SUPPORTING INFORMATION

The Nucleophilicity N Index in Organic Chemistry

Luis R. Domingo,^a Patricia Pérez^b

 ^a Universidad de Valencia, Departamento de Química Orgánica, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain.
^b Universidad Andres Bello, Facultad de Ecología y Recursos Naturales, Departamento de Ciencias Químicas, Laboratorio de Química Teórica, Av. República 275, 8370146 Santiago, Chile.

Index

- **SI3** Table S1. Nucleophilicity (N), inverse of the electrophilicity (N') and Roy's nucleophilicity (N'') indices of substituted unsaturated bicyclic systems.
- **SI3** Table S2. Nucleophilicity (N), inverse of the electrophilicity (N') and Roy's nucleophilicity (N'') indices of some alkenes.
- SI4 Table S3. Total energies (E, in au) of reagents and TSs associated with the nucleophilic attacks of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes 10-IIIa-I on dicyanoethylene.
- SI5 Figure S1. Transition structures involved in the nucleophilic attacks of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes 10-IIIa-I on dicyanoethylene.
- SI6 Complete citation for reference 29.
- SI7 B3LYP/6-31G* computed total energies, unique frequency imaginary, and cartesian coordinates of TSs associated with the nucleophilic attacks of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes 10-IIIa-I on dicyanoethylene.

Table S1. Nucleophilicity (N), inverse of the electrophilicity (N') and Roy's nucleophilicity (N'') indices of substituted unsaturated bicyclic systems. A corresponds to an electron acceptor substituent group and D corresponds to an electron donor one.

А	D	N(eV)	А	D	N'(eV)	А	D	$N^{"}(eV)$
COMe	NH ₂	3.93	CN	NH ₂	0.77	COMe	NH ₂	2.89
CHO	NH ₂	3.81	COMe	NH ₂	0.74	CN	\mathbf{NH}_{2}	2.85
CN	NH_2	3.63	CN	OMe	0.69	CHO	\mathbf{NH}_{2}	2.71
NO ₂	NH_2	3.53	CN	Me	0.68	COMe	OMe	2.65
COMe	OMe	3.52	COMe	OMe	0.67	CN	OMe	2.62
COMe	OH	3.49	CN	OH	0.67	COMe	OH	2.61
СНО	OMe	3.39	COMe	Me	0.67	CN	OH	2.56
СНО	OH	3.32	CHO	NH2	0.66	COMe	Me	2.53
CN	OMe	3.26	COMe	OH	0.65	CHO	OMe	2.49
CN	ОН	3.17	CHO	Me	0.61	CN	Me	2.48
NO ₂	OMe	3.13	CHO	OH	0.61	CHO	OH	2.48
NO ₂	OH	3.06	CHO	OMe	0.60	CHO	Me	2.39
COMe	Me	3.04	NO ₂	NH_2	0.44	NO_2	\mathbf{NH}_{2}	2.15
СНО	Me	2.92	NO ₂	Me	0.43	NO_2	OMe	2.02
CN	Me	2.74	NO ₂	OMe	0.42	NO_2	ОН	1.98
NO ₂	Me	2.57	NO ₂	OH	0.40	NO ₂	Me	1.97

Table S2. Nucleophilicity (N), inverse of the electrophilicity (N') and Roy's nucleophilicity (N'') indices of some alkenes.

	N(eV)	<i>N</i> '(eV)	$N^{"}(eV)$
bicyclo[2.2.1]hepta-2,5-diene (11)	3.22	1.36	3.39
bicyclo[2.2.1]heptene (12)	2.84	1.79	3.54
cyclohexene (13)	2.77	1.98	3.61
but-2-ene (14)	2.76	1.82	3.52
Propene (15)	2.32	1.67	3.28
Ethene (16)	1.86	1.37	2.95

Table S3. Total energies (E, in au) of reagents and TSs associated with the nucleophilic attacks of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes **10-IIIa-I** on dicyanoethylene.

