Supporting Information

Palladium-Catalyzed C-H Acetoxylation of

2-Methoxyimino-2-Aryl-Acetates and Acetamides

Liang Wang, Xu-Dong Xia, Wei Guo, Jia-Rong Chen and Wen-Jing Xiao* Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal UniVersity, 152 Luoyu Road, Wuhan, Hubei 430079, China E-mail: wxiao@mail.ccnu.edu.cn

Contents

1. General Information	S1
2. General Procedure and Spectral Data of Substrates	S2
2.1 General Procedure	
2.2 Spectral Data of Substrates	
3. General Procedure and Spectral Data of Products	S6
3.1 Reaction Optimization and Result Summary	
3.2 General Procedure	
3.3 Spectral Data of Products	
4. Typical Procedure for Synthesis of compound 3	S13
5. X-Ray structure of 2a	S14
6. References	S14
7. Copies of NMR Spectra	S15

1. General

Unless otherwise noted, all reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Materials were purchased from commercial suppliers and used without further purification. All the solvents were treated prior to use according to the standard methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on Varian Mercury 400/600 (400/600 MHz) spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400/600 (100/150 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). ¹⁹F NMR spectra were recorded on Varian Mercury 400 (400 MHz) spectrophotometers. Chemical shifts are reported in ppm with C₆F₆ signal at -163 ppm as an external standard. Mass spectra were measured on a Finnigan Trace MS spectrometer (EI) or API 2000 LC/MS/MS (ESI-MS). Melting point was measured with BűCHI Melting Point B-545. IR spectra were measured on a BRUKER TENSOR 27 FT-IR spectrometer. Refractive index were measured on Abbé refractometer (2W).

2. General Procedure and Spectral Data of Substrates

 α -Ketoesters or ketoamides¹⁻³ (5 mmol, 1.0 equiv), methoxylamine hydrochloride (6-10 mmol, 1.2-2.0 equiv) and K₂CO₃ (6-10 mmol, 1.2-2.0 equiv) in EtOH (15 mL) were placed in a dried two-necked flask. The reaction system was stirred and refluxed until the reaction was completed by TLC analysis. After being cooled to room temperature, the reaction mixture was filtered through Celite. The filtrate was concentrated under reduced pressure, then the residue was purified by flash chromatography on silica gel to give the desired products.

Typical Procedure for Synthesis of compound 1m

 α -Ketoester (5 mmol, 1.0 equiv), methoxylamine hydrochloride (6 mmol, 1.2 equiv) and K₂CO₃ (6 mmol, 1.2 equiv) in MeOH (15 mL) were placed in a dried two-necked flask. The reaction system was stirred and refluxed until the reaction was completed by TLC analysis. After being cooled to room temperature, the reaction mixture was filtered through Celite. The filtrate was concentrated under reduced pressure, then the residue was purified by flash chromatography on silica gel to give **1m**.

2.2 Spectral Data of Substrates

(Z)-ethyl 2-(methoxyimino)-2-(3-methoxyphenyl)acetate (1a)

Yield: 83%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5276; **IR** (KBr) $v_{\rm max}$ 2981, 2941, 2904, 2837, 1738, 1608, 1575, 1490, 1465, 1432, 1331, 1292, 1251, 1207, 1030, 913, 883, 788, 734, 697, 654 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 1.4 Hz, 1H), 7.10 (d, *J* =

7.7 Hz, 1H), 6.95 (dd, J = 8.3, 1.7 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 4.01 (s, 3H), 3.81 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 163.5, 159.7, 150.5, 131.4, 129.7, 118.8, 116.5, 110.8, 62.9, 61.8, 55.2, 14.1; **MS**: m/z = 237.2 ([M⁺]); **HRMS** m/z: Calcd for C₁₂H₁₅NO₄Na⁺ [M+Na]⁺: 260.0899, Found: 260.0864.

(Z)-ethyl 2-(3-(benzyloxy)phenyl)-2-(methoxyimino)acetate (1b)

Yield: 70%, white solid, **m.p.** 37-39 °C; **IR** (KBr) v_{max} 2981, 2939, 2902, 1737, 1607, 1574, 1489, 1443, 1330, 1292, 1245, 1203, 1035, 884, 786, 738, 697 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) δ 7.43-7.31 (m, 4H), 7.33-7.23 (m, 3H), 7.12 (d, *J* = 7.3 Hz, 1H), 7.01 (dd, *J* = 8.3, 0.9 Hz, 1H), 5.06 (s, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H),

1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 158.9, 150.5, 136.5, 131.4, 129.8,

128.6, 128.0, 127.5, 119.1, 117.1, 111.9, 70.0, 63.0, 61.8, 14.1; **MS**: $m/z = 313.1 ([M^+])$; **HRMS** m/z: Calcd for $C_{18}H_{19}NO_4Na^+ [M+Na]^+$: 336.1212, Found: 336.1188.

(Z)-ethyl 2-(methoxyimino)-2-*m*-tolylacetate (1c)

Yield: 63%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5233; **IR** (KBr) $v_{\rm max}$ 2982, 2940, 2904, 2821, 1738, 1611, 1464, 1445, 1369, 1327, 1238, 1177, 1064, 1034, 909, 885, 859, 792, 734, 699, 655 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (s, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.4 Hz, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H), 2.35 (s, 3H), 1.37 (t, *J* = 7.1

Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 150.8, 138.4, 131.1, 130.0, 128.6, 126.5, 123.3, 62.9, 61.7, 21.3, 14.1; MS: m/z = 221.0 ([M⁺]).

