Supporting Information

Solid-state Emissive Triarylborane-based BODIPY Dyes:

Photophysical Properties and Fluorescent Sensing for Fluoride and

Cyanide lons

Guang-Liang Fu, Hong Pan, Yi-Hong Zhao and Cui-Hua Zhao*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China,

Table of Contents

Titration Measurement	S2
NMR Spectra of Compounds 1, 2 and 4	S7

Titration Measurement

Titration of 1 with TBAF

All the fluorescence experiments were recorded in a THF solution of **1** ($c = 4.28 \times 10^{-6}$ M). The solution of **1** (2 ml in a quartz cuvette) was titrated with incremental amounts of fluoride by addition of a concentrated TBAF solution ($c = 4.56 \times 10^{-4}$ M). In order to account for dilute effects, the TBAF solution also contained **1** at its initial concentration.

Figure S-1 The fluorescence spectra change of 1 (4.28 µM in THF) upon addition of TBAF.

Figure S-2 The UV/vis absorption spectra change of 1 (4.28 μ M in THF) upon addition of TBAF.

Titration of 2 with TBAF

All the fluorescence experiments were recorded in a THF solution of **2** ($c = 2.61 \times 10^{-6}$ M). The solution of **2** (2 ml in a quartz cuvette) was titrated with incremental amounts of fluoride by addition of a concentrated TBAF solution ($c = 4.63 \times 10^{-4}$ M). In order to account for dilute effects, the TBAF solution also contained **2** at its initial concentration.

Figure S-3 The fluorescence spectra change of 2 (2.61 µM in THF) upon addition of TBAF.

Figure S-4. The UV/vis absorption spectra change of 2 (2.61 μ M in THF) upon addition of TBAF.

¹¹B NMR Measurement of 1

The ¹¹B NMR spectra of a solution of **1** (0.5 mL, 0.03 M, CDCl₃) were obtained before and after the addition of an excess of fluorid.

*Figure S-5.*¹¹B NMR spectra of **1** (0.03M in CDCl₃) upon addition of TBAF.

¹¹B NMR Measurement of 2

The ¹¹B NMR spectra of a solution of **2** (0.5 mL, 0.03 M, $CDCl_3$) were obtained before and after the addition of an excess of fluoride.

*Figure S-6.*¹¹B NMR spectra of **2** (0.03M in CDCl₃) upon addition of TBAF.

Titration of 1 with TBACN

All the fluorescence experiments were recorded in a THF solution of **1** ($c = 4.28 \times 10^{-6}$ M). The solution of **1** (2 ml in a quartz cuvette) was titrated with incremental amounts of cyanide by addition of a concentrated TBACN solution ($c = 4.28 \times 10^{-4}$ M). In order to account for dilute effects, the TBACN solution also contained **1** at its initial concentration.

Figure S-7. Fluorescence spectra change of (a) 1 (4.28 μ M in THF, $\lambda_{ex} = 370$ nm) upon addition of TBACN.

Figure S-8. The UV/vis absorption spectra of **1** in THF (4.28 μ M) after addition of excess TBAF and TBACN.

Titration of 2 with TBACN

All the fluorescence experiments were recorded in a THF solution of **1** ($c = 2.61 \times 10^{-6}$ M). The solution of **2** (2 ml in a quartz cuvette) was titrated with incremental amounts of cyanide by addition of a concentrated TBACN solution ($c = 5.21 \times 10^{-4}$ M). In order to account for dilute effects, the TBACN solution also contained **2** at its initial concentration.

Figure S-9. Fluorescence spectra change of (a) 2 (2.61 μ M in THF, $\lambda_{ex} = 370$ nm) upon addition of TBACN.

Figure S-10. The UV/vis absorption spectra of **2** in THF (2.61 μ M) after addition of excess TBAF and TBACN.

NMR Spectra

¹H NMR of 4 (300 MHz, CDCl₃)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

¹H NMR of **1** (300 MHz, CDCl₃)

¹H NMR of **2** (300 MHz, CDCl₃)