Chiral *N-tert*-Butanesulfinyl α,β-Unsaturated Ketimine: A Simple and Highly Effective Olefin/Sulfinimide Hybrid Ligand for Asymmetric 1,4-Additions

Xiangqing Feng,^a Beibei Wei,^b Jing Yang^{*b} and Haifeng Du^{*a}

^{*a*} Beijing National Laboratory of Molecular Sciences, CAS Key laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190.

^b State Key Laboratory of Chemical Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Supporting Information

Table of contents:

General procedure for the synthesis of chiral olefin/sulfinimide ligands 4	S2
Characterization of 4a-l	S2-S4
General procedure for 4a/Rh-catalyzed asymmetric 1,4-additions	S4
Characterization of adducts 7	S4-S8
The chromatography for the determination of enantiomeric excess	S9-S19
NMR spectra for ligands 4	S20-S43
NMR spectra for products 7	S44-S85

General procedure for the synthesis of chiral olefin/sulfinimide ligands 4. To a solution of (*R*)-*tert*butanesulfinamide (0.727 g, 6.0 mmol) in THF (12.0 mL) under argon was added α , β -unsaturated ketone or aldehyde (6.6 mmol), and then Ti(OEt)₄ (2.5 mL, 12.0 mmol) was added. The resulting mixture was heated at 80 °C overnight before cooled to room temperature. Brine (12.0 mL) was then added and the mixture was stirred at room temperature for 5 min before filtered through celite. The filter cake was washed with ethyl acetate and the aqueous layer was extracted with ethyl acetate twice. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum to give the crude product. The residue was then purified by flash chromatography on silica gel (hexanes/ethyl acetate = 10/1 to 5/1, v/v) to afford the corresponding products **4**.

(*R*)-*N*-[(*E*)-1,3-diphenylprop-2-enylidene]-*tert*-butanesulfinamide (4a): 71% yield, yellow solid; $[\alpha]_D^{20}$ = -378.3 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 16.0 Hz, 1H), 7.75-7.57 (m, 2H), 7.56-7.41 (m, 5H), 7.40-7.31 (m, 3H), 6.90 (d, *J* = 16.0 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.1, 143.6, 138.5, 135.0, 130.5, 129.9, 129.0, 128.6, 128.1, 127.8, 122.2, 58.1, 22.6.

J. P. McMahon and J. A. Ellman, Org. Lett., 2005, 7, 5393.

(*R*)-*N*-[(*E*)-1,3-bis(*p*-tolyl)prop-2-enylidene]-*tert*-butanesulfinamide (4b): 57% yield, yellow oil; $[\alpha]_D^{20}$ = -390.7 (*c* 0.89, CHCl₃); IR (film): 1538, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 13.6 Hz, 1H), 7.66-7.45 (m, 2H), 7.29-7.17 (m, 2H), 7.16-7.06 (m, 2H), 6.89 (d, *J* = 16.0 Hz, 1H), 2.40 (s, 3H), 2.33 (s, 3H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.8, 143.9, 141.1, 140.4, 136.1, 132.6, 129.6, 129.4, 129.0, 128.1, 121.6, 58.0, 22.7, 21.5, 21.5; HRMS (EI) calcd for C₂₁H₂₅NOS (M): 339.1657; Found: 339.1661.

(*R*)-*N*-[(*E*)-1,3-bis(3-chlorophenyl)prop-2-enylidene]-*tert*-butanesulfinamide (4c): 89% yield, yellow oil; $[\alpha]_D^{20} = -300.7$ (*c* 1.00, CHCl₃); IR (film): 1473, 1275, 1074 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 14.4 Hz, 1H), 7.73-7.08 (m, 8H), 6.78 (d, *J* = 16.4 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 142.1, 140.1, 136.8, 134.8, 134.4, 130.6, 130.0, 129.9, 129.6, 128.9, 127.8, 127.2, 126.1, 123.2, 58.8, 22.8; HRMS (EI) calcd for C₁₉H₁₉NOSCl₂ (M): 379.0564; Found: 379.0569.

