 126.5, 78.2, 57.2, 29.2, 9.8; HR MS: calcd for C₂₃H₂₂O₂Na (M+Na⁺) 353.1512, found 353.1512.

(*R*)–10a

(*R*)-1-Phenylethyl diphenylacetate ((*R*)-10a) [Table 3, Entry 1, 89% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 1.0 mL/min): $t_{\rm R}$ = 11.5 min (94.7%), $t_{\rm R}$ = 27.4 min (5.3%); IR (neat): 3032, 1735, 1603, 1496, 745, 700 cm⁻¹; ¹H NMR (CDCl₃): 7.24–7.11 (m, 15H, Ar), 5.86 (q, *J* = 6.5 Hz, 1H, 1-H), 4.97 (s, 1H, 2'-H), 1.43 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 141.3, 138.7, 138.5, 128.6, 128.6, 128.48, 128.45, 128.3, 127.8, 127.2, 127.1, 126.0, 73.1, 57.2, 22.0; HR MS: calcd for C₂₂H₂₀O₂Na (M+Na⁺) 339.1356, found 339.1367.

(R)-10b (= (R)-8g)

(*R*)-1-Phenylpropyl diphenylacetate ((*R*)-10b) (= (*R*)-8g) [Table 3, Entry 2, 92% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R} = 10.8 \min (96.0\%), t_{\rm R} = 27.4 \min (4.0\%).$

(R)-10c

(*R*)-2-Methyl-1-phenylpropyl diphenylacetate ((*R*)-10c) [Table 3, Entry 3, 88% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 1.0 mL/min): $t_{\rm R}$ = 9.7 min (93.9%), $t_{\rm R}$ = 21.8 min (6.1%); IR (neat): 3032, 1736, 1599, 1496, 742, 696 cm⁻¹; ¹H NMR (CDCl₃): 7.25–7.03 (m, 15H, Ar), 5.42 (d, *J* = 7.5 Hz, 1H, 1-H), 4.99 (s, 1H, 2'-H), 1.97 (dqq, *J* = 7.5, 6.6, 6.6 Hz, 1H, 2-H), 0.77 (d, *J* = 6.6 Hz, 3H, 3-H); 0.65 (d, *J* = 6.6 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.6, 139.2, 138.7, 138.5, 128.73, 128.68, 128.44, 128.40, 128.0, 127.6, 127.2, 127.1, 127.0, 81.8, 57.4, 33.5, 18.6, 18.3; HR MS: calcd for C₂₄H₂₄O₂Na (M+Na⁺) 367.1669, found 367.1651.

(R)-10d

(*R*)-2,2-Dimethyl-1-phenylpropyl diphenylacetate ((*R*)-10d) [Table 3, Entry 4, 87% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R}$ = 11.0 min (93.4%), $t_{\rm R}$ = 18.8 min (6.6%); IR (KBr): 3031, 1737, 1599, 1491, 741, 701 cm⁻¹; ¹H NMR (CDCl₃): 7.29–7.15 (m, 13H, Ar), 7.08–7.06 (m, 2H, Ar), 5.48 (s, 1H, 1-H), 5.07 (s, 1H, 2'-H), 0.79 (s, 9H, 3-H); ¹³C NMR (CDCl₃): 171.3, 138.7, 138.5, 138.0, 128.82, 128.79, 128.4, 128.4, 127.7, 127.4, 127.4, 127.2, 127.1, 83.8, 57.6, 35.0, 25.9; HR MS: calcd for C₂₅H₂₆O₂Na (M+Na⁺) 381.1825, found 381.1824.

(R)-11c

(R)-2-Methyl-1-phenylpropyl 3-phenylpropanoate ((R)-11c) [Table 3, Entry

5, 90% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R}$ = 11.4 min (95.2%), $t_{\rm R}$ = 16.5 min (4.8%); IR (neat): 3030, 1734, 1604, 1496, 751, 699 cm⁻¹; ¹H NMR (CDCl₃): 7.28–7.02 (m, 10H, Ph), 5.41 (d, *J* = 7.5 Hz, 1H, 1-H), 2.88 (t, *J* = 7.5 Hz, 2H, 2'-H), 2.65–2.53 (m, 2H, 3'-H), 2.07–1.83 (m, 1H, 2-H), 0.85 (d, *J* = 7.0 Hz, 3H, Me), 0.70 (d, *J* = 7.0 Hz, 3H, Me); ¹³C NMR (CDCl₃): 172.1, 140.4, 139.6, 128.4, 128.2, 128.1, 127.6, 127.0, 126.2, 81.0, 36.0, 33.4, 30.9, 18.6, 18.4; HR MS: calcd for C₁₉H₂₂O₂Na (M+Na⁺) 305.1512, found 305.1520.