(Z)-ethyl 2-(methoxyimino)-2-o-tolylacetate (1d)

Yield: 50%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5197; **IR** (KBr) $\nu_{\rm max}$ 2978, 2939, 2902, 2821, 1737, 1603, 1459, 1368, 1322, 1280, 1220, 1048, 1024, 889, 859, 767, 725, 647 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.25–7.20 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H),

2.46 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.4, 151.2, 137.3, 131.2, 129.8, 129.6, 128.8, 125.9, 62.9, 61.7, 20.9, 14.1; MS: m/z = 221.0 [M⁺].

(Z)-ethyl 2-(methoxyimino)-2-(4-methoxyphenyl)acetate (1e)

Yield: 73%, white solid, **m.p.** 33-34 °C; **IR** (KBr) v_{max} 2981, 2940, 2905, 2840, 1737, 1611, 1515, 1464, 1331, 1307, 1258, 1223, 1176, 1058, 1032, 891, 859, 795, 610 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 7.2 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 3.79 (s, 3H), 1.37 (t, J = 6.7 Hz, 3H); ¹³C NMR (150

MHz, CDCl₃) δ 163.8, 161.2, 150.3, 127.6, 122.6, 114.1, 62.6, 61.7, 55.2, 14.1; **MS**: m/z = 237.0 [M⁺]; **HRMS** m/z: Calcd for C₁₂H₁₆NO₄⁺ [M+H]⁺: 238.1079, Found: 238.1042.

(Z)-ethyl 2-(4-fluorophenyl)-2-(methoxyimino)acetate (1f)

Yield: 49%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5070; **IR** (KBr) $v_{\rm max}$ 3078, 2983, 2942, 2904, 2822, 1738, 1600, 1511, 1465, 1370, 1330, 1227, 1160, 1056, 1028, 894, 860, 840, 811, 608, 554, 514 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.56 (dd, J = 8.6, 5.4 Hz, 2H), 7.07 (t, J = 8.4 Hz, 2H), 4.42 (q, J = 7.3 Hz, 2H), 4.01 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (150

MHz, CDCl₃) δ 164.8, 163.4, 163.1, 149.6, 128.20, 128.15, 126.5, 116.0, 115.98, 115.8, 95.3, 62.9, 61.9, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –111.1; MS: m/z = 225.0 [M⁺].

(Z)-ethyl 2-(methoxyimino)-2-phenylacetate (1g)

Yield: 69%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5256; **IR** (KBr) $v_{\rm max}$ 2981, 2940, 2903, 2821, 1738, 1605, 1464, 1447, 1370, 1331, 1222, 1186, 1058, 1034, 1023, 893, 858, 770, 691, 651 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 6.7 Hz, 2H), 7.40–7.36 (m, 3H), 4.42 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H), 1.38 (t, *J*

= 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 150.6, 130.3, 130.1, 128.7, 126.1, 62.9,

61.8, 14.1; **MS**: $m/z = 207.2 [M^+]$; **HRMS** m/z: Calcd for $C_{11}H_{13}NO_3Na [M+Na]^+$: 230.0793, Found: 230.0750.

(Z)-ethyl 2-(4-methoxy-2-methylphenyl)-2-(methoxyimino)acetate (1h)

Yield: 56%, white solid, m.p. 45-46 °C; IR (KBr) v_{max} 2990, 2936, 2843, 2819, 1733, 1609, 1561, 1504, 1454, 1326, 1302, 1252, 1224, 1171, 1132, 1045, 1024, 890, 818, 630 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 7.3 Hz, 1H), 6.76 – 6.73 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 3.80 (s, 3H), 2.45 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 2H), 3.99 (s, 2H), 3.80 (s, 2H), 2.45 (s, 2H), 3.40 (t, *J* = 7.1 Hz, 2H), 3.99 (s, 2H), 3.80 (s, 2H), 2.45 (s, 2H), 3.40 (t, *J* = 7.1 Hz)

3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.8, 160.3, 151.2, 139.3, 130.3, 122.2, 116.9, 111.1, 62.7, 61.6, 55.2, 21.5, 14.1; MS: m/z = 251.0 [M⁺].

(Z)-ethyl 2-(3,4-dimethoxyphenyl)-2-(methoxyimino)acetate (1i)

Yield: 80%, white solid, **m.p.** 51-52 °C; **IR** (KBr) v_{max} 2964, 2939, 2912, 2840, 1739, 1604, 1515, 1466, 1445, 1423, 1329, 1255, 1211, 1170, 1151, 1028, 918, 891, 862, 817, 729, 642 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) δ 7.25 (d, J = 1.7 Hz, 1H), 7.00 – 6.97 (m, 1H), 6.84 (dd, J = 8.2, 5.3 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 4.00 (d, J = 5.6 Hz, 3H),

3.91 (dd, J = 11.3, 6.7 Hz, 6H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 151.0, 150.4, 149.2, 122.8, 120.0, 110.6, 107.9, 62.7, 62.6, 61.6, 55.8, 55.8, 14.1; MS: m/z = 267.0 [M⁺].

(Z)-ethyl 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-(methoxyimino)acetate (1j)

Yield: 83%, white solid, **m.p.** 66-67 °C; **IR** (KBr) v_{max} 2989, 2942, 2908, 2828, 1731, 1591, 1573, 1511, 1469, 1433, 1365, 1333, 1296, 1261, 1247, 1216, 1174, 1129, 1058, 1027, 1009, 912, 887, 859, 831, 806, 732, 656, 624 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) δ 7.10 (d, J = 1.9 Hz, 1H), 7.05 (dd, J = 8.5, 1.9 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H),

4.40 (q, J = 7.1 Hz, 2H), 4.25 (dd, J = 11.0, 5.1 Hz, 4H), 3.98 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (150 MHz, CDCl₃) δ 163.6, 150.1, 145.5, 143.7, 123.4, 119.6, 117.5, 115.1, 64.4, 64.1, 62.8, 61.7, 14.1; **MS:** m/z = 265.0 [M⁺].

