Electronic Supplementary Information

Non-symmetrically substituted phenoxazinones from laccase-mediated oxidative crosscoupling of aminophenols: an experimental and theoretical insight.

Frédéric Bruyneel,^{*a*} George Dive,^{*b*} Jacqueline Marchand-Brynaert,*^{*a*}

^{*a*} Institute of Condensed Matter and Nanosciences (IMCN), Organic and Medicinal Chemistry (CHOM), Université catholique de Louvain,

Bâtiment Lavoisier, Place Louis Pasteur L4.01.02, 1348 Louvain-la-Neuve, Belgium Fax +32(10)474168; E-mail: jacqueline.marchand@uclouvain.be

^b Centre d'ingénierie des Protéines, Université de Liège, Bâtiment B6, Allée du 6 Août, 4000 Sart-Tilman (Liège), Belgium

TABLE OF CONTENT FOR THE SUPPORTING INFORMATION

S2- Structure of the substituted aminophenols and cyclic voltammograms of the blank

S3- Cyclic voltammograms recorded for the anodic oxidations of the precursors part 1

S4- Cyclic voltammograms recorded for the anodic oxidations of the precursors part 2

S5- Structures of the symmetrically substituted phenoxazinones cited and used

S5- Structures of the non-symmetrically substituted phenoxazinones identified

S-6-Structures of symmetrical and non-symmetrical phenoxazinone of "proof concept"

S7-12 HRMS, Full-MS and MS-MS spectra of dyes 5d, 5f, 5j, 6f^{12b}

Structural data for novel non-symmetrical compounds isolated

S13- HPLC-UV elution profile for analytical HPLC of proof reactions

S14- HPLC-UV elution profile forpreparative HPLC of proof reactions

S15- ¹H NMR of **8bf**, S16- ³¹P NMR of **8bf**, S17- ¹³C NMR of **8bf**, S18- HRMS data of **8bf**, S19- ¹H NMR of **7fb**, S20- ³¹P NMR of **7fb**, S21- ¹³C NMR of **7fb**, S22- HRMS data of **7fb** S23- ¹H NMR of **8bg**, S24- ³¹P NMR of **8bg**, S25- ¹³C NMR of **8bg**, S26- HRMS data of **8bg**

S27- ¹H NMR of **7gb**, S28-³¹P NMR of **7gb**, S29-¹³C NMR of **7gb**, S30-HRMS data of **7gb**

S31-32 Identification description and analysis of the fragmentation pattern in the HPLC-MS/MS analyses

HPLC-PDA-MS data exemplification for Table 2

S33- Retention times of all the compounds

S34- HPLC-PDA analysis of **3d-3f** conversions by laccase at T1, T2, T3 at 310 nm

S35- HPLC-PDA analysis of **3d-3f** conversions by laccase at T₂, T₃ at 440 nm

S36- HPLC-PDA analysis the dyes 5d and 5f at 440 nm

Data exemplification for Table 3, HPLC analysis using system 2, system 3

S37-38 HPLC-PDA prior HPLC-MS analysis of **3d-3f**, dyes **5d-5f** analyzed with system 2 S39-41 HPLC-PDA & MS analysis for entry 2 of table 3 (**4j-3f**) with system 3 S42-44 HPLC-MS analysis for entry 1 of table 3 (**3d-3f**) S45-48 HPLC-PDA & MS analysis for entry 3 of table 3 (**3j-3f**) S49-51 HPLC-PDA & MS analysis for entry 4 of table 3 (**4f-3d**)

Theoretical computations

S52- RHF and B3LYP absolute and relative energies

S53- Representative equilibrium structure and atoms labeling,

- S54- Equilibrium structures of the TS 1-4 (RHF/6-31+G)
- S55- Equilibrium structures of the TS 1-4 (B3LYP/6-31+G(d))
- S56- Energy minimized precursors for docking

S57- 63 Receptor for docking (Molegro virtual Docker) and docked poses

Bibliographical references for the synthesis of aminophenols and phenoxazinones [12a] - F. Bruyneel, E. Enaud, L. Billottet, S. Vanhulle and J. Marchand-Brynaert, *Eur. J. Org. Chem.*, 2008, **1**, 71-79;

[12b] - F. Bruyneel, O. Payen, A. Rescigno, B. Tinant and J. Marchand-Brynaert, *Chem Eur. J.*, 2009, **15**, 8283-8295;

[12d] - F. Bruyneel, L. D'Auria, O. Payen, P. J. Courtoy and J. Marchand-Brynaert, *ChemBioChem*, 2010, **11**, 1451-1457.