	А	R	TS
10-IIIe	CHO-BF ₃	-823.903289	-1086.949073
10-IIIf	CHO-BH ₃	-525.974761	-789.021845
10-IIIa	NO_2	-590.500499	-853.549580
10-IIIg	COCF ₃	-836.359578	-1099.409540
10-IIId	CN	-478.246619	-741.296361
10-IIIh	CFO	-598.586018	-861.636241
10-IIIb	СНО	-499.326189	-762.377831
10-IIIi	CF ₃	-723.039378	-986.091326
10-IIIc	COMe	-538.649556	-801.702338
10-IIIj	COOMe	-613.880231	-876.933439
10-IIIk	CONH ₂	-554.703302	-817.757020
10-IIII	Н	-385.997423	-649.053317

The total energy of dicyanoethylene is -263.062684 au.

Figure S1. Transition structures involved in the nucleophilic attacks of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes **10-IIIa-I** on dicyanoethylene. The distances are given in Å.

Complete citation for reference 29.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
- Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
- Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
- Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
- Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H.
- P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,
- A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
- Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M.
- C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
- Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
- Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
- Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
- Gonzalez, C.; Pople, J. A. Gaussian03, 2004; Vol. Gaussian, Inc., Wallingford CT.

B3LYP/6-31G* computed total energies, unique frequency imaginary, and cartesian coordinates of TSs associated with the nucleophilic attracts of twelve substituted methoxy bicyclo[2.2.1]hepta-2,5-dienes **10-IIIa-I** on dicyanoethylene.

TS-10-IIIa

E(RB+HF-LYP) = -853.549579967 A.U.1 imaginary frequency -270.2369 cm⁻¹

С	0.18724500	0.62809600	-0.36554000
С	-0.72394900	1.52985800	0.47521100
С	-1.29056800	-0.62348400	0.89694700
С	-0.08132500	-0.72253500	-0.07307600
С	-0.85427800	0.61703600	1.73148000
Η	-1.62924000	0.97235200	2.41545800
Η	0.08796300	0.49363300	2.27115800
С	-2.12338500	1.31364900	-0.13457400
С	-2.43824800	0.04032300	0.13299400
Η	-0.40903600	2.56235400	0.61718500
Η	-1.54892600	-1.53896700	1.42610700
С	2.71486800	-0.96091300	0.42270600
С	1.46212000	-1.50600300	0.81493100
Η	1.15118200	-1.29769000	1.83521700
Η	1.29058600	-2.54042400	0.52645700
Η	-0.10918900	-1.43497700	-0.89285700
0	1.08775400	0.97796000	-1.24466000
С	1.54957100	2.34645600	-1.32699800
Н	0.70600000	3.03069700	-1.44881500
Η	2.12911600	2.57096500	-0.42482900
Η	2.18852200	2.37619100	-2.20817600
Η	-2.69112000	2.02893400	-0.71531900
0	-3.68007600	-1.85821300	-0.10073800
С	3.06483300	0.30361500	0.94579000
Ν	3.21682600	1.37667900	1.39143100
С	3.48181600	-1.52788200	-0.62635200
Ν	4.10073900	-2.01293100	-1.48957500
Ν	-3.62699800	-0.64503400	-0.31815200
0	-4.49418300	0.01983200	-0.88568000

TS-10-IIIb

E(RB+HF-LYP) = -762.377830718 A.U.1 imaginary frequency -269.5495 cm⁻¹

С	-0.06639400	0.63625000	-0.41304200
С	-1.02244500	1.53873200	0.36857100
С	-1.62020100	-0.60948800	0.75925300
С	-0.35604200	-0.71065700	-0.13290400
С	-1.23570800	0.63075300	1.61623800
Н	-2.05248200	0.99169900	2.24676700
Н	-0.33155600	0.50836700	2.21852500