(Z)-ethyl 2-(methoxyimino)-2-(naphthalen-2-yl)acetate (1k)

Yield: 55%, white solid, **m.p.** 70-71 °C; **IR** (KBr) v_{max} 2993, 2975, 2943, 2909, 1729, 1601, 1468, 1446, 1367, 1307, 1250, 1219, 1181, 1131, 1054, 1031, 891, 858, 812, 754, 731 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.85–7.80 (m, 5H), 7.50–7.46 (m, 2H), 4.48 (q, *J* = 7.1 Hz, 2H), 4.06 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 Hz, CDCl₃)

δ 163.7, 150.7, 134.0, 132.8, 128.5, 127.7, 127.6, 127.2, 126.8, 126.7, 126.6, 122.5, 63.0, 61.9, 14.2; **MS**: m/z = 257.0 [M⁺].

(Z)-ethyl 2-(furan-2-yl)-2-(methoxyimino)acetate (11)

CEt Yield: 88%, yellowish oil, **IR** (KBr) v_{max} 2985, 2943, 2905, 2824, 1741, 1590, 1482, 1446, 1371, 1309, 1228, 1157, 1095, 1069, 1035, 932, 887, 861, 779, 759, 595 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) (ratio of isomers = 4:1, major isomer) δ 7.51 (d, *J* = 1.0 Hz, 1H), 7.29 (d, *J* = 3.4 Hz, 1H), 6.53 (dd, *J* = 3.4,

1.7 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.14 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.3, 144.7, 143.6, 142.4, 140.0, 119.1, 112.5, 111.7, 63.7, 62.2, 14.0; MS: m/z = 197.0 [M⁺]; HRMS m/z: Calcd for C₉H₁₁NO₄Na⁺ [M+Na]⁺: 220.0586, Found: 220.0543.

(Z)-methyl 2-(methoxyimino)-2-(3-methoxyphenyl)acetate (1m)

Yield: 65%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5375; **IR** (KBr) v_{max} 3004, 2942, 2838, 1743, 1608, 1575, 1490, 1464, 1432, 1333, 1290, 1252, 1212, 1173, 1044, 959, 913, 846, 787, 734, 699, 656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 7.08 (d, *J* = 8.0

Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 4.02 (s, 3H), 3.93 (s, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 159.7, 150.4, 131.3, 129.7, 118.9, 116.5, 110.9, 62.9, 55.3, 52.3; MS: m/z = 223.0 [M⁺]; HRMS m/z: Calcd for C₁₁H₁₃NO₄Na⁺ [M+Na]⁺: 246.0742, Found: 246.0699.

(Z)-butyl 2-(methoxyimino)-2-(3-methoxyphenyl)acetate (1n)

Yield: 73%, colorless oil, **n** $_{D}$ ²⁵ = 1.5165; **IR** (KBr) v_{max} 2962, 2939, 2875, 2838, 1739, 1608, 1575, 1490, 1465, 1432, 1331, 1290, 1250, 1206, 1046, 912, 866, 786, 734, 697, 655 cm⁻¹; ¹H NMR (600 MHz, CDCl3) δ 7.28 (t, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.10 (d, J = 7.6 Hz, 1H),

6.94 (d, J = 8.2 Hz, 1H), 4.36 (t, J = 6.6 Hz, 2H), 4.01 (s, 3H), 3.81 (s, 3H), 1.74–1.70 (m, 2H), 1.46–1.40 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 159.7, 150.6, 131.4, 129.7, 118.8, 116.5, 110.7, 65.5, 62.9, 55.2, 30.4, 18.9, 13.5; MS: m/z = 265.0 [M⁺].

(Z)-isopropyl 2-(methoxyimino)-2-(3-methoxyphenyl)acetate (10)

Yield: 85%, white solid, **m.p.** 46-47 °C; **IR** (KBr) v_{max} 2982, 2940, 2837, 1734, 1608, 1575, 1490, 1465, 1432, 1325, 1288, 1253, 1212, 1105, 1045, 1027, 917, 871, 827, 785, 735, 692, 650 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, J = 14.9, 7.0 Hz, 1H), 7.16 (s, 1H), 7.11

(d, J = 7.7 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 5.35–5.29 (m, 1H), 4.01 (d, J = 0.5 Hz, 3H), 3.82 (s, 3H), 1.37 (d, J = 6.3 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1, 159.7, 150.7, 131.5, 129.7, 118.8, 116.5, 110.8, 69.9, 62.8, 55.3, 21.8; MS: m/z = 251.0 [M⁺].

(Z)-benzyl 2-(methoxyimino)-2-(3-methoxyphenyl)acetate (1p)

Yield: 66%, colorless oil, **n** $_{\rm D}$ ²⁵ = 1.5634; **IR** (KBr) v_{max} 2939, 2840, 2822, 1744, 1613, 1574, 1488, 1456, 1437, 1322, 1284, 1251, 1207, 1180, 1044, 1025, 954, 902, 787, 743, 731, 696, 656 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) δ 7.41 (d, *J* = 7.0 Hz, 2H), 7.37–7.31 (m, 3H), 7.23

(t, J = 8.0 Hz, 1H), 7.06 (dd, J = 9.5, 4.8 Hz, 2H), 6.92 (dd, J = 8.3, 1.9 Hz, 1H), 5.38 (s, 2H), 4.00 (s, 3H), 3.71 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.3, 159.5, 150.1, 134.8, 131.1, 129.6, 128.44, 128.40, 118.7, 116.7, 110.3, 67.1, 62.8, 55.0; **MS:** m/z = 299.1 [M⁺]; **HRMS** m/z: Calcd for C₁₇H₁₇NO₄Na⁺ [M+Na]⁺: 322.1055, Found: 322.1024.

