Supporting Information

Facile Fullerene Modification: $FeCl_3$ -mediated Quantitative Conversion of C_{60} to Polyarylated Fullerenes Containing Pentaaryl(chloro)[60]fullerenes

Masahiko Hashiguchi,*^{,1} Kazuhiro Watanabe,¹ and Yutaka Matsuo*^{,2}

¹ Fullerene Development Group, Performance Products Division, Mitsubishi Chemical Corporation, 1-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
² Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

E-mail: 6206530@cc.m-kagaku.co.jp matsuo@chem.s.u-tokyo.ac.jp

1. General methods and materials

All reactions were carried out under argon or nitrogen atmosphere. Analytical gradient reversed-phase HPLC was performed on an Agilent 1200 series instrument equipped with an ODS column (YMC-Pack ODS-AM, 5 micron, 4.6 x 150 mm). All runs used linear gradients of methanol (solvent A) and toluene (solvent B). The gradient ran from 25% B up to 55% B over 25 min. Flow rate was 1.0 mL/min and routine UV detection was performed at 290 nm. All ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-AL 400 NMR spectrometer system. NMR spectra are reported in part per million from internal tetramethylsilane (δ 0.00 ppm) for ¹H NMR and from CDCl₃ (δ 77.00 ppm) for ¹³C NMR. Mass spectra were measured with Agilent1100LC/MS (APPI, Negative mode) equipped on an ODS column (YMC-Pack ODS-AM). Preparative HPLC was performed on a Buckyprep column (Nacalai Tesque Inc., 20 mm x 250 mm) using toluene/methanol (7/3) as eluent (flow rate: 10 mL/min, detected at 290 nm with an UV spectrometer, Shimadzu SPD-6AV).

Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Sigma-Aldrich Co., Wako Pure Chemical Industries, or other commercial suppliers and used after appropriate purification. [60]Fullerene (99.5%) was purchased from Frontier Carbon Corporation. Iron(III)chloride was purchased from Wako Pure Chemical Industries and used as received.

2. Synthesis of 1

To a mixture of C_{60} (501 mg, 0.70 mmol) and iron(III) chloride (1.13 g, 6.97 mmol) was added chlorobenzene (25 mL) at room temperature. After stirred for 2 hours, the reaction mixture was quenched with water (0.5 mL). The resulting solution was passed through a pad of silica gel (eluent: toluene) and the volatiles were removed with rotary evaporator. The crude product contained the desired penta-adduct 1 mainly, and small amounts of polyarylated products as analyzed by HPLC (YMC-Pack ODS-AM) as shown in Figure S1. Purification with HPLC (Buckyprep column, Nacalai Tesque Inc., 4.6 mm ID x 250 mm, monitored at 308 nm, eluent: toluene/methanol = 7/3) gave the title compound $C_{60}(C_6H_4$ -Cl-4)₅Cl as orange powder (228 mg, 25%). ¹H NMR (400 MHz, CDCl₃): δ 7.02-7.08 (m, 4H, C₆H₄), 7.23 (d, J = 8.8 Hz, 4H, C₆H₄), 7.30 (d, J = 8.8 Hz, 4H, C₆H₄), 7.40-7.49 (m, 4H, C₆H₄), 7.61-7.80 (m, 4H, C₆H₄); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 57.28 (2C, sp³-C₆₀), 59.96 (2C, sp³-C₆₀), 62.65 (1C, sp³-C₆₀), 75.85(1C, C(sp³-C₆₀)-Cl), 128.06 (1C, C₆H₄Cl), 128.94 (4C, C₆H₄Cl), 129.00 (4C, C₆H₄Cl), 129.36 (4C, C₆H₄Cl), 129.49 (4C, C₆H₄Cl), 130.85 (2C, C₆H₄Cl), 133.90 (2C, C₆H₄Cl), 134.33 (2C, C₆H₄Cl), 134.36 (2C, C₆H₄Cl), 134.99 (2C, C₆H₄Cl), 136.50 (2C, C₆H₄Cl), 141.13 (2C), 142.58 (2C), 142.62 (2C), 142.86 (1C, C₆H₄Cl), 143.01 (2C), 143.34 (2C), 143.36 (2C), 144.12 (2C), 144.18 (2C), 144.28 (2C), 144.44 (2C), 144.56 (2C), 144.71 (2C), 145.75 (2C), 146.95 (2C+1C), 147.09 (2C), 148.00 (1C), 148.07 (2C), 148.43 (2C), 148.53 (2C), 148.54 (6C), 148.57 (2C), 149.41 (2C), 150.26 (2C), 153.19 (2C), 155.81 (2C); APPI-MS (-): calcd for C₉₀H₂₀Cl₅ [M-Cl]-), 1278.4; found, 1279.0; Anal. Calcd for C₉₀H₂₀Cl₆, C 82.28; H, 1.53. Found: C 81.90; H, 1.66.