С	-2.38159400	1.30849000	-0.32370700
С	-2.73723900	0.03122900	-0.08551300
H	-0.71772800	2.57243700	0.52516900
H	-1.90348300	-1.52600400	1.27647900
С	2.42131300	-0.97440100	0.49222100
С	1.14560800	-1.48274100	0.85481700
Н	0.79804500	-1.23197600	1.85295900
Н	0.96052200	-2.52154900	0.59200600
H	-0.32239100	-1.42961900	-0.94655400
0	0.87769700	0.98263900	-1.24999300
С	1.35146900	2.34713500	-1.30402900
Н	0.51859100	3.03983900	-1.45029400
Н	1.90103400	2.56149100	-0.38081900
Н	2.02239000	2.38003000	-2.16124400
Н	-2.90160100	2.04460500	-0.92779000
С	-3.93640200	-0.65834600	-0.56816200
0	-4.17589500	-1.83036700	-0.33840500
Н	-4.63294700	-0.03489900	-1.16840900
С	2.79347700	0.28917000	1.00368500
Ν	2.97674100	1.36220900	1.43702700
С	3.20461400	-1.58107600	-0.52228100
N	3.83532300	-2.09976600	-1.35709800

TS-10-IIIc

E(RB+HF-LYP) = -801.702338198 A.U.1 imaginary frequency -265.1688 cm⁻¹

С	0.21778900	0.64552000	-0.32916400
С	-0.68943200	1.54003600	0.51592400
С	-1.25209100	-0.60877200	0.93612200
С	-0.04895300	-0.70204600	-0.03629200
С	-0.81713100	0.62873600	1.77115700
Н	-1.59260800	0.98475600	2.45446200
Н	0.12458200	0.50804300	2.31363200
С	-2.09197400	1.30613500	-0.08689000
С	-2.42845100	0.02759600	0.16719100
Н	-0.38061200	2.57523600	0.65508400
Н	-1.49792900	-1.52877800	1.46512400
С	2.77276500	-0.96944500	0.38473000
С	1.52797300	-1.46982500	0.84813200
Н	1.25591900	-1.20876800	1.86665600
Н	1.31679200	-2.50873700	0.60666600
Η	-0.06307800	-1.42120600	-0.85017900
0	1.10114000	0.99913400	-1.22822200
С	1.57011700	2.36371200	-1.30531100
Н	0.72964100	3.05912700	-1.37574600
Н	2.19353500	2.56784200	-0.42778300
Η	2.16953400	2.40645100	-2.21367400
Н	-2.64273400	2.04858000	-0.65345200
С	-3.64033400	-0.72747000	-0.22606500
0	-3.72807400	-1.91627000	0.04658200
С	3.19707800	0.29108000	0.86298300

N	3.43125300	1.36124700	1.27828900
С	3.46872500	-1.58313200	-0.68793600
Ν	4.02716700	-2.10709300	-1.56965300
С	-4.74485300	0.00757000	-0.96426000
Η	-5.10322500	0.86359500	-0.38048600
Η	-4.37897200	0.39475100	-1.92298700
Η	-5.57168600	-0.68105100	-1.14657200