(Z)-N-methoxy-2-(methoxyimino)-2-(3-methoxyphenyl)-N-methylacetamide (1q)

Yield: 88%, yellowish oil, **n** $_{\rm D}$ ²⁵ = 1.5455; **IR** (KBr) $v_{\rm max}$ 2940, 2821, 1667, 1607, 1574, 1489, 1463, 1427, 1387, 1321, 1302, 1231, 1181, 1043, 982, 900, 809, 790, 689 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) (ratio of isomers = 6:1, major isomer) δ 7.29 (dd, J = 14.7, 6.8 Hz, 1H), 7.24–7.16 (m, 1H), 7.12 (d, J = 7.7 Hz, 1H), 6.95 (t, J = 9.4 Hz, 1H), 4.02 (d, J = 7.2 Hz, 3H), 3.82 (s, 3H), 3.57 (s, 3H), 3.34 (s, 3H); ¹³C NMR (150

MHz, CDCl₃) δ 164.6, 159.7, 152.7, 132.1, 129.6, 118.9, 116.3, 110.7, 62.6, 61.8, 55.3, 31.5; **MS**: m/z = 252.0 [M⁺].

(Z)-2-(methoxyimino)-2-(3-methoxyphenyl)-1-morpholinoethanone (1r)

Yield: 78%, white solid, **m.p.** 88-89 °C; **IR** (KBr) v_{max} 2976, 2932, 2856, 2824, 1639, 1606, 1493, 1464, 1443, 1427, 1327, 1275, 1251, 1177, 1112, 1058, 1007, 942, 902, 854, 818, 791, 753, 687, 639 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.25 (m, 1H), 7.22 (s, 1H), 7.14 (d, *J* = 6.7 Hz, 1H), 6.95 (d, *J* = 6.0 Hz, 1H), 4.01 (s, 3H), 3.82 (d, *J* = 7.6 Hz, 4H), 3.73 (s, 3H), 3.61 (d, *J* = 39.8 Hz, 2H), 3.33 (d, *J* = 39.4

Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) 162.8, 159.6, 151.7, 131.6, 129.7, 118.7, 116.4, 110.5, 66.7, 66.5, 62. 7, 55.2, 46.1, 41.3; **MS:** m/z = 278.0 [M⁺].

3. General Procedure and Spectral Data of Products

3.1 Reaction Optimization and Result Summary

Table 1. The Screening of Various Solvents.^a

^a The reactions were carried out with 0.30 mmol (1.0 equiv) of **1a**, 0.36 mmol

(1.2 equiv) of PhI(OAc)₂ and 5 mol% Pd(OAc)₂ in 2.0 mL of solvent at 100 $^{\circ}$ C.

^b Isolated yield.

Table 2. The Screening of Vario	ous Catalysts. ^{<i>a</i>}	
O OEt O N O +	OAc OAc Catalyst 5 mol% HOAc/Ac ₂ O 1:7 100 °C	$ \begin{array}{c} $
Entry	Catalyst	Yield $(\%)^b$
1	$Pd(OAc)_2$	83
2	PdCl ₂	71
3	Pd(PPh ₃) ₂ Cl ₂	68
4	Pd(CH ₃ CN) ₂ Cl ₂	65
5	Pd(PPh ₃) ₄	63
6	Pd ₂ dba ₃	74
7	$Pd(TFA)_2$	73
8	Pd(PhCN) ₂ Cl ₂	71
9 ^c	-	-

^{*a*} The reactions were carried out with 0.30 mmol (1.0 equiv) of **1a**, 0.36 mmol (1.2 equiv) of PhI(OAc)₂ and 5 mol% catalyst in 2.0 mL of HOAc/Ac₂O (1:1) at 100 °C. ^{*b*} Isolated yield. ^{*c*} Without palladium.

Table 3. The Screening of Temperature.^a

Entry	Temp	$\text{Yield } (\%)^b$
1	100 °C	83
2	110 °C	80
3	120 °C	78
4	80 °C	66

^{*a*} The reactions were carried out with 0.30 mmol (1.0 equiv) of **1a**, 0.36 mmol

(1.2 equiv) of PhI(OAc)₂ and 5 mol% Pd(OAc)₂ in 2.0 mL of HOAc/Ac₂O (1:1) . b Isolated yield.

Table 4. The Screening of catalyst loading.^a

2	3 mol%	72	
3	10 mol%	76	

^{*a*} The reactions were carried out with 0.30 mmol (1.0 equiv) of 1a, 0.36 mmol (1.2 equiv) of PhI(OAc)₂ and Pd(OAc)₂ in 2.0 mL of HOAc/Ac₂O (1:1).

(1.2 equiv) of $1 \text{ In}(OAC)_2$ and $1 \text{ eq}(OAC)_2$ in 2.0 InE

^b Isolated yield.

Table 5. The Screening of Various Oxidants.^a

^{*a*} The reactions were carried out with 0.30 mmol (1.0 equiv) of **1a**, 0.36 mmol

(1.2 equiv) of oxidant and 5 mol% Pd(OAc)₂ in 2.0 mL of HOAc/Ac₂O (1:1).

^b Isolated yield. ^c Without oxidant.

A mixture of substrate 1 (0.3 mmol, 1.0 equiv), iodobenzene diacetate (0.36 mmol, 1.2 equiv) and $Pd(OAc)_2$ (0.015 mmol, 0.05 equiv) were combined in AcOH (1.0 mL) and Ac₂O (1.0 mL) in a dried Schlenk tube under a nitrogen atmosphere. The reaction was stirred at 100 °C and monitored by TLC. Upon completion or no further improvement of reaction, the reaction mixture was cooled to room temperature and was then diluted with ethyl acetate (50 mL). The organic layer was washed sequentially with saturated NaHCO₃ (2 x 30 mL), water (2 x 30 mL) and brine (1 x 30 mL) then dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to afford the desired products.