(R)-11d

(*R*)-2,2-Dimethyl-1-phenylpropyl 3-phenylpropanoate ((*R*)-11d) [Table 3, Entry 6, 94% ee]: HPLC (CHIRALPAK IC, *i*-PrOH/hexane = 1/100, flow rate = 0.5 mL/min): $t_{\rm R}$ = 16.0 min (96.9%), $t_{\rm R}$ = 21.9 min (3.1%); IR (neat): 3030, 1737, 1604, 1496, 740, 702 cm⁻¹; ¹H NMR (CDCl₃): 7.40–7.17 (m, 10H, Ph), 5.53 (s, 1H, 1-H), 3.00 (t, *J* = 7.5 Hz, 2H, 2'-H), 2.79–2.68 (m, 2H, 3'-H), 0.93 (s, 9H, *t*-Bu); ¹³C NMR (CDCl₃): 172.0, 140.4, 138.4, 128.5, 128.2, 127.7, 127.6, 127.4, 126.2, 82.9, 36.0, 35.0, 30.9, 26.0; HR MS: calcd for C₂₀H₂₄O₂Na (M+Na⁺) 319.1669, found 319.1660.

(R)-13Aa

(*R*)-1-(4-Methylphenyl)ethyl diphenylacetate ((*R*)-13Aa) [Table 4, Entry 1, 89% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R} = 10.1 \text{ min } (94.7\%), t_{\rm R} = 18.7 \text{ min } (5.3\%);$ IR (neat): 3029, 1734, 1596, 1517, 818, 749, 697 cm⁻¹; ¹H NMR (CDCl₃): 7.26–7.10 (m, 10H, Ar), 7.06–6.98 (m, 4H, Ar), 5.83 (q, *J* = 6.6 Hz, 1H, 1-H), 4.95 (s, 1H, 2'-H), 2.24 (s, 3H, *p*-Me), 1.42 (d, *J* = 6.6 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 138.7, 138.6, 138.3, 137.5, 129.0, 128.6, 128.6, 128.5, 128.4, 127.13, 127.08, 126.0, 73.1, 57.2, 22.0, 21.1; HR MS:

calcd for C₂₃H₂₂O₂Na (M+Na⁺) 353.1512, found 353.1497.

(*R*)-1-(4-Methoxyphenyl)ethyl diphenylacetate ((*R*)-13Ab) [Table 4, Entry 2, 86% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R} = 13.5 \text{ min } (93.2\%), t_{\rm R} = 26.2 \text{ min } (6.8\%);$ IR (neat): 2979, 1656, 1608, 829, 742, 698 cm⁻¹; ¹H NMR (CDCl₃): 7.25–7.08 (m, 12H, Ar), 6.74 (dt, *J* = 9.5, 2.5 Hz, 2H, Ar), 5.83 (q, *J* = 6.5 Hz, 1H, 1-H), 4.94 (s, 1H, 2'-H), 3.70 (s, 3H, *p*-MeO), 1.42 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 159.2, 138.8, 138.6, 133.4, 128.6, 128.6, 128.5, 128.4, 127.6, 127.13, 127.07, 113.7, 72.9, 57.2, 55.2, 21.8; HR MS: calcd for C₂₃H₂₂O₃Na (M+Na⁺) 369.1461, found 369.1460.

(R)-13Ac

(*R*)-1-(4-Fluorophenyl)ethyl diphenylacetate ((*R*)-13Ac) [Table 4, Entry 3, 81% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R} = 10.2 \text{ min} (90.6\%), t_{\rm R} = 17.6 \text{ min} (9.4\%);$ IR (neat): 3033, 1735, 1606, 1514, 841, 743, 697 cm⁻¹; ¹H NMR (CDCl₃): 7.25–7.08 (m, 12H, Ar), 6.91–6.85 (m, 2H, Ar), 5.84 (q, *J* = 6.5 Hz, 1H, 1-H), 4.95 (s, 1H, 2'-H), 1.42 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.5, 162.3 (d, *J* = 245.9 Hz), 138.6, 138.4, 137.1 (d, *J* = 3.1 Hz), 128.62, 128.58, 128.51, 128.51, 127.9 (d, *J* = 7.2 Hz), 127.21, 127.18, 115.2 (d, *J* = 21.7 Hz), 72.5, 57.2, 22.0; HR MS: calcd for C₂₂H₁₉FO₂Na (M+Na⁺) 357.1261, found 357.1254.

(*R*)-1-(2-Methylphenyl)ethyl diphenylacetate ((*R*)-13Ad) [Table 4, Entry 4, 90% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R} = 14.7 \min (95.1\%), t_{\rm R} = 23.1 \min (4.9\%);$ IR (neat): 3030, 1733, 1596, 1496, 753, 697 cm⁻¹; ¹H NMR (CDCl₃): 7.26–7.12 (m, 10H, Ar), 7.11–7.00 (m, 4H, Ar), 6.04 (q, *J* = 6.5 Hz, 1H, 1-H), 4.98 (s, 1H, 2'-H), 2.24 (s, 3H, *o*-Me), 1.41 (d, *J* = 6.5 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 139.7, 138.7, 138.4, 134.7, 130.3, 128.7, 128.6, 128.50, 128.48, 127.6, 127.2, 127.1, 126.1, 125.3, 70.2, 57.2, 21.2, 18.9; HR MS: calcd for C₂₃H₂₂O₂Na (M+Na⁺) 353.1512, found 353.1498.