Figure S1. HPLC chart for the synthesis of 1

<Alternative Synthetic Method using Solvent>

To a mixture of C_{60} (500mg, 0.70 mmol) and iron(III) chloride (1.13 g, 6.97 mmol) was added 1,1,2,2-tetrachloroethane (25 mL) followed by chlorobenzene (470 mg, 4.18 mmol) at room temperature. After stirred for 4 hours, the reaction mixture was quenched with water (0.5 mL). The resulting solution was passed through a pad of silica gel (eluent: toluene) and the volatiles were removed with rotary evaporator. The crude product contained the desired-penta adduct **1** mainly, and small amounts of polyarylated products as well as a trace amount of unreacted C_{60} as analyzed by HPLC (YMC-Pack ODS-AM) as shown in Figure S2. Purification with HPLC (Buckyprep column, Nacalai Tesque Inc., 4.6 mm ID x 250 mm, monitored at 308 nm, eluent: toluene/methanol = 7/3) gave compound **1** as orange powder (265 mg, 29%).

Figure S2. HPLC chart for the synthesis of 1 in 1,1,2,2-tetrachloroethane

3. Synthesis of 2

To a mixture of C_{60} (500mg, 0.70 mmol) and iron(III) chloride (1.13 g, 6.97 mmol) was added 1,1,2,2-tetrachloroethane (25 mL) followed by bromobenzene (650 mg, 4.14 mmol) at room temperature. After stirred for 6 hours, the reaction mixture was quenched with water (0.5 mL). The resulting solution was passed through a pad of silica gel (eluent: toluene) and the volatiles were removed with rotary evaporator. The crude product contained the desired penta adduct **2** mainly, and small amounts of polyarylated products as well as a trace amount of unreacted C_{60} as analyzed by HPLC (YMC-Pack ODS-AM) as shown in Figure S3. Purification with HPLC (Buckyprep column, Nacalai

Tesque Inc., 4.6 mm ID x 250 mm, monitored at 308 nm, eluent: toluene/methanol = 7/3) gave compound **2** as orange powder (245 mg, 23%).

¹H NMR (400 MHz, CDCl₃): δ 6.97 (d, J = 8.8 Hz, 2H, C₆H₄), 7.22 (d, J = 8.8 Hz, 2H, C₆H₄), 7.39 (s, 8H, C₆H₄), 7.44 (d, J = 8.4 Hz, 4H, C₆H₄), 7.70 (d, J = 8.4 Hz, 4H, C₆H₄); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 57.53 (2C, sp³-C₆₀), 60.18 (2C, sp³-C₆₀), 62.88 (1C, sp³-C₆₀), 75.78 (1C, C(sp³-C₆₀)-Cl), 129.83 (4C, C₆H₄Br), 129.92 (4C, C₆H₄Br), 130.74 (2C, C₆H₄Br), 131.19 (2C, C₆H₄Br), 131.29 (2C, C₆H₄Br), 132.04 (4C, C₆H₄Br), 132.10 (4C, C₆H₄Br), 134.14 (4C, C₆H₄Br), 135.54 (2C, C₆H₄Br), 137.32 (2C, C₆H₄Br), 142.65 (2C), 142.75 (2C), 142.93 (2C), 143.45 (2C), 143.48 (2C), 144.20 (2C), 144.26 (2C), 144.40 (2C), 144.52 (2C), 144.73 (2C), 144.84 (2C), 145.86 (2C), 147.10 (2C+1C), 147.23 (2C), 148.14 (1C), 148.33 (2C), 148.39 (2C), 148.57 (2C), 148.67 (6C), 148.71 (2C), 149.23 (2C), 150.40 (2C), 153.07 (2C), 155.90 (2C); APPI-MS (-): calcd for C₉₀H₂₀Br₅ [M-Cl]-), 1500.6; found, 1500.6; Anal. Calcd for C₉₀H₂₀Br₅Cl, C 70.37; H, 1.31. Found: C 70.36; H, 1.36.