3.3 Spectral Data of Products

(Z)-ethyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (2a)

Yield: 83%, white solid; **IR** (KBr) v_{max} 2982, 2939, 2842, 1770, 1735, 1610, 1578, 1498, 1414, 1372, 1332, 1300, 1273, 1248, 1191, 1038, 1024, 923, 898, 883, 844, 820, 781, 595 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) δ 7.14 (d, *J* = 3.0 Hz, 1H), 7.01 (d, *J* = 8.9 Hz, 1H), 6.96 (dd, *J* = 8.9, 3.0 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 3H), 3.81 (s, 3H),

2.24 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 162.3, 157.2, 147.4, 141.7, 124.4, 124.2, 117.0, 113.1, 63.1, 61.7, 55.7, 20.6, 14.0; MS: m/z = 295.2 [M⁺]; HRMS m/z: Calcd for C₁₄H₁₇NO₆K [M+K]⁺: 334.0693, Found: 334.0686.

(Z)-ethyl 2-(2-acetoxy-5-(benzyloxy)phenyl)-2-(methoxyimino)acetate (2b)

Yield: 74%, colorless oil; **IR** (KBr) v_{max} 3033, 2983, 2940, 2903, 2822, 1767, 1739, 1607, 1572, 1493, 1456, 1241, 1368, 1180, 1036, 896, 742, 698, 650 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.38 (m, 4H), 7.33 (t, *J* = 6.9 Hz, 1H), 7.24 (s, 1H), 7.03–7.00 (m, 2H), 5.05 (s, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 3H), 2.24 (s, 3H), 1.32

(t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 162.4, 156.4, 147.4, 141.9, 136.4, 128.6, 128.1, 127.5, 124.5, 124.3, 117.7, 114.2, 70.4, 63.1, 61.7, 20.7, 14.0; MS: m/z = 371.3 [M⁺]; HRMS m/z: Calcd for C₂₀H₂₁NO₆Na [M+Na]⁺: 394.1267, Found: 394.1291.

(Z)-ethyl 2-(2-acetoxy-5-methylphenyl)-2-(methoxyimino)acetate (2c)

∠OEt

Yield: 80%, colorless oil; **IR** (KBr) v_{max} 2984, 2940, 2902, 2822, 1762, 1739, 1493, 1464, 1368, 1328, 1266, 1238, 1192, 1039, 900, 860, 839, 743, 637 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.43 (s, 1H), 7.25–7.21 (m, 1H), 6.99 (d, J = 8.2 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.35 (s, 3H), 2.25 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 169.1, 162.5 147.6, 145.9, 136.0, 131.8, 129.5, 123.4, 123.1, 63.0, 61.6, 30.8, 20.7, 13.9; **MS**: m/z = 279.2 [M⁺]; **HRMS** m/z: Calcd for $C_{14}H_{17}NO_5Na$ [M+Na]⁺: 302.1004, Found: 302.0993.

(Z)-ethyl 2-(2-acetoxy-6-methylphenyl)-2-(methoxyimino)acetate (2d)

Yield: 80%, white solid; **IR** (KBr) v_{max} 2983, 2942, 2833, 1770, 1738, 1608, 1463, 1372, 1309, 1201, 1096, 1045, 1024, 886, 793, 757, 689 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) (ratio of isomers = 10: 1, major isomer) δ 7.31 (t, J = 7.9 Hz, 1H), 7.14 (d, J = 7.6Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 4.26(q, J =

OAC J = 7.9 Hz, 1H), 7.14 (d, J = 7.6Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 4.26(q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.43 (s, 3H), 2.28 (s, 3H), 1.28(t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 161.7, 149.2, 146.1, 139.9, 130.0, 128.1, 124.2, 120.2, 63.1, 61.7, 20.8, 19.8, 13.9. MS: m/z = 279.2 [M⁺]. HRMS m/z: Calcd for C₁₄H₁₇NO₅Na [M+Na]⁺: 302.1004, Found: 302.1035.

(Z)-ethyl 2-(2-acetoxy-4-methoxyphenyl)-2-(methoxyimino)acetate (2e)

Yield: 61%, white solid; **IR** (KBr) v_{max} 2981, 2940, 2905, 2842, 1773, 1737, 1615, 1508, 1463, 1369, 1331, 1298, 1220, 1161, 1122, 1034, 960, 891, 857, 819, cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) (ratio of isomers > 20:1, major isomer) δ 7.53 (d, J = 8.8 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.64 (s, 1H), 4.35 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 3.80 (s,

3H), 2.27 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.8, 162.8, 161.6, 149.2, 147.5, 129.9, 116.1, 112.4, 108.9, 62.8, 61.6, 55.5, 20.7, 14.0; MS: m/z = 295.2 [M⁺]; HRMS m/z: Calcd for C₁₄H₁₇NO₆Na [M+Na]⁺: 318.0954, Found: 318.0923.

(Z)-ethyl 2-(2-acetoxy-4-fluorophenyl)-2-(methoxyimino)acetate (2f)

Yield: 47%, yellow oil; **IR** (KBr) v_{max} 3082, 2985, 2942, 2905, 2823, 1777, 1740, 1606, 1503, 1419, 1369, 1328, 1189, 1147, 1102, 1049, 1027, 973, 893, 854, 822, 672, 628, 556, cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) δ 7.63 (dd, J = 8.8, 6.2 Hz, 1H), 6.99-7.03 (m, 1H), 6.90 (dd, J = 8.9, 2.5 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.27 (s, 3H), 1.33 (t, J =

7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 164.4, 162.7, 162.3, 149.1, 146.7, 130.5, 120.4, 113.8, 113.6, 111.4, 111.3, 63.2, 61.8, 20.7, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –109.1; **MS:** m/z = 283.2 [M⁺]; **HRMS** m/z: Calcd for C₁₃H₁₄FNNaO₅ [M+Na]⁺: 306.0754, Found: 306.0753.