S2-o-Aminophenols studied by CV in this work

Cyclic voltammograms (CVs) were recorded on a potentiostat EG&G model 283. Data were exported in excel files and graph were generated using the software Origin 6.0 Professional (Microcal Origin).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

S3-Cyclic voltammograms

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

S4- Cyclic voltammograms

S5

Symmetrically substituted phenoxazinones cited and used in the research

Non-symmetrically substituted phenoxazinones cited and identified

isolated non-symmetrical phenoxazinones from "proof concept" reactions

8bf

7fb 17, 18 16 17 16 15 HN -0 0: PO₃H₂ 10 н 8 H_2 14 11 7 н 3 13 Ο 12 С 6 4 5 Ĥ Ĥ

8bg

Full MS ESI-positive of 5d

9

HRMS-5j

ACCURATE MASS CALCULATION PERFORMED ON A WATERS LCT PREMIER XE

Full MS-ESI positive of 6f

S13- analytic HPLC-UV elution profiles with XbridgeTM of proof reactions For 3b & 3f At 16h

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	0.920	2337085	54.67	481081					
2	1	3.370	280525	6.56	51768					
3	1	3.652	170988	4.00	37662					
4	1	6.060	1309420	30.63	212102					
5	1	6.172	176924	4.14	44054					
Mean		4.035	1							
Std. Dev.		2.177								

For 3b & 3g

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	0.814	2406162	25.70	1015234					
2	1	2.912	1753041	18.72	357653					
3	1	3.583	1541940	16.47	257398					
4	1	3.712	151505	1.62	45737					
5	1	5.802	556580	5.94	155657					
6	1	5.866	1195229	12.76	252275					
7	1	3.231	1758898	18.78	363027					

S14- Preparative HPLC-UV elution profiles with XbridgeTM-Prep of proof reactions

For 3b & 3f

S15-¹H NMR of compound 8bf

S16-³¹P NMR of compound 8bf (réference , H₃PO₄ 85%)

S18- HRMS of compound 8bf

Elemental	Composition R	eport					Page 1
Single Ma Tolerance = Element pro Number of I	ss Analysis = 10.0 PPM / DE ediction: Off isotope peaks used	E: min = -1 for i-FIT =	.5, max = 2	50.0			
Monoisotopio 30 formula(e Elements Us C: 18-18	c Mass, Even Electro) evaluated with 1 re ed: H: 4-200 N: 3-3	on Ions sults within I O: 7-10	imits (all re Na: 0-1	sults (up to 1 P: 1-2 S:	000) for each n 1-2	nass)	
18-Aug-2011			I	LCT Premier			
FB_2011_R10	4_SP_P2A 15 (0.350)						2: TOF MS ES- 9.31e+002
100-						4	52.0698
_							
-							
-							
-							
%							453.0740
-							
-							454.0817 ^{498.0754}
_							
	174 0740		31	1 1767 325.18	199 330 2077	434.061	498.0558
126.9	220 778.83	02 230.8977	265.1557		354.1107 371.	1891	474.0450
0- ¹ mponoph h q 120	ուրոկումընդիկովոնը 140 160 180 20	ՌորհոդԱկիրի։ 0 220 240	اراندارانان 260 280	որհերտեփետրոնդ 300 320	+/++++++++++++++++++++++++++++++++++++	հոիմորուղերդիմերոնի։ کار 400 420 440	militini militini militi) 460 480 500
Minimum:				-1.5			
Maximum:		20.0	10.0	50.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	
452.0698	452.0681	1.7	3.8	11.5	50.3	C18 H19 I	13 O7 P S