TS-10-IIId

E(RB+HF-LYP) = -741.296360968 A.U. 1 imaginary frequency -265.2931 cm⁻¹

С	-0.13204200	0.56338400	-0.41118700
С	-1.10356700	1.45048600	0.36710900
С	-1.60068100	-0.70396400	0.83922800
С	-0.35762800	-0.78771300	-0.08213200
С	-1.24883500	0.57683700	1.64606000
Н	-2.06345900	0.92330100	2.28681100
Н	-0.32504100	0.50461300	2.22608000
С	-2.47002000	1.15577900	-0.28415800
С	-2.77164400	-0.12549000	-0.00090200
Η	-0.83706900	2.49933500	0.48630300
Н	-1.83262100	-1.61043700	1.39917900
С	2.42915000	-0.91459500	0.49016800
С	1.18198200	-1.47367700	0.88299500
Н	0.84504300	-1.22325600	1.88545400
Η	1.04625400	-2.52646900	0.64587200
Н	-0.32704300	-1.52371900	-0.88091200
0	0.77591700	0.91719300	-1.28071100
С	1.18928100	2.29863300	-1.39657800
Н	0.32405000	2.94753600	-1.55433900
Η	1.74318200	2.57083000	-0.49143600
Н	1.84365600	2.32563600	-2.26648500
Η	-3.03148200	1.84881500	-0.89893300
С	2.73893800	0.38004500	0.96232600
Ν	2.86085800	1.47399000	1.36440000
С	3.22846600	-1.50913200	-0.51849500
Ν	3.87336600	-2.01874100	-1.34804600
С	-3.90703400	-0.86583200	-0.41793700
N	-4.82722400	-1.50414800	-0.73791100

TS-10-IIIe

E(RB+HF-LYP) = -1086.94907283 A.U.1 imaginary frequency -278.2504 cm⁻¹

С	-1.43116700	-0.74410600	-0.44584700
С	-0.85805500	-1.96847400	0.27111200
С	0.28374800	-0.14304900	0.98444300
С	-0.80353400	0.42440900	0.03310800
С	-0.51883000	-1.30396300	1.63965100
Н	0.09451300	-1.95336500	2.26989300
Н	-1.40974400	-0.99072500	2.18926800

С	0.56430400	-2.07032400	-0.30066000
С	1.24935300	-0.98667200	0.13198500
H	-1.45590200	-2.87804500	0.26590500
H	0.75903000	0.58509100	1.64123400
С	-3.41665100	1.38389200	0.54058000
С	-2.07322500	1.49406400	1.00137500
H	-1.88025600	1.08732400	1.99075200
H	-1.61022800	2.46742500	0.85480700
H	-0.53468100	1.19063700	-0.68954300
0	-2.34072700	-0.70315500	-1.38286700
С	-3.17112800	-1.85534800	-1.65854800
Η	-2.55338900	-2.73021900	-1.87782900
H	-3.82548300	-2.02558000	-0.79656600
H	-3.75598400	-1.57877200	-2.53429300
H	0.91611100	-2.85457700	-0.96333100
С	2.61703000	-0.68509100	-0.19186600
0	3.17883600	0.33450400	0.24259000
H	3.18064600	-1.37224500	-0.83375500
С	-4.11788100	0.20845400	0.88514300
Ν	-4.56254000	-0.83545300	1.17894800
С	-3.95678100	2.27552600	-0.41922500
N	-4.38511600	3.02244200	-1.20800700
В	4.83500000	0.66553500	-0.16138300
F	5.15756200	-0.38606400	-0.97459800
F	5.41264500	0.65498100	1.06011800
F	4.72157000	1.86327700	-0.77568400

TS-10-IIIf

E(RB+HF-LYP) = -789.021844740 A.U.1 imaginary frequency -275.2749 cm⁻¹

С	-0.39526700	-0.70789500	-0.43784300
С	0.37174600	-1.79682800	0.31500400
С	1.27713700	0.20494900	0.87321900
С	0.08729300	0.56020100	-0.05725200
С	0.66741300	-1.01131100	1.62761500
Н	1.38779400	-1.53282800	2.26332900
Н	-0.23621700	-0.78771000	2.20032000
С	1.77250700	-1.74182300	-0.31486600
С	2.31820500	-0.55098400	0.02516200
H	-0.09483900	-2.77755800	0.38894000
H	1.67091800	1.03021900	1.46590600
С	-2.61567700	1.20034600	0.51843400
С	-1.28455300	1.51203200	0.91374400
H	-0.99964200	1.19071800	1.91215000
H	-0.95765000	2.52560200	0.69270400
H	0.21785700	1.31189900	-0.83130400
0	-1.34203900	-0.84768200	-1.32800900
С	-2.01855600	-2.11546200	-1.49335900
Н	-1.29816000	-2.91194200	-1.69763900
Н	-2.60348100	-2.31777800	-0.58948600
Н	-2.67601400	-1.97488500	-2.34985200