(*R*)-*N*-[(*E*)-1-phenyl-3-(*p*-tolyl)prop-2-enylidene]-*tert*-butanesulfinamide (4d): 63% yield, yellow solid; mp 79-81 °C; $[\alpha]_D^{20} = -395.7$ (*c* 1.00, CHCl₃); IR (film): 1540, 1069 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 15.2 Hz, 1H), 7.74-7.33 (m, 7H), 7.17 (d, *J* = 17.6 Hz, 2H), 6.88 (d, *J* = 16.0 Hz, 1H), 2.36 (s, 3H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.9, 144.4, 140.7, 139.0, 132.6, 130.7, 129.8, 129.4, 128.4, 128.3, 121.6, 58.3, 22.9, 21.6; Anal. Calcd for C₂₀H₂₃NOS: C, 73.81; H, 7.12; N, 4.30. Found: C, 73.88; H, 7.16; N, 4.21.

(*R*)-*N*-[(*E*)-3-(4-nitrophenyl)-1-phenylprop-2-enylidene]-*tert*-butanesulfinamide (4e): 83% yield, orange solid; mp 42-45 °C; $[\alpha]_D^{20} = -388.7$ (*c* 1.00, CHCl₃); IR (film): 1519, 1344, 1089 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃): δ 8.29 (d, J = 16.0 Hz, 1H), 8.21 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 4H), 7.57-7.42 (m, 3H), 6.90 (d, J = 16.0 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 148.3, 141.7, 140.0, 138.4, 131.1, 129.2, 128.6, 126.7, 124.2, 59.2, 23.0; HRMS (EI) calcd for C₁₉H₂₀N₂O₃S (M): 356.1195; Found: 356.1190.

(*R*)-*N*-[(*E*)-3-(naphthalen-1-yl)-1-phenylprop-2-enylidene]-*tert*-butanesulfinamide (4f): 77% yield, yellow solid; mp 99-101 °C; $[\alpha]_D^{20} = -332.2$ (*c* 1.00, CHCl₃); IR (film): 1607, 1540, 1069 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 14.8 Hz, 1H), 7.95-7.64 (m, 7H), 7.61-7.43 (m, 6H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.7, 140.8, 133.9, 132.7, 131.6, 131.1, 130.5, 129.6, 129.0, 128.6, 127.0, 126.3, 125.9, 125.5, 123.2, 58.5, 23.0; Anal. Calcd for C₂₃H₂₃NOS: C, 76.42; H, 6.41; N, 3.87. Found: C, 76.52; H, 6.48; N, 3.68.

(*R*)-*N*-[(*E*)-3-phenylprop-2-enylidene]-*tert*-butanesulfinamide (4g): 98% yield, light yellow solid; $[\alpha]_D^{20} = -333.5$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, *J* = 9.2 Hz, 1H), 7.59-7.48 (m, 2H), 7.45-7.33 (m, 3H), 7.24 (d, *J* = 16.0 Hz, 1H), 7.08 (dd, *J* = 16.0, 9.2 Hz, 1H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 146.5, 135.3, 130.4, 129.2, 128.1, 125.8, 57.8, 22.7.

H. K. Chang, D. Y. Jung, M. K. Kim and Y. H. Kim, Synlett, 2005, 304.

(*R*)-*N*-[(*E*)-1-methyl-3-phenylprop-2-enylidene]-*tert*-butanesulfinamide (4h): 85% yield, orange solid; $[\alpha]_D^{20} = -173.6 \ (c \ 1.00, \ CHCl_3); \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3): \delta \ 7.94 \ (d, \ J = 16.4 \ Hz, \ 0.3H), \ 7.48 \ (d, \ J = 6.4 \ Hz, \ 2H), \ 7.39-7.27 \ (m, \ 3H), \ 7.23 \ (d, \ J = 16.4 \ Hz, \ 0.7 \ H), \ 7.12 \ (d, \ J = 16.4 \ Hz, \ 0.3H), \ 6.80 \ (d, \ J = 16.4 \ Hz, \ 0.7H), \ 2.50 \ (s, \ 2.1H), \ 2.37 \ (s, \ 0.9H), \ 1.27 \ (s, \ 9H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3): \delta \ 175.9, \ 173.6, \ 140.6, \ 138.8, \ 134.7, \ 134.6, \ 129.7, \ 129.6, \ 129.4, \ 128.4, \ 127.6, \ 127.4, \ 121.7, \ 57.1, \ 56.5, \ 23.9, \ 22.1, \ 18.4.$

J. P. McMahon and J. A. Ellman, Org. Lett., 2005, 7, 5393.

(*R*)-*N*-[(*E*)-1-phenylprop-2-enylidene]-*tert*-butanesulfinamide (4i): 53% yield, orange oil; $[\alpha]_D^{20} = -123.2$ (*c* 0.94, CHCl₃); IR (film): 1550, 1075 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.33 (m, 6H), 5.92 (d, *J* = 11.2 Hz, 1H), 5.61 (d, *J* = 17.6 Hz, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.5, 137.9, 131.7, 131.1, 129.3, 128.9, 128.3, 58.2, 22.7; HRMS (EI) calcd for C₁₃H₁₇NOS (M): 235.1031; Found: 235.1034.