(R)-13Ae

(*R*)-1-Naphthylethyl diphenylacetate ((*R*)-13Ae) [Table 4, Entry 5, 88% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.35 mL/min): $t_{\rm R}$ = 16.9 min (93.9%), $t_{\rm R}$ = 26.5 min (6.1%); IR (neat): 3058, 1734, 1600, 1496, 777, 748, 698 cm⁻¹; ¹H NMR (CDCl₃): 7.92–7.82 (m, 1H, Ar), 7.78–7.61 (m, 2H, Ar), 7.37–7.10 (m, 14H, Ar), 6.40 (q, *J* = 6.6 Hz, 1H, 1-H), 5.01 (s, 1H, 2'-H), 1.58 (d, *J* = 6.6 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 138.6, 138.4, 137.0, 133.7, 130.1, 128.8, 128.7, 128.7, 128.52, 128.47, 128.37, 127.19, 127.16, 126.2, 125.6, 125.2, 123.2, 123.1, 70.3, 57.2, 21.5; HR MS: calcd for C₂₆H₂₂O₂Na (M+Na⁺) 389.1512, found 389.1511.

(R)-2-Naphthylethyl diphenylacetate ((R)-13Af) [Table 4, Entry 6, 85% ee]:

HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.75 mL/min): $t_{\rm R}$ = 8.5 min (92.6%), $t_{\rm R}$ = 22.6 min (7.4%); IR (neat): 3057, 1734, 1602, 1495, 821, 746, 698 cm⁻¹; ¹H NMR (CDCl₃): 7.72–7.64 (m, 2H, Ar), 7.63–7.58 (m, 1H, Ar), 7.53 (s, 1H, Ar), 7.37–7.32 (m, 2H, Ar), 7.25–7.11 (m, 11H, Ar), 6.02 (q, *J* = 6.8 Hz, 1H, 1-H), 5.00 (s, 1H, 2'-H), 1.50 (d, *J* = 6.8 Hz, 3H, 2-H); ¹³C NMR (CDCl₃): 171.6, 138.7, 138.4, 133.0, 132.9, 128.7, 128.6, 128.5, 128.5, 128.1, 128.0, 127.6, 127.2, 127.1, 126.1, 125.9, 124.8, 124.0, 73.2, 57.2, 22.1; HR MS: calcd for C₂₆H₂₂O₂Na (M+Na⁺) 389.1512, found 389.1510.

(R)-13Ba

(*R*)-1-(4-Methylphenyl)propyl diphenylacetate ((*R*)-13Ba) [Table 4, Entry 7, 93% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): $t_{\rm R} = 13.1 \text{ min } (93.2\%), t_{\rm R} = 25.4 \text{ min } (6.8\%); IR (neat): 3029, 1734, 1600, 1496, 815, 741, 697 cm⁻¹; ¹H NMR (CDCl₃): 7.23–7.09 (m, 10H, Ar), 7.03–6.96 (m, 4H, Ar), 5.60 (dd, <math>J = 6.9, 6.6$ Hz, 1H, 1-H), 4.96 (s, 1H, 2'-H), 2.22 (s, 3H, *p*-Me), 1.87–1.59 (m, 2H, 2-H), 0.70 (dd, J = 7.5, 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 138.8, 138.5, 137.4, 137.1, 128.9, 128.7, 128.7, 128.44, 128.38, 127.1, 127.0, 126.5, 78.2, 57.3, 29.2, 21.1, 9.8; HR MS: calcd for C₂₄H₂₄O₂Na (M+Na⁺) 367.1669, found 367.1684.

(*R*)–13Bb

(*R*)-1-(4-Methoxyphenyl)propyl diphenylacetate ((*R*)-13Bb) [Table 4, Entry 8, 89% ee]: HPLC (CHIRALPAK IC, *i*-PrOH/hexane = 1/9, flow rate = 0.5 mL/min): t_R = 9.5 min (94.7%), t_R = 13.3 min (5.3%); IR (neat): 3030, 1733, 1615, 1517, 829, 744, 697 cm⁻¹; ¹H NMR (CDCl₃): 7.24–7.02 (m, 12H, Ar), 6.75–6.68 (m, 2H, Ar), 5.58 (dd, *J* = 7.0, 6.9 Hz, 1H, 1-H), 4.95 (s, 1H, 2'-H), 3.68 (s, 3H, *p*-MeO), 1.87–1.58 (m, 2H, 2-H), 0.70 (dd, *J* = 7.5, 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 159.1, 138.8, 138.5, 132.2, 128.64, 128.62, 128.44, 128.39, 128.0, 127.1, 127.0,

113.6, 78.0, 57.2, 55.2, 29.0, 9.9; HR MS: calcd for $C_{24}H_{24}O_3Na$ (M+Na⁺) 383.1618, found 383.1599.