H	2.20129100	-2.51039400	-0.94947600
С	3.61485200	-0.07931300	-0.37239400
0	4.03430500	1.03838500	-0.01936500
H	4.25817900	-0.71258300	-0.99603800
С	-3.14659700	-0.03126100	0.95972600
Ν	-3.44706700	-1.10101000	1.33228700
С	-3.30052200	1.95305800	-0.46813000
Ν	-3.84954700	2.58815600	-1.27975100
В	5.47491400	1.60010500	-0.42969000
H	5.98324300	0.73022800	-1.10688200
H	6.00719400	1.80027700	0.63863400
Η	5.21523900	2.62630300	-1.01597900

TS- 9-IIIg E(RB+HF-LYP) = -1099.40953954 A.U.1 imaginary frequency -264.7031 cm⁻¹

С	-0.99279400	0.61087900	0.22838000
С	-0.14747500	1.46699400	-0.71574900
С	0.31959900	-0.70487100	-1.14431400
С	-0.79008000	-0.75088100	-0.06243700
С	-0.15927800	0.52968100	-1.95938200
Н	0.55718500	0.85218400	-2.71932100
Н	-1.15097100	0.42551100	-2.40711800
С	1.29445600	1.21042100	-0.23940400
С	1.57538400	-0.08257900	-0.50045600
Н	-0.44178400	2.50729500	-0.84541900
Н	0.49187800	-1.63901300	-1.67815400
С	-3.62789400	-0.94233100	-0.23787000
С	-2.43725500	-1.49966100	-0.77850300
Н	-2.24622300	-1.28723400	-1.82678500
Н	-2.24550300	-2.53819400	-0.51891200
Н	-0.70806900	-1.44908900	0.76600300
0	-1.78025800	1.00118600	1.19618200
С	-2.20099800	2.38079600	1.29767500
H	-1.33617200	3.04923800	1.30176000
Н	-2.88016100	2.59848000	0.46611100
H	-2.72996600	2.44563000	2.24734500
Н	1.91881600	1.94283800	0.25713100
С	2.79020400	-0.84669800	-0.20959200
0	2.90481500	-2.03432300	-0.44429100
С	-4.03323700	0.32291300	-0.71809100
Ν	-4.24147800	1.39355400	-1.14626000
С	-4.26423500	-1.50195300	0.89880700
Ν	-4.77465000	-1.98219600	1.83292800
С	3.98130800	-0.07589000	0.41861800
F	5.01552200	-0.88073800	0.64577200
F	3.61064600	0.49222900	1.58966800
F	4.37840700	0.91929100	-0.40550000

TS-10-IIIh

E(RB+HF-LYP) = -861.636240523 A.U.1 imaginary frequency -266.5353 cm⁻¹

С	0.20783300	0.62850200	-0.34324600
С	-0.70529100	1.51659400	0.50432700
С	-1.25944900	-0.63978800	0.91212300
С	-0.05233800	-0.72449300	-0.05849200
С	-0.83037800	0.59588100	1.75509000
Н	-1.60782200	0.94316500	2.44049600
Н	0.11215500	0.47657000	2.29564400
С	-2.10350300	1.28520100	-0.10166800
С	-2.43054000	0.00491900	0.14810700
Н	-0.39927100	2.55124500	0.65070800
Н	-1.50168200	-1.56209600	1.43998700
С	2.75243800	-0.96621300	0.40097900
С	1.50379800	-1.49932500	0.82109000
Н	1.21083100	-1.27667200	1.84340800
Н	1.32054700	-2.53580500	0.54758500
Н	-0.07109600	-1.43210600	-0.88275600
0	1.09731900	0.98938000	-1.23068500
С	1.55570500	2.35887100	-1.30384700
Н	0.70980700	3.04465300	-1.39829700
Н	2.15466800	2.57200800	-0.41157600
Н	2.17608300	2.40192700	-2.19778200
Н	-2.67158200	2.01687700	-0.66337000
С	-3.63689000	-0.71023000	-0.26161700
0	-3.89253800	-1.86331800	-0.07010100
С	3.12868600	0.29581700	0.91236000
Ν	3.30983300	1.36665800	1.35223800
С	3.49110500	-1.54466300	-0.66210800
Ν	4.08567000	-2.03980900	-1.53675700
F	-4.50738500	0.09970800	-0.92274700

