Supporting Information

For

Inhibition of Peroxynitrite- and Peroxidase-mediated Protein Tyrosine Nitration by Imidazole-based Thiourea and Selenourea Derivatives

by

Krishna P. Bhabak, Kandhan Satheeshkumar, Subramaniam Jayavelu and Govindasamy Mugesh*

Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore 560 012 India, Email: <u>mugesh@ipc.iisc.ernet.in</u>

Compound	% Nitration of BSA
2	66 ± 4.2
6	82 ± 9.2
15	29 ± 4.9
17	50 ± 6.3
19	56 ± 6.3
21	45 ± 4.3
23	71 ± 4.8

Table S1. Inhibitory activities of selenourea compounds 2, 6, 15, 17, 19, 21 and 23 towards PN-mediated nitration of BSA.

Table S2. Inhibitory activities of thiourea compounds 1, 5, 14, 16, 18 and 20 towards PN-mediated nitration of BSA.

Compound	% Nitration of BSA
1	32.5 ± 2.1
5	66.5 ± 3.5
14	68.4 ± 2.1
16	64.0 ± 1.1
18	60.0 ± 2.8
20	78.0 ± 1.4

Table S3. Inhibitory activities of selenourea compounds 2, 6, 15, 17, 19, 21 and 23 towards LPO-catalyzed nitration of BSA.

Compound	% Nitration of BSA
2	43.0 ± 5.6
6	49.5 ± 4.9
15	52.5 ± 6.3
17	67.0 ± 1.3
19	76.5 ± 7.7
21	79.4 ± 7.7
23	81.5 ± 4.9

Figure S1. ¹H NMR spectrum of compound **14** in CDCl₃.

Figure S3. ESI-MS spectrum of compound 14. Calculated mass $(M+Na)^+$: 277.0558; observed mass: 277.0558.

Figure S4. ¹H NMR spectrum of compound **15** in CDCl₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

-3.63

Figure S7. ESI-MS spectrum of compound **15**. Calculated mass (M+Na)⁺: 372.9447; observed mass: 372.9445.

Figure S8. ¹H NMR spectrum of compound **16** in CDCl₃.

Figure S9. ¹³C NMR spectrum of compound **16** in CDCl₃.

Figure S10. ESI-MS spectrum of compound **16**. Calculated mass (M+Na)⁺: 291.0714; observed mass: 291.0711.

Figure S11. ¹H NMR spectrum of compound **17** in CDCl₃.

Figure S13. ⁷⁷Se NMR spectrum of compound **17** in CDCl₃.

Figure S14. ESI-MS spectrum of compound **17**. Calculated mass (M+Na)⁺: 386.9603; observed mass: 386.9637.

Figure S17. ESI-MS spectrum of compound **18**. Calculated mass (M+Na)⁺: 305.0851; observed mass: 305.0852.

Figure S18. ¹H NMR spectrum of compound **19** in CDCl₃.

Figure S21. ESI-MS spectrum of compound **19**. Calculated mass (M+Na)⁺: 400.9760; observed mass: 400.9752.

Figure S22. ¹H NMR spectrum of compound **20** in CDCl₃.

Figure S23. ¹³C NMR spectrum of compound **20** in CDCl₃.

Figure S24. ESI-MS spectrum of compound 20. Calculated mass (M+Na)⁺: 319.1027; observed mass: 319.1029.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Figure S27. ⁷⁷Se NMR spectrum of compound **21** in CDCl₃.

Figure S28. ESI-MS spectrum of compound **21**. Calculated mass (M+Na)⁺: 414.9916; observed mass: 414.9923.

Figure S29. ¹H NMR spectrum of compound **23** in CDCl₃.

Figure S30. ¹³C NMR spectrum of compound **23** in CDCl₃.

Figure S32. ESI-MS spectrum of compound 23. Calculated mass (M+H)⁺: 188.9931; observed mass: 188.9911.

Figure S33. ⁷⁷Se NMR spectrum of the reaction mixture of compound **17** and PN in D_2O . The signal at 1317 ppm is due to the formation of H_2SeO_3 as the eliminated product.

Figure S34. ESI-MS spectrum of the reaction mixture of compound **17** and PN that produces compound **28** as the final metabolite. Calculated mass $(M)^{2+}$ (*m/z*): 103.0760; observed mass: 103.0828.

Figure S35. ESI-MS spectrum of the reaction mixture of compound **16** and PN that produces compound **28** as the final metabolite. Calculated mass $(M)^{2+}$ (*m/z*): 103.0760; observed mass: 103.2871.