Figure S3. HPLC chart for the synthesis of 2 in 1,1,2,2-tetrachloroethane

4. Synthesis of 3

To a mixture of C_{60} (501 mg, 0.70 mmol) and iron(III) chloride (1.13 g, 6.97 mmol) was added 1,1,2,2-tetrachloroethane (25 mL) followed by iodobenzene (850 mg, 4.17 mmol) at room temperature. After stirred for 4 hours, the reaction mixture was quenched with water (0.5 mL). The resulting solution was passed through a pad of silica gel (eluent: toluene) and the volatiles were removed with rotary evaporator. The crude product contained the desired penta adduct **3** mainly, and small amounts of polyarylated

products as well as a trace amount of unreacted C_{60} as analyzed by HPLC (YMC-Pack ODS-AM) as shown in Figure S4. Purification with HPLC (Buckyprep column, Nacalai Tesque Inc., 4.6 mm ID x 250 mm, monitored at 308 nm, eluent: toluene/methanol = 7/3) gave compound **3** as orange powder (221 mg, 18%).

¹H NMR (400 MHz, CDCl₃): δ 6.83 (d, J = 8.8 Hz, 2H, C₆H₄), 7.26 (d, J = 8.8 Hz, 4H, C₆H₄), 7.42 (d, J = 8.8 Hz, 4H, C₆H₄), 7.54-7.60 (m, 8H, C₆H₄), 7.64 (d, J = 8.8 Hz, 4H, C₆H₄); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 57.63 (2C, sp³-C₆₀), 60.27 (2C, sp³-C₆₀), 62.99 (1C, sp³-C₆₀), 75.67(1C, C(sp³-C₆₀)-Cl), 130.01 (4C, C₆H₄I), 130.10 (4C, C₆H₄I), 131.52 (2C, C₆H₄I), 136.56 (2C, C₆H₄I), 137.11 (2C, C₆H₄I), 137.98 (4C, C₆H₄I), 138.04 (4C, C₆H₄I), 142.62 (2C), 142.67 (2C), 142.74 (2C), 142.92 (8C, C₆H₄I), 143.14 (2C), 143.42 (2C), 144.17 (2C), 144.25 (2C), 144.37 (2C), 144.51 (2C), 144.72 (2C), 144.83 (2C), 145.82 (2C), 147.10 (2C+1C), 147.23 (2C), 147.73 (1C), 148.20 (2C), 148.38 (2C), 148.55 (2C), 148.66 (6C), 148.70 (2C), 149.44 (2C), 150.37 (2C), 153.39 (2C), 155.85 (2C); APPI-MS (-): calcd for C₉₀H₂₀I₅ [M-Cl]-), 1735.6; found, 1734.6; Anal. Calcd for C₉₀H₂₀I₅Cl, C 61.03; H, 1.14. Found: C 61.02; H, 0.65.

Figure S4. HPLC chart for the synthesis of 3 in 1,1,2,2-tetrachloroethane

5. Synthesis of 4

To a mixture of C_{60} (502 mg, 0.70 mmol) and iron(III) chloride (1.14 g, 7.03 mmol) was added 1,1,2,2-tetrachloroethane (25 mL) followed by fluorobenzene (402 mg, 4.18 mmol) at room temperature. After stirred for 4 hours, the reaction mixture was quenched with water (0.5 mL). The resulting solution was passed through a pad of silica gel (eluent: toluene) and the volatiles were removed with rotary evaporator. The crude

product contained the desired penta adduct 4 mainly, and small amounts of polyarylated products as well as a trace amount of unreacted C_{60} as analyzed by HPLC (YMC-Pack ODS-AM) as shown in Figure S4. Purification with HPLC (Buckyprep column, Nacalai Tesque Inc., 4.6 mm ID x 250 mm, monitored at 308 nm, eluent: toluene/methanol = 7/3) gave compound 4 as orange powder (103 mg, 12%).