S19- ¹H NMR of compound 7fb

S20-³¹P NMR of compound 7fb

S21-¹³C NMR of compound 7fb

S22-HRMS data of compound 7fb

Elementa	Composition R	eport					Page 1
Single Ma Tolerance = Element pro Number of	ss Analysis = 10.0 PPM / DB ediction: Off isotope peaks used	3E: min = -1 d for i-FIT =	.5, max = : 2	50.0			
Monoisotopia 180 formula(Elements Us C: 18-18	c Mass, Even Electro (e) evaluated with 1 r sed: H: 4-200 N: 0-5	on Ions results within O: 7-10	limits (all r Na: 0-1 I L	esults (up to 1 P: 1-2 S: 1- _CT Premier	000) for each 2	mass)	
FB_2011_R10	14_SP_P3A 16 (0.369)						2: TOF MS ES-
100				452.0704			
- - 141.0 0-1141.0 0-1141.0 100 1	174.9714 063 224.7767 1111111111111111111111111111111111	325.1975 	386.8500 1997 - 1997 - 1997 50 400	453.0778 454.111: 454.111: 450 500	20.0516 551.9879 553.9 550	926 651,9119 687.94 111111111111111111111111111111111111	06 748.9272 http://titrp.org 750 800
Minimum: Maximum:		20.0	10.0	-1.5 50.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	
452.0704	452.0681	2.3	5.1	11.5	44.9	C18 H19 N3	07 P S

S23-¹H NMR of compound 8bg

S24-³¹P NMR of compound 8bg

S25-¹³C NMR of compound 8bg

S26- HRMS of compound 8bg

S27-¹H NMR of compound 7gb

S28- ³¹P NMR of compound 7gb

S29-¹³C NMR of compound 7gb

S30- HRMS of compound 7gb

S31-Identification of novel phenoxazinones by HPLC-MS/MS

Pairs of selected precursors were oxidized in presence of laccase Tv2 using identical experimental conditions. Only the compounds featuring primary/secondary sulfonamides were chosen to ease the HPLC-MS separation and ionization. Compound 4j was included in the set to determine if it is oxidized or acts only as a nucleophilic partner. After 24 hours of reaction, samples were taken off and analyzed by HPLC-PDA at a flow rate of 0.2 mLmin⁻¹ and subsequently analyzed in HPLC-MS/MS.^{‡-1} Reaction mixtures containing a suspension of partially watersoluble phenoxazinones (typically 5f and 6f) were filtered and the residual solid dissolved in methanol before both solutions were analyzed by HPLC-PDA (see ESI). Selected results are summarized in Table 3. The identification process for the pair 3f-3d (entry 1, Table 3) is exemplified in the Figure 5. First the elution profile, analyzed by HPLC-PDA, showed the corresponding known phenoxazinones 5d and 5f at a retention time of respectively 2.59 and 14.54 minutes (Figure 5, top on left). Two new heterocycles featuring the phenoxazinone typical absorption spectrum $(\lambda_{max}=230, 440 \text{ nm})$ were detected at respectively 10.62 and 11.03 minutes. The sample was then analyzed by HPLC-MS (full mass spectra) which allowed the identification of the peaks at 9.49 and 10.04 minutes (about 1 min shift due to different HPLC systems). Full mass spectra of both peaks showed a prominent m/z 453 ion corresponding to $[M + H]^+$ of compounds with the molecular formula $C_{18}H_{20}N_4O_6S_2$ (spectra in ESI), as expected for the heterocycles 8df and 7fd (see Scheme 2). Tandem mass spectrometry (CID fragmentation) was used to identify the specific fragmentation patterns which indicate phenoxazinones featuring a cyclohexyl moiety. Compared to the known dyes 5d and 5f, the ions at m/z 289.7 - 272.7 - 208.7 (Fg = SO₂NH₂) and m/z 370.7 - 353.7 - 305.7 (Fg = SO₂NH-cyclohexyl) were respectively identified as indicative of the core structure. MS/MS spectra (Figure 5 on the right) are detailed in the entry 1 of the Table 3. Specific loss of neutral fragments corresponding to cyclohexene (- m/z 82), sulfur dioxide (- m/z 64) and ammonia (- m/z 17) were observed. Such typical fragmentations were similarly presents in all the new compounds detected (structural information in the ESI). By mixing 3f and the previously inert 4j (Table 3, entry 2), a major new peak was detected in both HPLC-PDA and HPLC-MS. The corresponding ion with m/z of 538 $[M + H]^+$ (C₂₃H₃₁N₅O₆S₂) gave in tandem mass spectrometry the typical fragmentation along with a loss of neutral fragment of m/z 45 (HNMe₂) indicative of the tertiary amino group. A second compound with identical mass m/z 538 was detected in tiny amount. The same fragmentation pattern was observed. This suggests that the major compound arises from laccase-mediated oxidation of 3f and subsequent 1,4-addition of native 4j (Scheme 2, phenoxazinone 10if). The very minor compound would arise from auto-oxidation of 4i and subsequent 1.4-addition of native 3f (Scheme 2, phenoxazinone 9fj). In comparison, the reaction of 3f and 3j (i.e the regioisomer of 4j) gave two novel heterocyclic compounds (8jf and 7fj, Table 4, entry 3) corresponding to m/z 538. They feature the expected fragmentation pattern in tandem mass spectrometry which validates the observations made for the reaction of 3f and 4j. Finally mixing compound 4f with 3d gave again two novel compounds with a prominent ion of m/z 453 (9df and 10fd, see entry 4, Table 3). These experimental results indicate that non-symmetrically substituted phenoxazinones are indeed formed in various proportions most probably depending on the redox-properties of the precursors and their relative affinity for the enzyme.