(*R*)-*N*-[(*1E*,*4E*)-1,5-diphenylpenta-1,4-dien-3-ylidene]-*tert*-butanesulfinamide (4j): 67% yield, yellow solid; mp 135-138 °C; $[\alpha]_D^{20} = -296.6$ (*c* 0.90, CHCl₃); IR (film): 1559, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 13.2 Hz, 1H), 7.65-7.45 (m, 5H), 7.45-7.32 (m, 6H), 7.32-7.07 (m, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 140.3, 135.6, 130.0, 129.1, 128.2, 124.8, 58.7, 23.0; Anal. Calcd for C₂₁H₂₃NOS: C, 74.74; H, 6.87; N, 4.15. Found: C, 74.58; H, 7.00; N, 4.10.

(*R*)-*N*-[(*E*)-2-benzylidenecyclohexylidene]-*tert*-butanesulfinamide (4k): 63% yield, yellow oil; $[\alpha]_D^{20} =$ +118.4 (*c* 1.06, CHCl₃); IR (film): 1261, 1275, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.21 (m, 6H), 3.16-3.01 (m, 1H), 2.98-2.86 (m, 1H), 2.85-2.64 (m, 2H), 1.94-1.74 (m, 2H), 1.74-1.59 (m, 2H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 183.1, 138.4, 136.4, 132.9, 130.1, 128.4, 128.1, 57.0, 34.4, 29.2, 24.1, 22.6; Anal. Calcd for C₁₇H₂₃NOS: C, 70.54; H, 8.01; N, 4.84. Found: C, 70.37; H, 7.96; N, 4.63.

(*R*)-*N*-(cyclohex-2-en-ylidene)-*tert*-butanesulfinamide (41): 65% yield, yellow oil; $[\alpha]_D^{20} = -331.9$ (*c* 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.07 (d, *J* = 10.0 Hz, 0.4H), 6.68-6.55 (m, 1H), 6.18 (d, *J* = 10.0 Hz, 0.6H), 3.09-2.93 (m, 0.6H), 2.87-2.73 (m, 0.6H), 2.58-2.51 (m, 0.8H), 2.34-2.19 (m, 2H), 1.99-1.75 (m, 2H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 177.9, 175.7, 146.0, 144.9, 130.4, 123.1, 56.9, 56.5, 36.1, 30.9, 26.0, 25.2, 22.5, 22.3, 22.2, 21.9.

J. P. McMahon and J. A. Ellman, Org. Lett., 2005, 7, 5393.

General procedure for 4a/Rh-catalyzed asymmetric 1,4-additions (Table 2): To a dried Schlenk flask charged with $[RhCl(C_2H_4)_2]_2$ (0.0023 g, 0.006 mmol, 1.5 mol %), and ligand 4a (0.0045 g, 0.0144 mmol, 3.6 mol %) was added CH₃OH (0.50 mL) under argon. The resulting mixture was stirred at room temperature for 15 min before heated to 30 °C. Then K₃PO₄·3H₂O (0.030 mmol, 0.008 g, 7.5 mol %), arylboronic acid 6 (0.60 mmol), enone 5 (0.4 mmol) and CH₃OH (1.0 mL) was added sequentially. After stirring at 30 °C for 5 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was purified by flash chromatography on silica gel (hexanes/ethyl ether) to afford the desired product 7.

(*S*)-3-Phenylcyclohexanone (Table 2, entry 1): light yellow oil; $[\alpha]_D^{20} = -21.8$ (*c* 0.89, CHCl₃) (96% ee) [lit.: $[\alpha]_D^{20} = -21.0$ (*c* 0.96, CHCl₃) (97% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.29 (m, 2H), 7.27-7.19 (m, 3H), 3.08-2.94 (m, 1H), 2.66-2.31 (m, 4H), 2.20-2.04 (m, 2H), 1.93-1.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 144.5, 128.9, 126.9, 126.8, 49.1, 44.9, 41.4, 33.0, 25.7.