(*R*)-1-(4-Fluorophenyl)propyl diphenylacetate ((*R*)-13Bc) [Table 4, Entry 9, 84% ee]: HPLC (CHIRALPAK IC, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): t_R = 10.9 min (91.8%), t_R = 14.2 min (8.2%); IR (neat): 3033, 1735, 1607, 1504, 833, 742, 703 cm⁻¹; ¹H NMR (CDCl₃): 7.25–7.03 (m, 12H, Ar), 6.90–6.81 (m, 2H, Ar), 5.59 (t, *J* = 6.9 Hz, 1H, 1-H), 4.96 (s, 1H, 2'-H), 1.79 (ddq, *J* = 14.1, 6.9, 7.5 Hz, 1H, 2-H), 1.66 (ddq, *J* = 14.1, 6.9, 7.2 Hz, 1H, 2-H), 0.71 (dd, *J* = 7.5, 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 162.3 (d, *J* = 245.6 Hz), 138.6, 138.3, 135.9 (d, *J* = 3.2 Hz), 128.63, 128.58, 128.47, 128.45, 128.3 (d, *J* = 8.1 Hz), 127.2, 127.1, 115.1 (d, *J* = 21.1 Hz), 77.5, 57.2, 29.2, 9.8; HR MS: calcd for C₂₃H₂₁FO₂Na (M+Na⁺) 371.1418, found 371.1423.

(*R*)-1-(2-Methylphenyl)propyl diphenylacetate ((*R*)-13Bd) [Table 4, Entry 10, 92% ee]: HPLC (CHIRALPAK AD-H, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): $t_{\rm R} = 12.4 \text{ min (96.2\%)}, t_{\rm R} = 20.9 \text{ min (3.8\%)}; \text{ IR (neat): 3029, 1733, 1603, 1496, 751, 697 cm^{-1}; ¹H NMR (CDCl₃): 7.33–7.04 (m, 14H, Ar), 5.91 (dd,$ *J*= 7.8, 6.0 Hz, 1H, 1-H), 5.06 (s, 1H, 2'-H), 2.35 (s, 3H,*o*-Me), 1.93–1.66 (m, 2H, 2-H), 0.83 (dd,*J*= 7.5, 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.8, 138.8, 138.7, 138.4, 135.0, 130.2, 128.7, 128.7, 128.5, 128.4, 127.4, 127.13, 127.08, 125.9, 125.7, 75.0, 57.2, 28.8, 19.1, 10.0; HR MS: calcd for C₂₄H₂₄O₂Na (M+Na⁺) 367.1669, found 367.1669.

(R)-13Be

(*R*)-1-Naphthylpropyl diphenylacetate ((*R*)-13Be) [Table 4, Entry 11, 95% ee]: HPLC (CHIRALPAK IC, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): t_R = 13.1 min (97.5%), t_R = 24.6 min (2.5%); IR (neat): 3029, 1737, 1599, 1495, 799, 778, 744, 701 cm⁻¹; ¹H NMR (CDCl₃): 8.08–8.02 (m, 1H, Ar), 7.87–7.82 (m, 1H, Ar), 7.76 (d, *J* = 8.0 Hz, 1H, Ar), 7.49–7.43 (m, 2H, Ar), 7.36–7.20 (m, 12H, Ar), 6.51 (t, *J* = 6.5 Hz, 1H, 1-H), 5.13 (s, 1H, 2'-H), 2.02 (dq, *J* = 6.5, 7.5 Hz, 1H, 2-H), 2.01 (dq, *J* = 6.5, 7.0 Hz, 1H, 2-H), 0.88 (dd, *J* = 7.5, 7.0 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 138.7, 138.4, 136.0, 133.7, 130.3, 128.8, 128.71, 128.69, 128.5, 128.4, 128.2, 127.2, 127.1, 126.1, 125.5, 125.1, 123.8, 123.2, 75.4, 57.3, 29.0, 10.2; HR MS: calcd for C₂₇H₂₄O₂Na (M+Na⁺) 403.1669, found 403.1663.