0.00	T / / ·			•		1 4.0	4.	e		1 .	• • •	1	
- S 52-	Fragmentation	natterns	observed	1n 1	the i	dentitics	ation (of non-s	vmmetrical	v subsi	hatutu	nhenovaz	inones
	I I agmentation	partering	UDSCI VCU			achtine	auton	or non s	y minicul ican	y bubb	nuucu	phenoAu	mones

Non-symmetrically substituted phenoxazinones identified by HPLC-MS after 24 hours of reaction^a

Entry	Cmpd	HPLC	-PDA		HPLC-N	MS	Fragments analysis
-	-	Dye-	Dye-	Dye-	Dye-	$[M+H]^+$	dye-(min) = ion (rel ab %) \rightarrow daughter [loss]
		(min)	(min)	(min)	(min)	m/z	
1	3f-3d	8fd-		8fd-		453.20	8fd -(9.49) = $453.20 \rightarrow 370.79$ (75) [-82, C ₆ H ₁₀]; $370.79 \rightarrow 353.76$ (20) [-17, NH ₃];
		(10.62)		(9.49)			$353.76 \rightarrow 289.74 (100) [-64, SO_2]; 289.74 \rightarrow 272.71 (20) [-17, NH_3], 272.71 \rightarrow 208.72$
							(65) [-64, SO ₂].
			7fd-		7fd-	453.20	7fd -(10.04) = 453.20 → 370.79 (70) [-82, C ₆ H ₁₀]; 370.79 → 353.75 (10) [-17, NH ₃];
			(11.03)		(10.04)		$353.76 \rightarrow 289.74 (100) [-64, SO_2]; 289.74 \rightarrow 272.71 (15) [-17, NH_3], 272.71 \rightarrow 208.73$
							(60) [-64, SO ₂].
2	3f-4j	10jf-	/	10jf-	/	538.20	10jf -(5.68) = $538.11 \rightarrow 455.97$ (25) [-82, C ₆ H ₁₀]; $455.97 \rightarrow 438.92$ (20) [-17, NH ₃];
	Ū	(6.79)		(5.68)			$455.97 \rightarrow 410.90$ (5) [-45, HNMe ₂]; $438.92 \rightarrow 374.82$ (50) [-64, SO ₂]; $455.97 \rightarrow 374.86$
				. ,			(20) [-82, C ₆ H ₁₀].
			/		9fj-	538.20	$9f_{j}(7.11) = 538.11 \rightarrow 455.97 (25) [-82, C_6H_{10}]; 455.97 \rightarrow 438.92 (20) [-17, NH_3];$
					(7.11)		$455.97 \rightarrow 438.92 (15) [-45, HNMe_2], 438.92 \rightarrow 374.82 (50) [-64, SO_2]; 455.97 \rightarrow$
							374.86 (20) [-82, C ₆ H ₁₀], 164.70, 85.60.
3	3f-3j	8jf-		8jf-		538.20	8if -(6.46) = 538.20 \rightarrow 455.97 (30) [-82, C ₆ H ₁₀]; 455.97 \rightarrow 410.86 (10) [-45, HNMe ₂];
	U	(7.77)		(6.46)			382.80 (7); 376.88 ;85.71
			7fj-		7fj-	538.20	7fj - (6.75) = 538.20 \rightarrow 455.97 (15) [-82, C ₆ H ₁₀]; 455.97 \rightarrow 410.85 (10) [-45, HNMe ₂];
			(8.09)		(6.75)		382.80 (7); 164.66 ; 85.70
4	4f-3d	9df-	× ,	9df-		453.20	9df -(7.3) = $453.20 \rightarrow 417.86(50)$ [-17, -18, NH ₃ & H ₂ O]; $453.20 \rightarrow 387.90(15)$;
		(8.74)		(7.3)			$387.90 \rightarrow 371.85 (100); 371.85 \rightarrow 289.70 (35) [-82, C_6H_{10}],$
		()	10fd-		10fd-	453.20	$10fd-(9,1) = 453.20 \rightarrow 417.86(50) [-17, -18, NH_3 \& H_2O]; 453.20 \rightarrow 387.90(15);$
			(10.19)		(9.10)		$387.90 \rightarrow 371.85 (100); 371.85 \rightarrow 289.70 (35) [-82, C_6H_{10}],$