Y. Takaya, M. Ogasawara and T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579.

(*S*)-3-*p*-Tolylcyclohexanone (Table 2, entry 2): light yellow solid; $[\alpha]_D^{20} = -17.8$ (*c* 0.85, CHCl₃) (96% ee) [lit.: $[\alpha]_D^{20} = -17.0$ (*c* 0.95, CHCl₃) (97% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 13.2 Hz, 2H), 7.13 (d, *J* = 13.2 Hz, 2H), 3.04-2.92 (m, 1H), 2.63-2.36 (m, 4H), 2.34 (s, 1H), 2.20-2.03 (m, 2H), 1.90-1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 141.6, 136.4, 129.5, 126.6, 49.2, 44.5, 41.3, 33.1, 25.7, 21.1.

Y. Takaya, M. Ogasawara and T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579.

(*S*)-3-(**Biphenyl-4-yl**)cyclohexanone (Table 2, entry 3): white solid; $[\alpha]_D^{20} = -8.8$ (*c* 1.00, CHCl₃) (98% ee) [lit.: $[\alpha]_D^{25} = -5.5$ (*c* 0.50, CHCl₃) (93% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (t, *J* = 8.0 Hz, 4H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.36-7.27 (m, 3H), 3.13-2.97 (m, 1H), 2.68-2.33 (m, 4H), 2.21-2.08 (m, 2H), 1.93-1.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.1, 143.6, 141.0, 139.9, 129.0, 127.6, 127.4, 127.2, 49.1, 44.6, 41.4, 33.0, 25.7.

T. Zhang and M. Shi, Chem.-Eur. J., 2008, 14, 3759.

(*S*)-3-(4-Fluorophenyl)cyclohexanone (Table 2, entry 4): colorless oil; $[\alpha]_D^{20} = -17.5$ (*c* 0.61, CHCl₃) (96% ee) [lit.: $[\alpha]_D^{20} = +14.3$ (*c* 1.20, CHCl₃) (98% ee) for *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.13 (m, 2H), 7.05-6.95 (m, 2H), 3.06-2.92 (m, 1H), 2.61-2.30 (m, 4H), 2.18-2.02 (m, 2H), 1.88-1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 210.7, 161.7 (d, $J_{C-F} = 243.4$ Hz), 140.2 (d, $J_{C-F} = 3.1$ Hz), 128.1 (d, $J_{C-F} = 7.8$ Hz), 115.6 (d, $J_{C-F} = 20.9$ Hz), 49.2, 44.1, 41.2, 33.1, 25.5.

M. Pucheault, S. Darses and J. P. Genêt, Eur. J. Org. Chem., 2002, 3552.

(*S*)-3-[4-(Trifluoromethyl)phenyl]cyclohexanone (Table 2, entry 5): light yellow solid; $[\alpha]_D^{20} = -25.7$ (*c* 0.98, CHCl₃) (96% ee) [lit.: $[\alpha]_D^{20} = -11.0$ (*c* 0.97, CHCl₃) (99% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 3.12-3.02 (m, 1H), 2.64-2.31 (m, 4H), 2.19-2.03 (m, 2H), 1.93-1.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 210.3, 148.4, 129.2 (q, *J*_{C-F} = 32.4 Hz), 127.2, 125.8 (q, *J*_{C-F} = 3.9 Hz), 124.3 (q, *J*_{C-F} = 270.4 Hz), 123.0, 48.7, 44.7, 41.3, 32.7, 25.6.

Y. Takaya, M. Ogasawara and T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579.

(*S*)-3-(4-Acetylphenyl)cyclohexanone (Table 2, entry 6): white solid; $[\alpha]_D^{20} = -7.3$ (*c* 0.74, CHCl₃) (94% ee) [lit.: $[\alpha]_D^{32} = -7.8$ (*c* 1.02, CHCl₃) (97% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.11-2.98 (m, 1H), 2.60-2.32 (m, 6H), 2.58 (s, 3H), 2.19-2.03 (m, 2H), 1.92-1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 210.4, 197.7, 149.8, 135.9, 129.0, 127.0, 48.5, 44.8, 41.2, 32.6, 26.7, 25.5.