(Z)-ethyl 2-(2-acetoxyphenyl)-2-(methoxyimino)acetate (2g)

Yield: 66%, colorless oil; **IR** (KBr) v_{max} 2984, 2941, 2904, 2823, 1772, 1738, 1606, 1487, 1446, 1369, 1327, 1263, 1184, 1109, 1038, 1023, 913, 893, 763, 677, 640, 540 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.37–7.33 (m, 1H), 7.19 (dd, *J* = 11.1, 4.2 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 2.18 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 1H), 7.05 (dd, *J* = 7.2 Hz), 7.2 Hz, 1H), 7.05 (dd, *J* = 7.2 Hz), 7.2 Hz, 1H), 7.05 (dd, *J* = 7.2 Hz), 7.2 Hz, 1H), 7.2 Hz, 7.2

3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.9, 162.4, 148.2, 147.5, 131.1, 129.0, 126.3, 123.9, 123.4, 63.1, 61.7, 20.7, 14.0; MS: m/z = 265.2 [M⁺]; HRMS m/z: Calcd for C₁₃H₁₅NO₅Na [M+Na]⁺: 288.0848, Found: 288.0782.

(Z)-ethyl 2-(2-acetoxy-4-methoxy-6-methylphenyl)-2-(methoxyimino)acetate (2h)

Yield: 85%, colorless oil; **IR** (KBr) v_{max} 2979, 2941, 2843, 1774, 1737, 1614, 1574, 1493, 1465, 1368, 1329, 1302, 1202, 1145, 1034, 947, 887, 861, 764, 637, 590 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) (ratio of isomers = 6:1, major isomer) δ 6.68 (d, J = 1.9 Hz, 1H), 6.50 (d, J = 2.2 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 3.77 (s, 3H), 2.39 (s, 3H),

2.27 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl3) δ 169.0, 162.0, 160.5, 150.3, 146.3, 140.8, 116.7, 114.1, 106.0, 63.0, 61.6, 55.4, 20.8, 20.2, 13.9; MS: m/z = 309.2 [M⁺]; HRMS m/z: Calcd for C₁₅H₁₉NO₆Na [M+Na]⁺: 332.1110, Found: 332.1132.

(Z)-ethyl 2-(2-acetoxy-4,5-dimethoxyphenyl)-2-(methoxyimino)acetate (2i)

Yield: 82%, colorless oil; **IR** (KBr) v_{max} 2797, 2941, 2838, 1771, 1739, 1612, 1516, 1464, 1368, 1303, 1260, 1178, 1140, 1033, 980, 903, 797, 741, 590 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (s, 1H), 6.59 (s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H), 3.91 (s, 3H), 3.88 (s, 3H), 2.25 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ

169.16, 162.59, 151.38, 147.4, 146. 9, 142.5, 114.5, 109.1, 107.6, 62.8, 61.7, 56.0, 55.8, 20.6, 14.0; **MS:** $m/z = 325.2 [M^+]$; **HRMS** m/z: Calcd for $C_{15}H_{19}NO_7Na [M+Na]^+$: 348.1059, Found: 348.1070.

(Z)-ethyl 2-(7-acetoxy-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-(methoxyimino)acetate (2j)

Yield: 56%, white solid, **m.p.** 69-70 °C; **IR** (KBr) v_{max} 2989, 2941, 2899, 2829, 1773, 1726, 1620, 1577, 1515, 1462, 1415, 1375, 1350, 1307, 1281, 1217, 1174, 1144, 1054, 1033, 984, 931, 904, 882, 800,

742, 597, 553 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) δ 7.11 (s, 1H), 6.62 (s, 1H), 4.32-4.36 (m, 2H), 4.25 (dd, J = 15.8, 4.4 Hz, 4H), 3.98 (s, 3H), 2.24 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 162.6, 147.2, 145.4, 142.0, 141.5, 116.9, 116.6, 112.2, 64.4, 64.0, 62.9, 61.7, 20.7, 14.0; **HRMS** m/z: Calcd for C₁₅H₁₇NO₇Na [M+Na]⁺: 346.0903, Found: 346.0905.

(Z)-ethyl 2-(3-acetoxynaphthalen-2-yl)-2-(methoxyimino)acetate (2k)

Yield: 73%, white solid, **m.p.** 60-62 °C; **IR** (KBr) v_{max} 2987, 2942, 2831, 1765, 1724, 1632, 1599, 1469, 1441, 1369, 1326, 1273, 1233, 1198, 1156, 1123, 1036, 1012, 994, 895, 877, 747 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.56 (s, 1H), 7.49 (m, 2H), 4.37 (q, *J* = 7.2 Hz, 2H), 4.06

(s, 3H), 2.32 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl3) δ 169.2, 162.3, 147.9, 145.1, 133.9, 130.9, 129.9, 128.2, 127.7, 127.1, 126.3, 123.0, 120.7, 63.1, 61.7, 20.8, 13.9; HRMS m/z: Calcd for C₁₇H₁₈NO₅ [M+H]⁺: 316.1185, Found: 316.1150.