^{*a*} Representative chromatograms recorded for the entry 1 are shown in the Figure 4. See experimental part for details about the chromatographic systems. Chromatogram 1 (top on the left) recorded with HPLC-PDA (λ =440 nm), chromatogram 2 (left on the bottom) recorded with HPLC-MS. MS-MS Spectra 1 (right, top) & 2 (right, bottom) respectively correspond to peak 1 and peak 2. Due to transposition from waters Alliance pumps to Agilent Spectra6000 pumps system and a slight modification of the eluent, a difference of about 1 minute is observed between the peaks of the chromatograms.

Relative rates of	Kelative rates of conversion of selected substrates with surrogate laccase ¹⁵¹											
Entry	Cmpd1 ^[b]	Cmpd2 ^[b]	RT-1 (min)	RT-2 (min)	Ratio at T ₀ ^[c]	Ratio at T ₃ ^[c]	Rel Conv ^[d]					
1	3f	3d	3.88	1.51	1.15	0.96	3d>3f					
2	3f	3c	3.88	1.21	0.13	0	3c>3f ^[e]					
3	3f	3j	3.88	1.1-1.24	2.46	2.67	3f>3j					
4	4 f	3f	4.02	3.89	0.78	1.2	4f>>3f					
5	4 f	3d	4-02	1.51	0.87	1	4f>3d					

[a]

S33- Retention times of precursors and phenoxazinones listed in Table 2

^[a] Representative chromatogram recorded at λ = 310nm for the entry 1 is shown in the Figure 2 (bottom). The uv-vis spectra of compounds **3f** and **3d** are also shown (top). ^[b] See Table 1 for the side-chains and Scheme 1 for the outline of the reaction in presence of laccase. ^[c] Area recorded at λ = 310nm, T₁ = 2 min after starting the reaction. Reaction mixture was spiked every 25 min, T₃ = 75 min ^[d] Relative rates were estimated by following the evolution of the Δ AreaCp1/ Δ AreaCp2 with Δ Area = ([Area T₁ – Area T₃]/Area T₁) recorded at 310nm over 75 min by laccase **Tv2** (100 U.L⁻¹) at pH 6 (0.2 M of AcONH₄). ^[e] Relative rate of consumption could not be estimated by comparison, the starting material **3c** disappeared in the first 25 min.

Retention times	(RT in min)) of laccase-mediated	l synthesised	phenoxazinones	from selected	substrates in	the first 2 hours o	f reaction. ^[a]
	(,						

Entry	Cp1	Cp2	RT-P1	RT-P2	RT-P3	RT-P4	UV-Vis
1	3f	3d	2.92	4.97	5.17	7.62	240-260; 420-445
2	3f	3c	1.42	4.47	5.20	7.61	
3	3f	3j	1.45	4.54	5.2	7.62	
4	4f	3f	4.85	6.07	6.23	7.6 trace	
5	4f	3d	-	4.13	4.8	6.26	

^[a] Representative chromatogram recorded for the entry 1 is shown in the Figure 3 (left). The peculiar uv-visible patterns are shown for the phenoxazinone compounds (right). See Table 1 for side-chains and see Schemes 1, 2 for general structures of the heterocyclic cores. Area recorded at λ = 440nm after 75 min of reaction. An intermediate is detected at retention time of 7.2 min and could arise from the first 1,4-addition step between oxidised and reduced **3f**. (see Scheme 4 for general structure).