(R)-13Bf

(*R*)-2-Naphthylpropyl diphenylacetate ((*R*)-13Bf) [Table 4, Entry 12, 90% ee]: HPLC (CHIRAKPAK IC, *i*-PrOH/hexane = 1/50, flow rate = 0.5 mL/min): t_R = 15.4 min (92.0%), t_R = 29.3 min (8.0%); IR (neat): 3057, 1734, 1602, 822, 743, 697, cm⁻¹; ¹H NMR (CDCl₃): 7.73–7.57 (m, 3H, Ar), 7.50 (s, 1H, Ar), 7.38–7.31 (m, 2H, Ar), 7.25–7.09 (m, 11H, Ar), 5.79 (dd, *J* = 6.9, 6.6 Hz, 1H, 1-H), 5.01 (s, 1H, 2'-H), 1.96–1.68 (m, 2H, 2-H), 0.75 (dd, *J* = 7.5, 7.2 Hz, 3H, 3-H); ¹³C NMR (CDCl₃): 171.7, 138.7, 138.4, 137.5, 133.0, 132.9, 128.71, 128.66, 128.5, 128.5, 128.03, 127.98, 127.6, 127.2, 127.1, 126.0, 125.9, 125.5, 124.3, 78.3, 57.3, 29.2, 9.8; HR MS: calcd for C₂₇H₂₄O₂Na (M+Na⁺) 403.1669, found 403.1659.

Cartesian Coordinates of (R)-ts-1, (S)-ts-2a, and (S)-ts-2b

All calculations were performed with the program package *Spartan '08* 1.2.0 of Wavefunction Inc. (http://www.wavefun.com). All structures were optimized and subjected to frequency analysis with the B3LYP/6-31G* method, followed by single point B3LYP/6-31G* calculation.

8	-0.288086340	1.033391980	2.245181486
7	-0.542656461	1.123203054	-0.046923500
6	-1.888360557	1.204332767	0.057302302
7	-2.544667833	0.593670500	-0.949410426
6	-1.617724781	-0.100142143	-1.843681138
6	-0 249617977	0.100112115	-1 381172608
6	0.326566610	1 474018882	2 303116144
6	1 116002612	0.052114007	2 120021025
0	1.110085012	0.932114997	-5.428021855
6	1.620046704	1./91428348	-4.421596103
6	1.345358/55	3.160258326	-4.39080/15/
6	0.563672038	3.684824183	-3.360705599
6	0.054879624	2.845693398	-2.368507085
1	-0.530242233	3.266975017	-1.556568695
1	0.354728351	4.750607193	-3.322329207
1	1.743514599	3.814719833	-5.161765922
1	2.233503026	1.376287087	-5.217135404
1	1 323940157	-0 115146216	-3 447565030
1	0.422784535	-0 337999479	-1 230865702
1	1 6626/3750	1 177256701	1 676082022
1	1 022050200	0.126667216	-1.070962022
1	-1.033030200	0.13000/310	-2.00/111541
8	0.210177092	-1.195418410	0.8/22219/0
6	-0.493024739	-1.822533267	1.9115/0419
6	-1.814985721	-2.425314395	1.429986117
6	-2.964096804	-2.349540482	2.227394312
6	-4.170809757	-2.919012194	1.813865400
6	-4.247990222	-3.576428890	0.585299025
6	-3.109662020	-3.658365598	-0.221453748
6	-1.906320824	-3.086968052	0.196633442
1	-1.029389550	-3,139698794	-0.441589369
1	-3 158392077	-4 171753067	-1 179384876
1	-5 185098870	-4.020506608	0.258606154
1	5 050881501	2 8/128/103	2 1/8588023
1	-3.030661391	-2.044204093	2.440300023
1	-2.910040878	-1.034003140	3.163229446
Ì	-0.745998650	-1.049532884	2.65/20356/
6	0.368454621	-2.881422264	2.625964767
Ţ	1.280804188	-2.412821161	3.00/9/6902
1	-0.176509158	-3.330862980	3.464998025
1	0.657184705	-3.683424246	1.937665301
1	1.137720654	-1.978847390	0.202595150
8	1.897445574	-2.607803518	-0.276902343
6	1.691671287	-2.838463729	-1.554192161
6	2.696726315	-3.832924844	-2.167014529
8	0 790160111	-2.320820406	-2.218864085
7	-2 772851813	1 796382609	0.889659781
6	2.772031013	0.735187617	0.771080866
6	1061227926	1 /09056952	-0.771909000
6	-4.001227830	1.490030033	0.404293027
0	-5.520109555	1.842525408	0.8840/4009
I	-3.443463903	2.419514551	1./94926526
6	-6.424500197	1.403181026	0.150/461/6
1	-7.422188181	1.652622046	0.498513257
6	-6.272024671	0.642702506	-1.018435903
1	-7.154361859	0.311869459	-1.557559208
6	-5.010022618	0.294844407	-1.502428966
1	-4.888868073	-0.300403358	-2.401112062
			-

