Generation of diverse 2-pyrones via palladium-catalyzed site-selective Suzuki-Miyaura couplings of 3-bromo-4-tosyloxy-2-pyrone

Xiaoli Lei, ${ }^{a}$ Liang Gao, ${ }^{a}$ Qiuping Ding, ${ }^{a}$ Yiyuan Peng, ${ }^{* a}$ and Jie Wu* ${ }^{*}$
${ }^{a}$ Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022,
China.
${ }^{b}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.

Supporting Information

1. General experimental methods (S2)
2. General experimental procedure and characterization data (S2-S11)
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 4 and 5 (S12-S57)

General experimental methods

Unless otherwise stated, all commercial reagents and solvents were used without additional purification. All solvents were dried and distilled according to standard procedures. All reactions were performed in reaction tubes under Ar. The Flash column chromatography was performed using silica gel ($60-\AA$ pore size, $32-63 \mu \mathrm{~m}$, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~ 20 Torr (house vacuum) at $25-35^{\circ} \mathrm{C}$. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane (TMS) on the δ scale.

Synthesis of 3-bromo-6-methyl-4-tosyloxy-2-pyrone 3: ${ }^{1}$

Br_{2} (1.0 equiv) was added dropwise into a solution of 4-hydroxy-6-methyl-2pyrone (8.0 mmol) in methanol at $0^{\circ} \mathrm{C}$. The resulting white solid was appeared in the process of addition of Br_{2}. After completion of the reaction as monitored by TLC, the mixture was then concentrated under reduced pressure to yield the crude 3-bromo-4-hydroxy-6- methyl-2-pyrone 2. Without purification, the crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv) and TsCl (1.2 equiv) were added to the suspension of compound $\mathbf{2}$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature until the reaction was completed. After the solvent was evaporated under reduced pressure, the mixture was purified by flash column chromatography on silica gel to afford the desiring product $\mathbf{3}$ in 86% yield.

General procedure for the reaction of compound $\mathbf{3}$ with arylboronic acids (Scheme 2):

A mixture of compound $\mathbf{3}(0.3 \mathrm{mmol})$, arylboronic acid (1.5 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5$ mol \%), Johnphos ($5 \mathrm{~mol} \%$), and KF (3.0 equiv) in 3.0 mL of toluene $/ \mathrm{H}_{2} \mathrm{O}$ (v/v:2/1) was stirred at $60^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel to produce the corresponding product 4.

General procedure for the reaction of compound $\mathbf{4}$ with arylboronic acids (Table 3):

A mixture of substrate $4(0.3 \mathrm{mmol})$, arylboronic acid (1.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (5 $\mathrm{mol} \%), \mathrm{PCy}_{3}(10 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{HPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (3.0 equiv) in methanol (2.0 mL) was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel to produce the corresponding product 5 .

General procedure for the Synthesis of symmetrically 3,4-diarylated 2-pyrones 5 (Scheme 3):

Following the same procedure above (increasing the amount of arylboronic acid to 3.0 equiv).

3-bromo-6-methyl-4-(4-methylbenzenesulfonyloxy)-2-pyrone 3. White solid (86% yield), mp: 165.3-166.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.9,160.2,158.8,147.0,131.9,130.2,128.5,101.5,99.8,21.8,19.9 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$, 380.9408; Found, 380.9408.

6-methyl-4-(4-methylbenzenesulfonyloxy)-3-phenyl-2-pyrone 4a. White solid (92\% yield), mp: 125.7-127.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26-7.18 (m, 3H), 7.08-7.05 (m, $J=8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 4 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.2, 161.8, 156.4, 145.8, 131.5, 130.0, 129.7, 128.5, 128.1, 127.9, 127.7, 116.1, 102.3, 21.69, 20.1; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right), 379.0616$; Found, 379.0622.

6-methyl-4-(4-methylbenzenesulfonyloxy)-3-(4-methylphenyl)-2-pyrone 4b. Yellow oil $(83 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-6.96(\mathrm{~m}$, $6 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 163.4,161.5,156.2,145.8,138.1,131.6,129.9,129.5,128.4,127.9,126.0$, 116.2, 102.4, 21.74, 21.34, 20.09; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SH}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 371.0953; Found, 371.0951.

3-(4-methoxylphenyl)-6-methyl-4-(4-methylbenzenesulfonyloxy)-2-pyrone $4 c$.

Yellow oil (62% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$
(d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.2, 161.2, $159.4,155.9,145.7,131.3,129.6,127.9,121.1,115.1,113.2,102.5,55.2,21.7,20.0$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$409.0722; Found, 409.0714.