S35-HPLC-PDA analysis of the 3d-3f conversions by laccase at T2, T3 (440 nm) T2 $\,$

reak Name:											
Injection RT Area % Area Height											
1	1	2.920	1808090	41.34	213866						
2	1	4.983	1008305	23.05	117305						
3	1	5.185	1180117	26.98	137251						
4	1	7.215	240262	5.49	23181						
5	1	7.627	136958	3.13	10986						
Mean		5.586									
Std. Dev.		1.901									

S36-Reference Phenoxazinone 5d –corresponding to analysis with system 1

Reference Phenoxazinone 5f –corresponding to analysis with system 1 Auto-Scaled Chromatogram

S37-HPLC-PDA and MS of analysis of the 3d-3f conversion by laccase HPLC-PDA with system 2

Reference phenoxazinone 5d

S39- HPLC-PDA of reaction 4j-3f (entry 2, table 3)

Precipitated dissolved in methanol

HPLC-MS/MS chromatograms with target mass = 538.2 m/z (divert valve 2-17 min)

HPLC-Full MS of reaction Table 3, entry 1 (3f-3d)

Peak 1 with 453 m/z

HPLC-MS/MS chromatograms with target mass = 453 m/z (divert valve 2-17 min)

MS/MS spectrum of peak 2

HPLC-PDA & MS analysis for entry 3 of table 3 (3j-3f) Solution after filtration

Precipitated dissolved in methanol

Peak Name:											
	Injection	RT	Area	% Area	Height						
1	1	0.742	1030859	15.91	135621						
2	1	0.892	883644	13.64	141172						
3	1	5.653	127473	1.97	7478						
4	1	7.002	62490	0.96	6227						
5	1	8.099	589523	9.10	75068						
6	1	8.356	583645	9.01	70456						
7	1	9.477	126689	1.95	8383						

	Peak Name:												
	Injection	RT	Area	% Area	Height								
8	1	9.782	1345	0.02	336								
9	1	14.408	1357582	20.95	192418								
10	1	14.543	1717104	26.50	153553								
Mean		7.895											
Std. Dev.		4.702											
% RSD		59.55											

HPLC-MS chromatogram

HPLC-MS/MS chromatograms with target mass = 538.2 m/z (divert valve 2-17 min)

Peak 1 with 538.2 m/z

Peak 2 with 538.2 m/z

q756b #386-397 RT: 6.63-6.82 AV: 12 NL: 9.06E7 F: + c Full ms2 538.20@-30.00 [70.00-540.00]

S49 HPLC-PDA of reaction 4f-3d (entry 4, table 3)

103.45

% RSD

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	8.687	11927385	90.00	1220857		
2	1	10.196	1218878	9.20	119846		
3	1	12.668	74500	0.56	7926		
4	1	12.787	31329	0.24	6186		
Mean		11.085					
Std. Dev.		1.996					
% RSD		18.00					

20.00

25.00

Reference phenoxazinone 6f

HPLC-Full MS of reaction 4f-3d (entry 4, table 3) HPLC-MS/MS chromatogram

Peak 1 with 453.2 m/z (9df)

S52- RHF and B3LYP absolute and relative energies

Kill/0 51+0 (see benefite 5 und Tuble 4)									
Entry	Substrate	Substrate, absolute	Bqim, absolute	Transition	Absolute energy	ARel energy			
		energy (a.u.)	energy (a.u.)	state (TS)	(a.u.)	(Kcal mol ⁻¹)			
1	0-	-360.468505246	-359.245465197	TS1	-719.590796294	77.293			
	aminophenol			TS2	-719.597814260	72.889			
				TS3	-719.616359831	61.251			
				TS4	-719.610778195	64.754			
2	3c	-982.207067520	-980.969696013	TS1	-1963.08351389	58.515			
				TS2	-1963.09715803	49.953			
				TS3	-1963.06670886	69.060			
				TS4	-1963.07997662	60.735			
3	4c	-982.207374417	-980.970384217	TS1	-1963.09745014	50.394			
				TS2	-1963.09433061	52.352			
				TS3	-1963.05006906	80.126			
				TS4	-1963.04139050	85.572			

RHF/6-31+G (see Scheme 3 and Table 4)

B3LYP/6-31+G(d) (see Scheme 3 and Table 4)