C. Defieber, J.-F. Paquin, S. Serna and E. M. Carreira, Org. Lett., 2004, 6, 3873.

(*S*)-3-[4-(Hydroxymethyl)phenyl]cyclohexanone (Table 2, entry 7): corlorless oil; $[\alpha]_D^{20} = -11.4$ (*c* 0.86, CHCl₃) (95% ee) [lit.: $[\alpha]_D^{20} = -18.8$ (*c* 0.97, CHCl₃) (92% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.66 (s, 2H), 3.05-2.94 (m, 1H), 2.60-2.31 (m, 4H), 2.17-2.03 (m, 3H), 1.90-1.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.4, 143.9, 139.6, 127.6, 126.9, 65.1, 49.1, 44.6, 41.3, 32.9, 25.7.

Q. Li, Z. Dong and Z.-X. Yu, Org. Lett., 2011, 13, 1122.

(*S*)-3-(1-Naphthyl)cyclohexanone (Table 2, entry 8): white solid; $[\alpha]_D^{20} = -56.0$ (*c* 1.00, CHCl₃) (95% ee) [lit.: $[\alpha]_D = +45.8$ (*c* 1.5, CHCl₃) (98% ee) for *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* =

8.4 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.58-7.44 (m, 3H), 7.40 (d, *J* = 7.2 Hz, 1H), 3.93-3.80 (m, 1H), 2.83-2.41 (m, 4H), 2.30-2.14 (m, 2H), 2.08-1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.3, 140.2, 134.2, 131.1, 129.3, 127.4, 126.4, 125.8, 125.7, 122.9, 122.6, 48.7, 41.6, 39.6, 32.5, 25.8.

C. S. Cho, S. Motofusa, K. Ohe, S. Uemura and S. C. Shim, J. Org. Chem., 1995, 60, 883.

(*S*)-3-(2-Naphthyl)cyclohexanone (Table 2, entry 9): white solid; $[\alpha]_D^{20} = -8.1$ (*c* 1.08, CHCl₃) (92% ee) [lit.: $[\alpha]_D^{20} = -8.3$ (*c* 0.89, CHCl₃) (99% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.78 (m, 3H), 7.65 (s, 1H), 7.52-7.41 (m, 2H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 3.25-3.12 (m, 1H), 2.74-2.59 (m, 2H), 2.55-2.36 (m, 2H), 2.24-2.12 (m, 2H), 2.04-1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.0, 141.9, 133.7, 132.6, 128.5, 127.9, 127.8, 126.4, 125.8, 125.5, 124.9, 49.0, 45.0, 41.4, 32.9, 25.7.

Y. Takaya, M. Ogasawara and T. Hayashi, Tetrahedron Lett. 1999, 40, 6957.

(*S*)-3-*o*-Methoxyphenylcyclohexanone (Table 2, entry 10): colorless oil; $[\alpha]_D^{20} = -37.8$ (*c* 0.63, CHCl₃) (92% ee) [lit.: $[\alpha]_D^{32} = -36.3$ (*c* 1.02, CHCl₃) (94% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.14 (m, 2H), 6.94 (dd, J = 8.0, 7.2 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H), 3.49-3.35 (m, 1H), 2.63-2.31 (m, 4H), 2.18-1.98 (m, 2H), 1.94-1.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.8, 156.9, 132,7, 127.7, 126.7, 120.9, 110.8, 55.4, 47.8, 41.6, 38.2, 31.2, 25.8.

C. Defieber, J.-F. Paquin, S. Serna and E. M. Carreira, Org. Lett., 2004, 6, 3873.

(*S*)-3-*o*-Tolylcyclohexanone (Table 2, entry 11): colorless oil; $[\alpha]_D^{20} = -40.8$ (*c* 1.16, CHCl₃) (90% ee) [lit.: $[\alpha]_D = -15.0$ (*c* 0.87, CHCl₃) (95% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.07 (m, 4H), 3.24-3.15 (m, 1H), 2.52-2.31 (m, 4H), 2.31 (s, 3H), 2.18-2.11 (m, 1H), 2.03-1.95 (m, 1H), 1.88-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.6, 142.4, 135.1, 130.7, 126.5, 126.4, 125.2, 48.4, 41.4, 40.4, 32.1, 25.8, 19.3.