TS-10-IIIi

E(RB+HF-LYP) = -986.091325798 A.U.1 imaginary frequency -262.9245 cm⁻¹

С	0.50987600	0.67374500	-0.37061600
С	-0.35909200	1.67531100	0.39139600
С	-1.02141400	-0.40298500	0.98125500
С	0.17883000	-0.63378900	0.02670500
С	-0.53078700	0.87679500	1.71563100
Н	-1.29027100	1.32196000	2.36317800
Н	0.40259400	0.75062500	2.27073200
С	-1.77104000	1.46409500	-0.20237200
С	-2.15545400	0.23525900	0.15561900
Н	-0.00180900	2.70219700	0.45217800
Н	-1.30597500	-1.26015500	1.59309300
С	2.98167800	-0.99415500	0.49427000
С	1.71314400	-1.40359900	0.98134600
Н	1.44723700	-1.05419700	1.97498400

Н	1.45913000	-2.44802000	0.81689900
Н	0.12415900	-1.41154800	-0.72951700
0	1.41683700	0.90999400	-1.28204900
С	1.94371300	2.24301500	-1.47135100
Н	1.13331600	2.96190100	-1.61604900
Н	2.56367200	2.49707800	-0.60466000
Н	2.55558500	2.18031600	-2.37003800
Н	-2.29338900	2.16905400	-0.83725700
С	-3.40192200	-0.48197800	-0.22021400
С	3.45454600	0.28102100	0.87931300
Ν	3.72679700	1.36984100	1.21515200
С	3.65866600	-1.71938600	-0.51927900
Ν	4.20020200	-2.33539500	-1.35047600
F	-4.22005600	0.27415800	-0.97716300
F	-4.09289400	-0.86857000	0.87683300
F	-3.11176200	-1.60673900	-0.91746000

TS-10-IIIj

E(RB+HF-LYP) = -876.933439177 A.U.1 imaginary frequency -264.2800 cm⁻¹

С	0.56164300	0.65111400	-0.32146500
С	-0.26850100	1.63004800	0.51006600
С	-0.88330300	-0.46635800	1.09252100
С	0.26418900	-0.66477900	0.06840900
С	-0.36046900	0.80170700	1.82528200
Н	-1.08579600	1.22810000	2.52312900
Н	0.60336600	0.67632600	2.32609800
С	-1.70839100	1.41698800	-0.00518000
С	-2.07045600	0.17209100	0.34643700
Н	0.08475900	2.65862800	0.56972900
Н	-1.13291600	-1.34192500	1.69122000
С	3.09737500	-1.01613700	0.35438700
С	1.86557600	-1.43468200	0.92012600
Н	1.66151500	-1.09400000	1.93084200
Н	1.60159600	-2.47748600	0.76199400
Н	0.18498000	-1.43235200	-0.69588000
0	1.40885100	0.91564700	-1.28335300
С	1.91426400	2.25598700	-1.47317400
Н	1.09271900	2.97371100	-1.54128000
Н	2.59279300	2.49223700	-0.64617500
Н	2.46191800	2.22180300	-2.41398700
Н	-2.27320800	2.13359300	-0.58875200
С	3.59756800	0.25366500	0.72311200
Ν	3.89924800	1.33644900	1.05309800
С	3.70413800	-1.72641300	-0.71298300
N	4.18795700	-2.32994200	-1.58787800
С	-3.32152300	-0.55281000	0.05812700
0	-3.51846800	-1.71002500	0.37627800
0	-4.22068200	0.21373600	-0.59740000
С	-5.46502700	-0.43519500	-0.91159700
Н	-5.96631700	-0.76508700	0.00208000