(Z)-ethyl 2-(3-acetoxyfuran-2-yl)-2-(methoxyimino)acetate (2l)

Yield: 17%, yellow oil; **IR** (KBr) v_{max} 2985, 2943, 2906, 2825, 1796, 1740, 1606, 1572, 1522, 1464, 1446, 1372, 1308, 1221, 1174, 1079, 1023, 936, 861, 792 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) (ratio of isomers = 5:1, major isomer) δ 7.28 (d, *J* = 3.6 Hz, 1H), 6.11 (d, *J* = 3.7 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.13 (s, 3H), 2.32 (s, 3H), 1.39 (t, *J* = 6.7 Hz, 4H); ¹³C **NMR** (150 MHz,

CDCl₃) δ 165.6, 161.9, 151.6, 139.1, 135.0, 121.3, 94.8, 63.7, 62.2, 20.6, 14.0; **MS:** m/z = 255.2 [M⁺]; **HRMS** m/z: Calcd for C₁₁H₁₃NO₆Na [M+Na]⁺: 278.0641, Found: 278.0618.

(Z)-methyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (2m)

Yield: 83%, colorless oil; **IR** (KBr) v_{max} 2943, 2906, 2840, 1768, 1743, 1608, 1573, 1494, 1464, 1427, 1368, 1248, 1182, 1033, 927, 896, 852, 824, 745, 654 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 2.8 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H), 6.96 (dd, J = 8.8, 2.8 Hz, 1H), 4.03 (s, 3H), 3.86 (s, 2H), 3.81 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 169.3, 162.8, 157.2, 147.1, 141.8, 124.4, 124.2, 117.2, 113.1, 63.2, 55.7, 52.3, 20.6; **MS**: m/z = 281.2 [M⁺]; **HRMS** m/z: Calcd for C₁₃H₁₅NO₆Na [M+Na]⁺: 304.0797, Found: 304.0792.

(Z)-butyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (2n)

Yield: 83%, colorless oil; **IR** (KBr) v_{max} 2962, 2941, 2875, 2841, 1770, 1741, 1608, 1572, 1494, 1465, 1368, 1247, 1186, 1037, 929, 896, 822, 747, 653 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.14 (s, 1H), 7.01 (d, J = 8.9 Hz, 1H), 6.96 (dd, J = 8.4, 3.5 Hz, 1H), 4.30-4.28 (m, 2H), 4.02 (s, 3H), 3.82 (s, 3H), 2.24 (s, 3H), 1.70–1.67 (m, 2H), 1.40–1.36 (m, 2H),

0.93 (d, J = 2.9 Hz, 1H), 0.92 (dd, J = 7.4, 2.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 162.5, 157.1, 147.4, 141.7, 124.4, 124.2, 117.1, 112.9, 65.5, 63.1, 55.6, 30.3, 20.7, 18.9, 13.5; MS: m/z = 323.3 [M⁺]; HRMS m/z: Calcd for C₁₆H₂₁NO₆Na [M+Na]⁺: 346.1267, Found: 346.1270.

(Z)-isopropyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (20)

Yield: 75%, white solid, **m.p.** 55-56 °C; **IR** (KBr) v_{max} 2983, 2940, 2841, 2824, 1768, 1729, 1614, 1577, 1499, 1459, 1415, 1375, 1272, 1256, 1191, 1174, 1097, 1040, 1015, 917, 895, 872, 825, 778, 745 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.12 (s, 1H), 7.01 (d, *J* = 8.9 Hz, 1H), 6.97-6.95 (m, 1H), 5.26-5,21 (m, 1H), 4.02 (s, 3H), 3.81 (s, 3H), 2.25

(s, 3H), 1.32 (d, J = 6.3 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 169.5, 161.9, 157.1, 147.7, 141.7, 124.4, 124.2, 117.0, 113.0, 69.8, 63.0, 55.6, 21.6, 20.7; HRMS m/z: Calcd for C₁₅H₁₉NO₆Na [M+Na]⁺: 332.1110, Found: 332.1136.

(Z)-benzyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (2p)

Yield: 72%, colorless oil; **IR** (KBr) v_{max} 2941, 2839, 1768, 1741, 1608, 1572, 1494, 1463, 1368, 1262, 1246, 1187, 1036, 897, 823, 746, 699 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) (ratio of isomers = 5:1, major isomer) δ 7.41 – 7.27 (m, 5H), 7.08 (d, *J* = 2.9 Hz, 1H), 7.02 – 6.98 (m, 1H), 6.96 – 6.94 (m, 1H), 5.32 (s, 2H), 4.00 (s, 3H), 3.75 (s, 3H), 2.13

(s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 162.3, 157.2, 147.2, 141.8, 134.8, 129.5, 128.4, 124.2, 117.3, 113.0, 67.2, 63.2, 55.6, 20.5. **MS:** m/z = 357.2 [M⁺]. **HRMS** m/z: Calcd for C₁₉H₁₉NO₆Na [M+Na]⁺: 380.1110, Found: 380.1120.

(Z)-4-methoxy-2-(6-methyl-5-oxo-2,7-dioxa-3,6-diazaoct-3-en-4-yl)phenyl acetate (2q)

Yield: 85%, colorless oil; **IR** (KBr) v_{max} 2941, 2839, 1766, 1667, 1608, 1571, 1494, 1463, 1368, 1298, 1188, 1045, 983, 900, 818, 788, 758, 627 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) (ratio of isomers = 6:1, major isomer) δ 7.13 (d, J = 2.9 Hz, 1H), 6.98 (d, J = 8.9 Hz, 1H), 6.96 – 6.92 (m, 1H), 4.00 (s, 3H), 3.80 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 163.7, 157.2, 150.1, 141.6,

124.8, 124.6, 116.5, 113.1, 62.7, 61.5, 55.6, 31.4, 20.8; **MS:** $m/z = 310.2 [M^+]$; **HRMS** m/z: Calcd for $C_{14}H_{18}N_2O_6Na [M+Na]^+$: 333.1063, Found: 333.1072.

