Supporting Information for

A Facile Transformation of Amino acids to Functionalized Coumarins

Anupam Bandyopadhyay and Hosahudya N. Gopi*

Department of Chemistry, Indian Institute of Science Education and Research, Sai Trinity Building, Garware Circle, Pashan, Pune-411021, India

Email: hn.gopi@iiserpune.ac.in

List of contents	2
Synthesis of Fmoc-Coumaryl amino acid starting from Z-Asp-OBn	3
Crystal Structure analysis	4
References	.6
Copies of ¹ H , ¹³ CNMR, HPLC profile and Mass Spectra for Products	7

Synthesis of Coumarin 3g starting from Z-Asp(OH)-OBzl

Synthesis of alcohol B starting from Cbz-Asp(OH)-OBzl (A): The Cbz-Asp(OH)-OBzl (10 mmol) was dissolved in dry THF (20 mL) under nitrogen atmosphere, cooled to -15 $^{\circ}$ C, and then treated with DiPEA (10.2 mmol, 1.32 g) followed by isobutyl chloroformate (10 mmol, 1.366 g). White hydrochloride salt of DiPEA was precipitated out immediately after addition of isobutyl chloroformate. The reaction was continued to stir for another 10 min. The hydrochloride salt of DiPEA was filtered and washed with THF (2 × 10 mL). The filtrate was again cooled to -15 $^{\circ}$ C under nitrogen atmosphere, and then a solution of NaBH₄ (20 mmol, 720 mg) in 3 mL of water was added with vigorous stirring. After completion of reaction (~10 min), THF was evaporated and the reaction mixture was diluted with EtOAc (150 mL). The organic layer was washed with 5% HCl (50 mL x 2), 5% sodium carbonate (50 mL x 2), followed by brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get crude Cbz-protected alcohol (**B**) which was further purified on silica gel column chromatography.

(S)-benzyl 2-(((benzyloxy)carbonyl)amino)-4-oxobutanoate (1g) : The Cbz-amino alcohol **B** (5 mmol) was dissolved in 50 mL of DCM at room temperature and then 2.1 g (7.5 mmol) Dess-Martin periodinane (DMP) was added. Resulting reaction mixture was stirred for about 1 hr and the progress of the reaction was monitored by TLC. After completion of the reaction, it was diluted with diethylether (50 mL) and 10% Na₂CO₃ solution (50 mL) with

vigorous stirring. After 10 min, the organic layer was separated, washed with 10% Na₂CO₃ (50 mL × 2), brine (30 mL) and dried over anhydrous Na₂SO₄. The organic layer was evaporated under reduced pressure to get Cbz-Asp(CHO)-OBzl and used immediately for the synthesis of β -keto-esters using the reported procedure.¹

Crystal Structure analysis

Crystal structure analysis of Boc-Ala-Coumarin (3a): Crystals were grown by slow evaporation from a solution of methanol/water. A single crystal (0.35× 0.30 × 0.20 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 200K temperature on a Bruker APEX DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073 \text{ Å}$), ω -scans ($2\theta = 56.56$), for a total of 3782 independent reflections. Space group P2(1), a = 5.122(3), b = 10.085(6), c = 16.501(10), $\beta = 96.065(13)$, V = 847.6(8)Å³, Monoclinic, Z = 2 for chemical formula C₁₇H₂₁NO₅, with one molecule in asymmetric unit; ρ calcd. = 1.251gcm⁻³, $\mu = 0.092$ mm⁻¹, F(000) = 340, R_{int} = 0.0468..The final R value was 0.0537 (wR2= 0.1113) 1598 observed reflections ($F_0 \ge 4\sigma$ (|F_0|)) and 213 variables, S = 0.899. The structure was obtained by direct methods using SHELXS-97.² All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. The largest difference peak and hole were 0.126 and -0.143eÅ³, respectively.

Figure 1. ORTEP diagram of Boc-Alanyl coumarin (3a). Hydrogens are not labelled for clarity.

Figure 2: The extended sheet type assembly of Boc-alanylcoumarin

Table 2.	Non-covalent	interactions	observed	in the	crystal	structure	of Boc-	alanvlc	oumarin
1 4010 21	t ton co talent	menactions	00001.00	III the	or jocar	buactare	01 000	ananyie	0 amaimi

	D-HA[Å]	DA[Å]	D-HA[deg]	Type of H- bonding
N1O2	2.128	2.955	161	NHCO
С9-НО2	2.664	3.468	145	СНО
С7-НО5	2.666	3.367	130	СНО
С3-НО3	2.700	3.349	125	СНО
С17-НОЗ	2.459	3.294	145	СНО

Figure 3: ORTEP diagram of Boc-prolylcoumarin. Hydrogen atoms are not labelled for clarity.

Figure 4: The crystal packing depicting the non-covalent interactions in Boc-prolylcoumarin

Table 2. N	Ion-covalent	interactions in	the crystal	I structure of Boc-prolylcouma	rin
------------	--------------	-----------------	-------------	--------------------------------	-----

	D-HA[Å]	DA[Å]	D-HA[deg]	Type of H- bonding
C3HAr	3.053			С-Нπ
02Ar		3.037		Lone pair π
С9-НО3	2.564	3.514	163	СНО
С19-НОЗ	2.522	3.325	141	СНО
C4-HO5	2.614	3.460	147	СНО

Reference

- A. Bandyopadhyay, N. Agrawal, S.M. Mali, S.V. Jadhav, H.N. Gopi, *Org. Biomol. Chem.*, 2010, 8, 4855–4860.
- (2) a) SHELXS-97: G. M. Sheldrick, *Acta Crystallogr. Sect A* 1990, 46, 467-473. b) G. M. Sheldrick, SHELXL-97, Universitat Gottingen (Germany) 1997.

¹H ,¹³C NMR, HPLC profile and MALDI-TOF Mass Data

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

100 90 f1 (ppm) . 140

Spectrum Report

41

Figure 7: Analytical reverse phase HPLC profile of dipeptide 4 in methanol/water gradient system; λ =254 nm, gradient 60 to 95 % MeOH in 0 \rightarrow 35 min.

MALDI TOF/TOF mass of Coumarin Tagged HIV-1 TAT peptide

Spectrum Report

HPLC profile of Coumarin Tagged HIV-1 TAT Peptide

Figure 8: Analytical reverse phase HPLC profile of P1 in acetonitrile/water gradient system; λ =220 nm, gradient 20 to 95 % acetonitrile in 0 \rightarrow 35 min.