6	2.585821928	-5.173619592	-1.408699496
1	3.304372379	-5.895924078	-1.814968787
1	1.582365280	-5.604422270	-1.508837406
1	2.791941873	-5.036528300	-0.343899273
6	2.384898237	-4.038916199	-3.656203010
1	3.088688724	-4.758054830	-4.092437902
1	2.462600630	-3.100177422	-4.214278313
1	1.368301912	-4.418033207	-3.798836797
6	4.123644475	-3.268121956	-1.994995755
1	4.855530028	-3.958372073	-2.432207931
1	4.365768194	-3.131914071	-0.937328151
1	4.234728464	-2.300048409	-2.499307839
6	2.601319935	0.383710106	2.095414129
6	4.225259636	-0.695057955	4.126987022
6	3.531009310	-0.623465969	1.811367420
6	2.496679999	0.844934429	3.415179027
6	3.298616786	0.307047916	4.421579858
6	4.337278469	-1.159543226	2.816729106
1	3.603654094	-1.013710617	0.800980246
1	1.777319220	1.616738236	3.661094299
1	3.198971804	0.674573355	5.439967923
1	5.048854526	-1.944558149	2.573356423
1	4.851484258	-1.111120673	4.912112120
6	2.134386745	2.457544767	0.725151405
6	2.904110252	5.135044759	0.290420169
6	1.556895832	3.500005306	1.463688236
6	3.105326631	2.782013507	-0.231291836
6	3.489080076	4.105208001	-0.447724118
6	1.936292986	4.825754190	1.247125512
1	0.807765460	3.268459676	2.214568067
1	3.564272001	1.988632137	-0.816098939
1	4.242545996	4.329893592	-1.198184630
1	1.475160158	5.618508115	1.831470431
1	3.199573055	6.167324567	0.122270315
6	-2.503309952	2.698181869	2.007878834
1	-1.567221187	3.223305479	1.827727827
1	-2.421463098	2.143315972	2.942255129
1	-3.321818075	3.420726813	2.054215212

Requested basis set is 6-31G(d) There are 290 shells and 840 basis functions.

Transition Structure (*S*)-**ts-2a** $E(B3LYP/6-31G^*) = -2130.839790$ au

Cartesian Coordinates (Angstroms)

A	tom	Х	Y	Ζ	
6	-0.065		-0.8447	08523	1.040304407
7	0.768	8416757	-0.7090	46802	-0.204484629
6	2.105	5324556	-0.5552	20711	-0.114132260
7	2.607	450186	0.3231	06903	-1.008094303
7	3.113	3586661	-1.1144	84863	0.591633327
6	1.540	0248770	0.9623	81665	-1.777204811
6	0.326	5273710	0.0382	35525	-1.431966879
1	-0.503	3070582	0.6842	14113	-1.161526052
6	-0.044	1822879	-0.8678	04241	-2.592698478
6	0.596	5803968	-2.0871	33356	-2.837858932
6	0.268	3198069	-2.8469	26698	-3.961057805
6	-0.704	4600869	-2.3951	14740	-4.854302284
6	-1.349	9468767	-1.1799	77184	-4.616646142
6	-1.022	2718321	-0.4197	56902	-3.492650698

1	-1.513773198	0.532531294	-3.307421973
1	-2.111339076	-0.823119689	-5.305012072
1	-0.961615153	-2.988677393	-5.727840423
1	0.768610754	-3.796076715	-4.133945964
1	1.338445640	-2.461812579	-2.138219309
1	1.385946472	1.987212514	-1.433101170
1	1.768344748	0.948905115	-2.844450043
6	-1.439015676	-1.476839872	0.739177664
1	-1 849185848	-0.978931411	-0 143140685
8	0 567258958	-1 059186025	2 070323889
8	-0 736917391	1.032890849	1 020363960
6	-0 3/3630822	1.052070047	2 013075299
6	1 10/50/706	2 128327317	1 815665872
6	2 185611872	1 008733872	2 530583712
6	2.105011072	2 272200208	2.339363712
6	2 722206225	2.373309208	2.323321993
0	3.132290333	3.309981014	1.5//930/14
0	2.0048/0898	3.894812518	0.044684591
0	1.368882789	3.425169359	0.863/11004
1	0.539230305	3.834682559	0.290310683
1	2.839/08035	4.680199982	-0.087508043
1	4.742995458	3.735594483	1.216114311
1	4.309552505	1.959561587	2.901758484
1	2.008262381	1.136016122	3.280724306
6	-0.665511305	1.509867184	3.442648605
1	-1.734964739	1.292887680	3.513638599
1	-0.422361247	2.301338966	4.163118010
1	-0.126814199	0.601344519	3.716933109
1	-0.957102278	2.866783059	1.833879827
1	-1.893472724	1.554163162	0.409044719
8	-2.780691517	2.043139802	0.027120745
6	-2.580961649	2.646580285	-1.125841266
6	-3.784961776	3.490127424	-1.586300981
8	-1.543844052	2.560130385	-1.785639470
6	4.310346535	-0.518550755	0.148869714
6	3 984767210	0 388817563	-0.880160419
6	4 963271417	1 118982020	-1 545766076
1	<i>A</i> 708597 <i>A</i> 19	1.8166/19/153	-2 336516272
6	6 285888526	1.0100+7+33	1 1/15761303
1	7.076044005	1 476062616	1 630/2/7/2
6	6 612042100	0.020652106	-1.039424742 0.120060044
1	0.012942190	0.020033190	-0.120009944
ſ	7.032210410	-0.10/80/1/3	0.100245250
0	5.028525108	-0./1364/414	0.546594649
I	5.88//36281	-1.401397753	1.344686436
6	-4.01/680168	4.607426238	-0.545087183
1	-4.879154553	5.222224129	-0.834497947
1	-3.145396972	5.268316451	-0.470223031
1	-4.209353580	4.184806012	0.445216666
6	-3.495225303	4.101213773	-2.964332817
1	-4.341509451	4.718387193	-3.289146158
1	-3.329859396	3.322106265	-3.715675150
1	-2.597483614	4.725912408	-2.939455783
6	-5.034838320	2.587366014	-1.655858493
1	-5.903886921	3.172169095	-1.981680074
1	-5.257401170	2.149917032	-0.678856355