(Z)-4-methoxy-2-(1-(methoxyimino)-2-morpholino-2-oxoethyl)phenyl acetate (2r)

Yield: 76%, colorless oil; **IR** (KBr) v_{max} 2968, 2938, 2858, 1766, 1646, 1608, 1495, 1463, 1441, 1367, 1274, 1247, 1191, 1113, 1042, 1001, 900, 843, 819, 758, 595 cm⁻¹; ¹H **NMR** (600 MHz, CDCl₃) (ratio of isomers = 9:1, major isomer) δ 7.12 (d, J = 2.9 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 6.94 (dd, J = 8.9, 2.9 Hz, 1H), 4.00 (s, 3H), 3.91–3.83 (m, 1H), 3.81 (s, 3H), 3.73 (t, J = 4.8 Hz, 2H), 3.62 (d, J = 22.4 Hz, 3H),

3.30 (d, J = 29.1 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 162.2, 157.2, 149.6, 141.5, 124.8, 123.7, 116.3, 113.6, 66.7, 66.4, 62.8, 55.6, 46.1, 41.4, 21.0. MS: m/z = 336.5 [M⁺]; HRMS m/z: Calcd for C₁₆H₂₀N₂O₆Na [M+Na]⁺: 359.1219, Found: 359.1191.

(Z)-2-(2-ethoxy-1-(methoxyimino)-2-oxoethyl)-4-methoxyphenyl pivalate (2s)

Yield: 57%, colorless oil; **IR** (KBr) ν_{max} 2977, 2940, 2908, 2839, 1753, 1607, 1577, 1496, 1481, 1464, 1417, 1368, 1246, 1204, 1107, 1032, 924, 887, 859, 827, 798, 758 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.03

(s, 1H), 6.94 (d, J = 1.1 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 4.01 (s, 3H), 3.81 (s, 3H), 1.34 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 177.0, 161.9, 156.9, 147.4, 142.4, 124.8, 124.0, 116.7, 114.0, 63.0, 61.7, 55.6, 39.1, 27.0, 14.1; **MS:** m/z = 337.3 [M⁺]; **HRMS** m/z: Calcd for C₁₇H₂₃NO₆Na [M+Na]⁺: 360.1423, Found: 360.1426.

Procedure for a gram-scale experiment

A mixture of **1a** (5.0 mmol, 1.0 equiv), iodobenzene diacetate (6.0 mmol, 1.2 equiv) $Pd(OAc)_2$ (0.005 mmol, 0.01 equiv) was combined in AcOH (15 mL) and Ac₂O (15 mL) in a dried Schlenk tube under a nitrogen atmosphere. the reaction was stirred at 100 °C and monitored by TLC. Upon completion or no further improvement of reaction, the reaction mixture was cooled to room temperature and was then diluted with ethyl acetate. the organic layer was washed sequentially with saturated NaHCO₃, water and brine then dried over anhydrous MgSO₄. Evaporation of the solvent and the resulting oil was purified by flash chromatography on silica gel to afford product **2a** as a white solid with 73% yield.

4. Typical Procedure for Synthesis of compound 3

A suspension solution of **2a** (1 mmol) and 10% Pd/C (100 mg) in EtOH (2 mL) at a flask was transferred to stainless steel autoclave, which was charged with H_2 (50 atm). The hydrogenation was performed at 78 °C for 24 h. After carefully releasing the hydrogen, the reaction mixture was filtered through Celite. The filtrate was concentrated under reduced pressure to afford the product **3** as a white solid with 99% yield.

(Z)-ethyl 2-(2-acetoxy-5-methoxyphenyl)-2-(methoxyimino)acetate (3)

OEt Yield: 99%, white solid, **m.p.** 103-104 °C; **IR** (KBr) v_{max} 3406, 3101, 2832, 2747, 2595, 1743, 1644, 1605, 1513, 1467, 1435, 1377, 1311, 1213, 1159, 1116, 1035, 958, 858, 816, 754, 720, 646 cm-1; ¹H NMR (600 MHz, CDCl₃) δ 8.72 (s, 1H), 7.02 (d, J = 6.5 Hz, 1H), 6.95 (d, J = 8.9 Hz, 1H), 6.81 (dd, J = 8.9, 2.9 Hz, 1H), 6.51 (d, J = 2.9 Hz, 1H),

5.67 (d, J = 7.0 Hz, 1H), 4.34 – 4.20 (m, 2H), 3.72 (s, 3H), 2.05 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 170.8, 153.3, 148.8, 124.4, 119.2, 115.4, 112.8, 62.3, 55.6, 52.2, 22.6, 13.9; HRMS m/z: Calcd for C₁₃H₁₇NO₅Na [M+Na]⁺: 290.1004, Found: 290.0976.

5. X-Ray structure of 2a

Crystal data for **2a**: Crystal data for **2a**: C₂₈H₃₄N₂O₁₂, M = 590.57, orthorhombic, *Pbca*, a = 7.6651(6) Å, b = 13.1131(9) Å, c = 29.874(2) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 3002.7(4) Å³, Z = 4, T = 298(2), *F000* = 1248, final *R* indices [*I*>2 σ (*I*)]: $R_1 = 0.0418$, w $R_2 = 0.1173$, *R* indices (all data): $R_1 = 0.0485$, w $R_2 = 0.1216$. CCDC 814555. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6. References

- Q. Meng, Y. Sun, V. Ratovelomanana-Vidal, J. P. Genêt and Z. Zhang, J. Org. Chem., 2008, 73, 3842.
- 2. K. Wadhwa, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, *Syn. Comm.*, 2008, **38**, 4434.
- C.-T. Chen, S. Bettigeri, S.-S. Weng, V. D. Pawar, Y.-H. Lin, C.-Y. Liu and Way-Zen Lee, J. Org. Chem., 2007, 72, 8175.

Bruker Compass DataAnalysis 4.0 3/24/2011 3:00:49 PM printed:

Bruker Compass DataAnalysis 4.0 printed: 3/24/2011 3:01:11 PM Page 1 of 1

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