3-(4-chlorophenyl)-6-methyl-4-(4-methylbenzenesulfonyloxy)-2-pyrone 4d. Yellow solid (59% yield), mp: 108.1-109.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.43(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0,162.3$, $156.8,146.2,134.3,131.5,129.7,127.9,127.8,127.5,114.9,102.7,21.7,20.2$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$, 413.0226; Found, 413.0219.

3-(2-Methoxyphenyl)-6-methyl-2-oxo-2H-pyran-4-yl 4-methylbenzenesulfonate 4 . Yellow solid (66% yield), mp: 134.9-136.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.77$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,161.8,157.1,157.0,145.5,132.0,131.3,130.3$, 130.0, 129.7, 128.4, 127.9, 120.1, 118.3, 113.5, 110.8, 101.8, 55.4, 21.7, 20.1; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na}), 409.0722$; Found, 409.0710 .

6-Methyl-2-oxo-3-m-tolyl-2H-pyran-4-yl 4-methylbenzenesulfonate 4f. Yellow oil (85% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12-7.04 (m, $4 \mathrm{H}), 6.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,161.7,156.3,145.7,137.3,131.6$, 130.4, 129.6, 128.9, 128.5, 127.9, 127.7, 127.2, 116.3, 102.4, 21.7, 21.3, 20.1; HRMS
(ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H}), 371.0953$; Found, 371.0958.

Methyl 4-(6-methyl-2-oxo-4-(tosyloxy)-2H-pyran-3-yl)benzoate 4g. Yellow solid (95% yield), mp: $152.1-153.8{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47$ $(\mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6$, $162.8,162.7,157.1,146.2,133.9,131.3,130.1,129.8,129.6,128.8,127.8,115.0$, 102.5, 52.2, 21.6, 20.2; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{7} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$, 437.0671; Found, 437.0678.

3,4-diphenyl-6-methyl-2-pyrone 5a. Yellow solid (89% yield), mp: 130.1-130.7 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}$, $2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,152.6,137.5$, 133.8, 130.8, 128.7, 128.6, 128.2, 127.9, 127.5, 122.0, 107.1, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 285.0891$; Found, 285.0895.

6-methyl-4-(4-methylphenyl)-3-phenyl-2-pyrone 5b. Yellow solid (95\% yield), mp: $109.2-110.7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H})$, 7.02-6.96 (m, 4H), 6.16(s, 1H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.7,159.9,152.7,138.8,134.5,134.2,130.8,128.9,128.7,128.0,127.4$, 121.6, 107.2, 21.3, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$299.1048; Found, 299.1044.

4-(4-methoxylphenyl)-6-methyl-3-phenyl-2-pyrone 5c. Yellow solid (94\% yield), mp: $109.3-110.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}) $\delta 163.7,159.9,152.2,134.3,130.9,130.4$, 129.5, 128.1, 127.5, 121.1, 113.7, 107.1, 55.2, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 315.0997$; Found, 315.0997.

4-(4-chlorophenyl)-6-methyl-3-phenyl-2-pyrone 5d. Yellow solid (73\% yield), mp: $120.9-122.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,160.4,151.4,135.9$, $134.8,133.5,130.8,130.1,128.6,128.2,127.8,122.2,106.7,19.9 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$319.0502; Found, 319.0495.

3,4-di(4-methylphenyl)-6-methyl-2-pyrone 5e. Yellow oil (82\% yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}) $\delta 163.8,159.6,152.3,138.7,137.2,134.7,131.1$, 130.6, 128.9, 128.8, 128.6, 121.6, 107.2, 21.3, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 313.1204$; Found, 313.1204.

4-(4-methoxylphenyl)-6-methyl-3-(4-methylphenyl)-2-pyrone 5f. Yellow solid (70\% yield), mp: 135.7-137.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.72(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,159.8,159.6,151.8,137.1,131.2,130.7,130.3,129.8,128.8$, 121.2, 113.7, 107.1, 55.2, 21.3, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 329.1154; Found, 329.1160.

4-(4-chlorophenyl)-6-methyl-3-(4-methylphenyl)-2-pyrone 5g. White solid (64\% yield), mp: 131.6-132.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05-7.03 (m, 4H), 7.01(d, J = 8.0 Hz, 2H), $6.11(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}) $\delta 163.5,160.1,150.9,137.6,136.1,134.7,130.6,130.4$, $130.1,128.9,128.6,122.2,106.7,21.3,19.9$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{Na}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 333.0658$; Found, 333.0664.

3-(4-methoxylphenyl)-6-methyl-4-phenyl-2-pyrone 5h. Yellow oil (55\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8$, $159.6,158.8,152.1,137.8,132.0,128.6,128.5,128.3,125.9,113.5,107.1,55.1,19.8 ;$

HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$293.1178; Found, 293.1170.

