Electronic Supplementary Information

Synthesis and configuration of the nonadecenetriol isolated from seeds of Persea Americana

Xin Yan,^{a,b} Shao-Min Zhang,^a Yikang Wu^{*a} and Po Gao^{*b} ^aState Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

^bSchool of Chemistry and Materials, Heilongjiang University, Harbin 150080, China.

e-mail: yikangwu@sioc.ac.cn

Table of Contents

¹ H NMR, ¹³ C NMR and FT-IR for 2 ·····	S 2
¹ H NMR, ¹³ C NMR and FT-IR for 3 ·····	S 5
¹ H NMR, ¹³ C NMR and FT-IR for 7a	S 8
¹ H NMR, ¹³ C NMR and FT-IR for 7a'	S 11
¹ H NMR, ¹³ C NMR and FT-IR for 8 ·····	S 14
¹ H NMR, ¹³ C NMR and FT-IR for 9	S 17
¹ H NMR, ¹³ C NMR and FT-IR for 11	S 20
¹ H NMR, ¹³ C NMR and FT-IR for 12 ·····	S 23
¹ H NMR, ¹³ C NMR and FT-IR for 13 ·····	S 26
¹ H NMR, ¹³ C NMR and FT-IR for 13'	S 29
¹ H NMR, ¹³ C NMR and FT-IR for 14 ·····	S 32
¹ H NMR, ¹³ C NMR and FT-IR for 14'	S 35
¹ H NMR, ¹³ C NMR and FT-IR for 15 ·····	S 38
¹ H NMR, ¹³ C NMR and FT-IR for 16 ·····	S 41
¹ H NMR, ¹³ C NMR and FT-IR for 17 ·····	S 44
¹ H NMR and FT-IR for 17 '	S 47
¹ H NMR, ¹³ C NMR and FT-IR for 18 ·····	S 49
¹ H NMR, ¹³ C NMR and FT-IR for 19	S 52
¹ H NMR, ¹³ C NMR and FT-IR for 20 ·····	S 55
¹ H NMR, ¹³ C NMR and FT-IR for 21 ·····	S 58
¹ H NMR, ¹³ C NMR and FT-IR for 22 ·····	S 61
¹ H NMR, ¹³ C NMR and FT-IR for 23 ·····	S 64
¹ H NMR, ¹³ C NMR and FT-IR for 24 ·····	S 67
¹ H NMR, ¹³ C NMR and FT-IR for $(2S,4R)$ -1 ·····	S 70
¹ H NMR, ¹³ C NMR and FT-IR for $(2S,4S)$ - 1	S 73
¹ H NMR, ¹³ C NMR and FT-IR for $(2R,4R)$ -1 ·····	S 76
Tabular NMR data comparison between nat-1 and (2 <i>R</i> ,4 <i>R</i>)-1 ······	S 80

400 MHz, CDCl3

S 3

S 10

S 13

S 16

S 19

S 22

S 25

S 28

S 31

S 34

S 37

S 39

400 MHz, CDCl3

S 40

S 43

400 MHz, CDCl3

S 46

S 48

100 MHz, CDCl3

S 54

S 58

100 MHz, CD3OD

S 59

400 MHz, CD3OD

S 60

400 MHz, CDCl3

400 MHz, CD3OD

5635 6 2.934.2 9.7592 РРМ

2

USER: nmr -- DATE: 22:05:11.484 +0800 nmr@EP-ZH107708 PTS1d: 32768

LB: 0.3

OF1: 2463.1 NA: 16

sec

PD: 1.0

<u>SW1: 8224</u> PW: 9.3 usec

F2: 1.000

F1: 400.120 EX: zg30

Nuts - \$ yx-4-21.1

100 MHz, CD3OD

S 73

400 MHz, CD3OD

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

S 75

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

100 MHz, CD3OD

S 76

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

S 78

400 MHz, CD3OD

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

(KBr)

Tabular data comparison between the natural -1 and synthetic (2R,4R)-1

 Table S-1.
 ¹H NMR data comparison

Natural 1 (CD ₃ OD, 500 MHz) ^{a}	(2 <i>R</i> ,4 <i>R</i>)-1 (400 MHz, CD ₃ OD)
5.50 (dt, <i>J</i> = 15, 6 Hz, 1H, H-7)	5.52 (dt, <i>J</i> = 15.4, 6.8 Hz, 1H)
5.45 (dt, <i>J</i> = 15, 6 Hz, 1H, H-6)	5.49 (dt, <i>J</i> = 15.3, 6.0 Hz, 1H)
3.80 (m, 1H, H-2)	3.86-3.81 (m, 2H)
3.78 (m, 1H, H-4)	
3.49 (dd, <i>J</i> = 11, 5 Hz, 1H, H-1b)	3.55-3.45 (m, 2H)
3.44 (dd, <i>J</i> = 11, 6Hz, 1H, H-1a)	
2.17 (m, 2H, H-5)	2.22-2.19 (m, 2H)
2.01 (m, 2H, H-8)	2.07-2.02 (m, 2H)
1.68 (dt, <i>J</i> = 14, 4 Hz, 1H, H-3b)	1.71 (dt, <i>J</i> = 14.0, 4.4 Hz, 1H)
1.50 (dt, <i>J</i> = 14, 8 Hz, 1H, H-3a)	1.53 (dt, <i>J</i> = 14.3, 6.5 Hz, 1H)
(not given)	1.38-1.30 (m, 20H)
0.9 (t, <i>J</i> = 7 Hz, 3H, H-19)	0.93 (t, <i>J</i> = 6.8 Hz, 3H)

^{*a*}Taken from: F. Abe, S. Nagafuji, M. Okawa, J. Kinjo, H. Akahane, T. Ogura, M. A. Martinez-Alfaro and R. Reys-Chilpa, *Biol. Parm. Bull.*, 2005, **28**, 1314. ^{*b*}This work.

1	
Natural -1 (CD ₃ OD, 500 MHz) ^{a}	(2R,4R)-1 (400 MHz, CD ₃ OD) ^b
134.4 (C-6)	134.4
127.2 (C-7)	127.2
72.2 (C-2)	72.1
71.3 (C-4)	71.2
67.3 (C-1)	67.3
41.9 (C-5)	41.9
40.5 (C-3)	40.5
33.7 (C-8)	33.8
33.0 (C-17)	33.1
30.3~30.8 (C-9 to C-16)	30.80, 30.77, 30.6, 30.5, 30.3
23.3 (C-18)	23.7
14.4 (C-19)	14.4

 Table S-2.
 ¹³C NMR data comparison

^{*a*}Taken from: F. Abe, S. Nagafuji, M. Okawa, J. Kinjo, H. Akahane, T. Ogura, M. A. Martinez-Alfaro and R. Reys-Chilpa, *Biol. Parm. Bull.*, 2005, **28**, 1314. ^{*b*}This work.