Н	-6.06246900	0.31612000	-1.42827600
Н	-5.29347900	-1.30145600	-1.55589200

TS-10-IIIk

E(RB+HF-LYP) = -817.757019619 A.U.1 imaginary frequency -261.8483 cm⁻¹

С	0.20246500	0.62367300	-0.37669000
С	-0.69640400	1.58238300	0.40727800
С	-1.27801500	-0.52615500	0.97088600
С	-0.07856800	-0.69743500	0.00398400
С	-0.82879700	0.75909800	1.71991400
H	-1.59713100	1.16892800	2.38099200
H	0.11359900	0.66183900	2.26566900
С	-2.10200100	1.32231800	-0.18024900
С	-2.44704100	0.06955700	0.16255700
H	-0.37586600	2.62109000	0.47722000
H	-1.52813000	-1.40844800	1.55931500
С	2.75122400	-0.93743300	0.46393500
С	1.50521700	-1.41657300	0.94273600
H	1.21927100	-1.09796600	1.94087000
H	1.29652800	-2.46673200	0.75448600
H	-0.10422000	-1.47406300	-0.75439800
0	1.09269300	0.90989200	-1.29278500
С	1.56319900	2.26502000	-1.46358100
Н	0.72372600	2.95156200	-1.60137000
H	2.17067900	2.53663200	-0.59341300
Н	2.17860400	2.24014900	-2.36186400
Н	-2.62304800	2.00810100	-0.83931100
С	3.16256300	0.35259800	0.87017500
Ν	3.38489700	1.44769400	1.22211400
С	3.46553200	-1.60958800	-0.56088300
Ν	4.04227300	-2.18059400	-1.40052600
С	-3.61219900	-0.75593100	-0.25039900
0	-3.53865000	-1.97906900	-0.26146500
Ν	-4.72997500	-0.07195200	-0.65582500
H	-4.87582100	0.88546200	-0.37054700
Н	-5.55396000	-0.62837900	-0.84195600

TS-10-IIII

E(RB+HF-LYP) = -649.053317342 A.U.1 imaginary frequency -263.6964 cm⁻¹

С	-0.70061700	0.38219100	-0.43497900
С	-1.93883900	0.80166100	0.35517500
С	-1.92624400	-1.45386800	0.24144800
С	-0.61345000	-1.01722600	-0.45931000
С	-1.98627400	-0.37912200	1.36509900
Н	-2.92416100	-0.39316200	1.92574700
Н	-1.13994000	-0.39702700	2.05814500
С	-3.11775900	0.37904200	-0.55854200
С	-3.10629600	-0.95695400	-0.61945700

H	-1.95900700	1.81655900	0.75022100
H	-1.96149700	-2.50118900	0.54710000
С	2.10798100	-0.67056700	0.44474400
С	0.99932400	-1.53809800	0.59570300
H	0.52436300	-1.55126600	1.57176400
Η	1.10276600	-2.52632600	0.15476900
Η	-0.28397500	-1.50899700	-1.36944900
0	0.16714700	1.14121500	-1.05620800
С	0.22872000	2.55959900	-0.78920300
Η	-0.75996200	3.01571400	-0.88458500
H	0.65053100	2.70886300	0.21065700
H	0.90180800	2.96158100	-1.54540800
H	-3.76202200	1.07558400	-1.08214200
С	2.12923300	0.52618400	1.19888300
Ν	2.03904900	1.50924900	1.82889400
С	3.06641900	-0.86784900	-0.58285700
N	3.84441500	-1.05525100	-1.43334100
Η	-3.76352700	-1.59800200	-1.19624800