¹H NMR (400 MHz, CDCl₃): δ 6.80-6.85 (m, 2H, C₆H₄), 6.99-7.09 (m, 8H, C₆H₄), 7.13-7.17 (m, 2H, C₆H₄), 7.56-7.59 (m, 4H, C₆H₄), 7.87-7.90 (m, 4H, C₆H₄); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 57.39 (2C, sp³-C₆₀), 60.06 (2C, sp³-C₆₀), 62.78 (1C, sp³-C₆₀), 77.17(1C, C(sp³-C₆₀)-Cl), 115.04 (2C, C₆H₄F), 115.72 (4C, C₆H₄F), 115.95 (4C, C₆H₄F), 129.93 (4C, C₆H₄F), 130.05 (4C, C₆H₄F), 130.09 (4C, C₆H₄F), 131.40 (2C, C₆H₄F), 131.48 (2C, C₆H₄F), 132.64 (2C, C₆H₄F), 134.22 (2C, C₆H₄F), 142.91 (4C), 143.28 (2C), 143.62 (2C), 143.70 (2C), 144.20 (2C), 144.26 (2C), 144.41 (2C), 144.51 (2C), 144.82 (2C), 144.95 (2C), 146.16 (2C), 147.15 (2C), 147.28 (2C+1C), 147.76 (2C), 148.15 (1C), 148.23 (2C), 153.42 (2C), 156.28 (2C); APPI-MS (-): calcd for C₉₀H₂₀F₅ [M-Cl]-), 1196.1; found, 1196.1; Anal. Calcd for C₉₀H₂₀F₅Cl, C 87.77; H, 1.64. Found: C 88.07; H, 1.17.

Figure S5. HPLC chart for the synthesis of 4 in 1,1,2,2-tetrachloroethane

6. The use of non-halogenated arene (toluene)

To a mixture of C_{60} (503 mg, 0.70 mmol) and iron(III) chloride (1.13 g, 6.97 mmol) was added toluene (25 mL) at room temperature. After stirred for 8 hours, the reaction mixture was analyzed by HPLC (YMC-Pack ODS-AM). As shown in Figure S6, a complex mixture containing C60 (ca. 30%) was obtained.

Figure S6. HPLC chart for the reaction with toluene

Empirical formula	$C_{60}(C_6H_4Cl)_5Cl \cdot C_7H_8$
Formula weight	1405.89
Temperature	293(2) K
Radiation	$MoK\alpha (\lambda = 0.71073 \text{ Å})$
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	<i>a</i> = 14.5009(18) Å
	b = 16.212(2) Å
	c = 14.5134(18) Å
	$\alpha = 97.198(2)^{\circ}$
	$\beta = 99.991(2)^{\circ}$
	$\gamma = 86.541(2)^{\circ}$
$V(Å^3)$	3331.0(7)
Ζ	2
Density ρ calc (g·cm ⁻³)	1.402
Absorption coefficient (mm ⁻¹)	0.312
F(000)	1424
Crystal dimensions (mm ³)	$0.3 \cdot 0.25 \cdot 0.2$
range for data collection	$4.08 \leq \theta \leq 26.37^{\circ}$
Index ranges	$-13 \le h \le 18$
	$-17 \le k \le 20$
	$-18 \le 1 \le 15$
Reflections collected / unique	$19536 / 13280 \ (R_{\rm int} = 0.0356)$
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6183 / 0 / 288
Goodness-of-fit on F^2	1.102
Final <i>R</i> indices $[I \ge 2\sigma(I)]^{a,b}$	R1 = 0.1051, w $R2 = 0.2953$
R indices (all data) ^{a), b)}	R1 = 0.1994, w $R2 = 0.3703$
Largest diff. peak and hole $(e \cdot Å^3)$	1.099 / -0.548

 Table 1. Crystal and refinement data for 1.

^{a)} $\Sigma(||Fo| - |Fc||)/\Sigma|Fo|$ ^{b)} wR2 = $[\Sigma\omega(|Fo^2| - |Fc^2|)^2 / \Sigma(\omega Fo^4)]^{1/2}$