1	-4.895290324	1.769494068	-2.373660105
6	-1.274646261	-2.959713208	0.373403431
6	-1.110264888	-5.692138967	-0.308969040
6	-0.492271138	-3.844607697	1.131187012
6	-1.972770215	-3.471710582	-0.727707647
6	-1.895232397	-4.823042105	-1.066858192
6	-0.409036358	-5.195907734	0.791499405
1	0.049900068	-3.470723085	1.993188245
1	-2.585222212	-2.803695212	-1.327828338
1	-2.447553641	-5.193354137	-1.926630426
1	0.200676089	-5.864561873	1.394771875
1	-1.047345795	-6.745285178	-0.570294265
6	-2.456148586	-1.307445869	1.866830303
6	-4.430314612	-1.063073042	3.861748534
6	-3.700035270	-0.732230576	1.580237406
6	-2.217266605	-1.764294321	3.170140336
6	-3.193294158	-1.638427297	4.158490939
6	-4.679266725	-0.608454700	2.566826485
1	-3.895675235	-0.351400146	0.582185030
1	-1.256010235	-2.196796716	3.419656393
1	-2.984347244	-1.991252410	5.165511331
1	-5.634502543	-0.151461200	2.321031759
1	-5.190572518	-0.967909237	4.632929870
6	3.050805578	-2.231691812	1.530841961
1	3.984002761	-2.792550692	1.438582544
1	2.214464084	-2.877019406	1.268070602
1	2.912957351	-1.873679864	2.551204122

Requested basis set is 6-31G(d)

There are 290 shells and 840 basis functions.

27

Transition Structure (S)-ts-2b
$E(B3LYP/6-31G^*) = -2130.843832$ au

Cartesian Coordinates (Angstroms)					
A	tom	Х	Y	Ζ	
6	-0.264	4118908	0.1582	63664	-1.168509813
6	0.568	8147235	-1.1120	70016	-1.375512001
1	0.604	4687965	-1.6497	96876	-0.425982669
8	-0.36	3459296	1.0613	24112	-1.988645261
7	-1.472	2422673	-0.0810	81188	-0.316638456
6	-2.36	5835747	0.9212	65671	-0.167481557
7	-2.77	6234524	1.0974	75315	1.105143036
6	-3.70	0790194	2.1285	58866	1.159133484
7	-3.01	6415476	1.7776	09209	-0.984782204
6	-2.07	6581831	0.1916	71137	2.018206781