Entry	Substrate	Substrate, (a.u.)	Bqim, (a.u.)	Transition state (TS)	Absolute energy (a.u.)	ΔRel energy (Kcal mol ⁻¹)
1	o-aminophenol	-362.831183224	-361.585079052	TS1	-724.328066503	55.344
				TS2	-724.324173007	57.787
				TS3	-724.344072449	45.300
				TS4	-724.340447754	47.574
2	3c	-986.633276414	-985.381118818	TS1	-1971.95756939	35.659
				TS2	-1971.94929497	40.851
				TS3	-1971.93252745	51.373
				TS4	-1971.94523151	43.401
3	4c	-986.635710264	-985.379671675	TS1	-1971.95277334	39.285
				TS2	-1971.94960705	41.274
				TS3	-1971.91827385	60.936
				TS4	Na	Na

Bqim = benzoquinone-imine internediate

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

S53 – Representative equilibrium structure and atoms labeling,

C2-H1 : r1 C2-C3 : r2 N4-C3 : r3 C3-C2-H1 : t1 N4-C3-C2 : t2

Variables used to define the Z-Matrix.

For each TS structure, the main components of the reaction coordinate at the RHF/6-31+G level are given by the eigenvector associated to the negative eigenvalue of the Hessien matrix corresponding to the imaginary frequency. The geometric parameters show the charge separation occuring at that equilibirum structure.

3cTS1Distances in AeigenvectorAngles in degreescomponents		TS2	TS2		TS3		TS4	
r1	1.4957	0.76174	1.4829	0.80099	1.5372	0.76685	1.5289	0.75269
r2	1.5245	-0.15192	1.5272	-0.14364	1.5132	-0.14279	1.5151	-0.13858
r3	1.5445	0.11957	1.5667	0.11909	1.5866	0.10597	1.5600	0.07825
t1	73.169	-0.48874	73.586	-0.46581	73.335	-0.41927	72.602	-0.44636
t2	96.321	-0.25954	95 798	-0.26139	95.638	-0.28821	96.132	-0.29074
4c)0 . 0 2 1	0.2000		0.20107	20.000	0.20021	<i>y</i> 0.102	0122011
r1	1.4414	0.75759	1.4398	0.72690	1.5890	0.86990	1.5908	0.85782
r2	1.5270	-0.13982	1.5278	-0.15798	1.5147	-0.14711	1.5158	-0.14843
r3	1.5521	0.06991	1.5465	0.10804	1.5782	0.15109	1.5621	0.15040
t1	74.526	-0.48685	74.607	-0.52211	71.002	-0.32956	71.087	-0.33962
t2	95.459	-0.32205	96.053	-0.32536	97.032	-0.16064	97.103	-0.14952

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

S54- Equilibrium structures of the TS 1- 4 (RHF/6-31+G) For compound 3c

For compound 4c

Atoms labeling (TS2 for 3c)

S55-Equilibrium structures of the TS 1- 4 (B3LYP/6-31+G(d)) For compound 3c

Atoms labelling (TS2 for 3c)

S56 Energy minimization of selected substrates for docking purpose

Optimization

Three dimensional structures were generated using CS Chem3D from Cambridgesoft. Molecular geometries were calculated for the parent compounds. Calculations were carried out using the semi-empirical quantum-mechanical PM3 methods of the MOPAC2009TM program.^{J. J. P. Stewart; J. Mol. Mod. 13 (2007) 1173; Version 7.295}

Five starting conformations were arbitrary chosen to evaluate whether or not the resulting conformations were representative enough. To do so, the dihedral angle between the aromatic plane and the proton of the phenol and aniline were modified along with the dihedral angle of the sulfonamide group. Finally, at least two initial conformations were chosen with respectively a hydrogen bong between an oxygen of the sulfonated group and a proton of the nearby aniline (or phenol), or between the proton of the sulfonamide and the nearby nitrogen (or oxygen) of the aniline (or phenol).

Example of dihedral angle varied for compound 3f

Optimized conformations

S-57 Docking of the selected substrates using Molegro Virtual Docker program

Preparation of receptor from *Trametes versicolor* co-crystallized with *p*-xylidine (PDB 1Kya), Local constraint for docking , 15 Å radius sphere

Identification of the hydrogen bonds of p-xylidine with Asp206 and His508

Docked pose obtained with p-xylidine (MolDock Score = -52.5 arbitrary units)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

2 (-52.2);

4 (-53.6)

4 (-36.9)

5 (-71.3)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Docked pose of **4f**

5 (-22.8)

Docked pose of 4j