3-(4-methoxylphenyl)-6-methyl-4-(4-methylphenyl)-2-pyrone 5i. Yellow oil (67\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.9, 159.4, 158.8, 152.1, 138.6, 134.8, 132.0, 129.0, 128.6, 126.2, 121.2, 113.5, 107.2, 55.1, 21.2, 19.8; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$307.1334; Found, 307.1329 .

3,4-di(4-methoxylphenyl)-6-methyl-2-pyrone 5j. Yellow oil (80% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.7, 161.8, 158.7, 151.70, 132.0, 130.3, 128.2, 126.4, $120.8,114.6,113.7,107.1,103.2,55.5,55.2,19.9$. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 345.1103; Found, 345.1088.

4-(4-chlorophenyl)-3-(4-methoxylphenyl)-6-methyl-2-pyrone 5k. Yellow oil (80\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 4 \mathrm{H})$, $6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 163.6,159.9,159.0,150.8,136.2,134.6,132.0,130.1,128.6,125.6,121.8$, 113.7, 106.7, 55.2, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClO}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 349.0607$; Found, 349.0601.

Methyl 4-(6-methyl-2-oxo-3-phenyl-2H-pyran-4-yl)benzoate 51. Yellow solid (66\% yield), mp: 195.0-196.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,163.2,160.5$, $151.5,142.1,133.3,130.7,130.1,129.5,128.7,128.1,127.8,122.6,106.5,52.2,19.9$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$343.0946; Found, 343.0931.

6-Methyl-3,4-dim-tolyl-2H-pyran-2-one 5m. Yellow oil (71\% yield). ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,159.8,152.7,137.8,137.4$, $137.3,133.8,131.3,129.3,129.2,128.3,128.0,127.9,127.8,125.8,122.0,107.1$, 21.4, 21.3, 19.9; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$313.1204; Found, 313.1215.

6-Methyl-3,4-bis(4-(trifluoromethyl)phenyl)-2H-pyran-2-one 5n. White crystal (60\%
yield), mp: 125.8-126.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,161.6,152.0,140.6,137.0,131.5,130.9,129.7,128.9,125.6$ (dd), 125.2 (dd), 122.5, 122.2, 121.2, 106.6, 20.0; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 421.0639$; Found, 421.0651.

6-Methyl-2-pyrone 5o. Yellow solid (60% yield), mp: 54.9-55.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.20(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.6,166.2,162.6,161.3,152.4,141.5,138.3,130.9,130.4,129.6,129.3,129.2$, 128.6, 121.5, 106.6, 52.2, 52.1, 20.0; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 401.1001; Found, 401.1012.

-

$$
\begin{aligned}
& \mathrm{\Delta} \\
& \mathrm{\Delta}
\end{aligned}
$$

.
e

7.316
7.298
7.264
F 7.261
7.316
7.298
7.264
7.261
7.250
77.233
oor

$$
\begin{array}{r}
7.261 \\
-7.250 \\
-7.233
\end{array}
$$

$$
\begin{array}{r}
7.250 \\
\ulcorner 7.233 \\
-7.226 \\
\hline 7207
\end{array}
$$

$$
\begin{array}{r}
7.226 \\
-7.207 \\
-7.191
\end{array}
$$

$$
\overline{1.00}
$$

$$
\begin{array}{r}
7.207 \\
7.191 \\
-7.187 \\
-7.082 \\
7078
\end{array}
$$

$$
\sqrt{2} \cdot\left(\begin{array}{l}
-7.082 \\
-7.078 \\
7.071
\end{array}\right.
$$

$$
\sqrt{ } \cdot\left(\begin{array}{l}
-218 \\
7.071 \\
7.062 \\
7.052
\end{array}\right.
$$

$$
\left[\begin{array}{l}
-.062 \\
7.052 \\
7.457
\end{array}\right.
$$

$$
\text { L } 6.457
$$

\qquad

- 156.77
- ${ }^{146.22}$

- 102.70

点

L

1

 - 156.39

\downarrow

-

$\begin{array}{r}163.67 \\ \hline\end{array}$
-152.71

-107.23
77.44
77.12
76.80

1

$=\begin{array}{r}159.65 \\ =158.88\end{array}$

- 152.14
\qquad 132.06
128.65
$\mathbf{1 2 8 . 5 1}$
128.31
125.99
\qquad -107.18
-55.16
-19.87

Γ

7.99
-7.89
-7.88
-7.87
7.87
7.22
7.20
7.16
7.14
6.20
6.19
3.89
<3.88
-2.36
N

1 \qquad