6	-1.393967631	-0.785988238	1.007007850
6	-2.034535755	-2.161550035	0.998448941
6	-3.083447967	-2.509168894	0.141033714
6	-3.664487858	-3.776401915	0.213078781
6	-3.204313264	-4.708580908	1.143976267
6	-2.157782454	-4.367277195	2.003920854
6	-1.575476718	-3.101477345	1.933071463
1	-0.763886103	-2.826907085	2.603290855
1	-1.789453460	-5.088993501	2.728346493
1	-3.654362691	-5.696474885	1.195513292
1	-4.471830188	-4.036825368	-0.466460000
1	-3.426925274	-1.802920062	-0.609185281
1	-0.353635548	-0.855458860	1.305648837
1	-1.330266257	0.723794489	2.610959212
1	-2.784253037	-0.323551306	2.6698/4339
8	0.830048415	0.923/8/041	0.411242338
6	0.945329995	2.31/5/1312	0.302035340
0	2.225334544	2.800827708	-0.384909485
0	3.4/6180011	2.243516748	-0.09006/619
0	4.033/20020	2.738100900	-0.091/23399
0	4.3030/3220	5.802998080	-1.393283938
0	3.324809989	4.303019284	-1.893020442
0	2.108209323	3.802349284	-1.2900/0020 1 546040401
1	1.201400303	4.297009219	-1.540040401
1	5.234000133	<i>J</i> .18900180 <i>J</i>	2.002790127
1	5 50/152707	4.100004111	-2.039332277
1	3.574152797	2.284800130	0.400034064
1	0.810277516	2 081726010	1 6886/13707
1	0.810277510	<i>2.981720019</i> <i>4.074305546</i>	1.6113/0102
1	1 616106769	2 650389/60	2 352/05235
1	-0 146164561	2.030303400	2.352+03235
1	0.111355933	2.710473110	-0.325236047
1	1 641554733	0.315738220	1 304978105
8	2 371285529	-0.165175880	1 989825908
6	1.855543645	-0.731574026	3.053200104
6	2.914422271	-1.311852537	4.012429885
8	0.645363949	-0.826624852	3.280742404
6	-3.847607125	2.572608114	-0.172123551
6	-4.411359545	2.707723195	2.205791878
1	-4.291963825	2.364937787	3.228201636
6	-5.275823938	3.754277183	1.879963947
1	-5.843571115	4.236180579	2.670063573
6	-5.422363157	4.199193700	0.557356734
1	-6.101567393	5.018514638	0.343256482
6	-4.708662031	3.616472295	-0.492971398
1	-4.817528187	3.971944881	-1.512104280
6	3.894834479	-0.191823593	4.420137586
1	3.376407392	0.614028839	4.953677862
1	4.383397938	0.240828770	3.543153499
1	4.668987568	-0.592222195	5.086526266
6	2.229086144	-1.894644216	5.257113033
1	1.683169265	-1.121637431	5.807723289
1	2.976296239	-2.335125542	5.928543183

1	1.508263090	-2.673050830	4.987516455
6	3.686516015	-2.420735956	3.262889983
1	3.015820152	-3.233036039	2.955017291
1	4.455906987	-2.850716293	3.915572396
1	4.172038400	-2.021542925	2.367557424
6	-0.155364462	-2.025109313	-2.379069935
6	-1.389322304	-3.767179947	-4.218663444
6	-0.529169168	-1.573866380	-3.653781020
6	-0.414144662	-3.359416154	-2.043070321
6	-1.022371869	-4.225502951	-2.953849662
6	-1.142370109	-2.436119290	-4.562710623
1	-0.337766694	-0.543162460	-3.933988867
1	-0.144905226	-3.725805079	-1.055665675
1	-1.210200599	-5.257424772	-2.668781483
1	-1.420578461	-2.067551531	-5.547167224
1	-1.861888160	-4.438876219	-4.930613100
6	2.014229963	-0.872854548	-1.802689235
6	4.698884110	-0.659523349	-2.624701991
6	2.383250539	0.032625244	-2.805916803
6	3.011641506	-1.662548507	-1.216734559
6	4.342143775	-1.561020026	-1.621949201
6	3.714543663	0.138409155	-3.208188956
1	1.636403247	0.681440749	-3.246718651
1	2.746052491	-2.364046970	-0.429456981
1	5.097483458	-2.183420550	-1.148777966
1	3.983423947	0.860569069	-3.974455562
1	5.734823443	-0.573589608	-2.942259204
6	-3.004571436	1.818597830	-2.446244033
1	-2.693359638	0.849312680	-2.829710241
1	-2.306019272	2.575329248	-2.805332327
1	-4.021479023	2.040873284	-2.780950073

Requested basis set is 6-31G(d)

There are 290 shells and 840 basis functions.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

Ph-BG

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

SM

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

200

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is

~

F:\kn-9-167-13C.als kn-9-167 Sat Feb 27 14:20:04 2010 13C bcm usec CHPh2 sec sec MHz KHz Hz ppm Hz Нz υ 125.65 N 0.00 F 127958.00 F 32768 33898.30 F 100 0.9667 2.0333 5.10 77.00 1.20 30 24.6 (H)-10d

CDCL3

1H

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

kn-9-167

•

kn-9-187

4

-0

- ∞

kn-10-103

• .

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{G}}$ The Royal Society of Chemistry 2011

kn-10-109
H:¥kn−10−111−1H.als kn−10−111 Tue Oct 12 10:09:26 2010 1H non **`**CHPh₂ 23.5 c CDCL3 7.24 ppm 0.12 Hz 21 (*R*)-13Be 500.00 MHz 0.00 KHz 162160.00 Hz 32768 10000.00 Hz 8 3.2768 sec 3.7268 sec 3.7268 sec 6.50 usec ш 0: \cap DFILE COMNT DATIM OBATIM OBATIM OBBAIN OBBRO SCANS SCANS SCANS SCANS SCANS SCANS RGAIN RGAIN РРМ 0 96 C 2 212 4 16.0 G 100 13.47 861 ۰.1 0.0 20.1 20.1 kn-10-111 ω

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