Y. Ma, C. Song, C. Ma, Z. Sun, Q. Chai and M. B. Andrus, Angew. Chem., Int. Ed., 2003, 42, 5871.

(*S*)-3-(2-Chlorophenyl)cyclohexanone (Table 2, entry 12): colorless oil; $[\alpha]_D^{20} = -41.4$ (*c* 1.07, CHCl₃) (94% ee) [lit.: $[\alpha]_D^{20} = -21.5$ (*c* 1.3, CHCl₃) (64% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.0 Hz, 1H), 7.30-7.22 (m, 2H), 7.19-7.12 (m, 1H), 3.58-3.43 (m, 1H), 2.65-2.56 (m, 1H), 2.53-2.31 (m, 3H), 2.19-2.01 (m, 2H), 1.91-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 210.5, 141.4, 133.6, 130.0, 127.9, 127.4, 127.1, 47.4, 41.4, 40.7, 31.4, 25.4.

X. Hu, M. Zhuang, Z. Cao and H. Du, Org. Lett., 2009, 11, 4744.

(*S*)-3-*m*-Tolylcyclohexanone (Table 2, entry 13): colorless oil; $[\alpha]_D^{20} = -19.6$ (*c* 1.10, CHCl₃) (96% ee) [lit.: $[\alpha]_D^{20} = -15.6$ (*c* 0.95, CHCl₃) (82% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.17 (m, 1H), 7.07-6.95 (m, 3H), 3.01-2.88 (m, 1H), 2.62-2.29 (m, 4H), 2.34 (s, 3H), 2.18-2.00 (m, 2H), 1.90-1.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.1, 144.5, 138.3, 128.7, 127.5, 127.4, 123.7, 49.1, 44.8, 41.3, 32.9, 25.7, 21.6.

X. Hu, M. Zhuang, Z. Cao and H. Du, Org. Lett., 2009, 11, 4744.

(*S*)-3-(3-Fluorophenyl)cyclohexanone (Table 2, entry 14): colorless oil; $[\alpha]_D^{20} = -18.9$ (*c* 0.85, CHCl₃) (96% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.23 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.96-6.88 (m, 2H), 3.06-2.95 (m, 1H), 2.64-2.31 (m, 4H), 2.19-2.04 (m, 2H), 1.89- 1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 210.5, 163.2 (d, *J*_{C-F} = 244.6 Hz), 140.1 (d, *J*_{C-F} = 6.8 Hz), 130.3 (d, *J*_{C-F} = 8.3 Hz), 113.8 (d, *J*_{C-F} = 6.2 Hz), 113.6 (d, *J*_{C-F} = 6.7 Hz), 48.9, 44.6, 41.3, 32.8, 25.6.

J.-G. Boiteau, R. Imbos, A. J. Minnaard and B. L. Feringa, Org. Lett., 2003, 5, 681.

(*S*)-3-(3,5-Dimethylphenyl)cyclohexanone (Table 2, entry 15): colorless oil; $[\alpha]_D^{20} = -17.5$ (*c* 1.10, CHCl₃) (97% ee) [lit.: $[\alpha]_D^{25} = +14.3$ (*c* 1.60, CHCl₃) (96% ee) for *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 6.88 (s, 1H), 6.84 (s, 2H), 2.99-2.86 (m, 1H), 2.61-2.33 (m, 4H), 2.31 (s, 6H), 2.20-2.01 (m, 2H), 1.91-1.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.3, 144.6, 138.4, 128.5, 124.6, 49.2, 44.9, 41.4, 33.1, 25.8, 21.5.

F. Lang, D. Li, J. Chen, J. Chen, L. Li, L. Cun, J. Zhu, J. Deng and J. Liao, *Adv. Synth. Catal.*, 2010, **352**, 843.

(*S*)-3-(2,4-Dimethoxyphenyl)cyclohexanone (Table 2, entry 16): colorless oil; $[\alpha]_D^{20} = -40.7$ (*c* 0.55, CHCl₃) (90% ee) [lit.: $[\alpha]_D^{20} = -25.4$ (*c* 0.97, CHCl₃) (87% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, *J* = 9.2 Hz, 1H), 6.46 (d, *J* = 9.6 Hz, 1H), 6.45 (s, 1H), 3.79 (s, 6H), 3.36-3.25 (m, 1H), 2.59-2.30 (m, 4H), 2.14-1.96 (m, 2H), 1.89-1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 212.0, 157.9, 127.1, 125.3, 104.2, 98.9, 55.5, 55.4, 48.0, 41.6, 37.8, 31.4, 25.7.

Q. Li, Z. Dong and Z.-X. Yu, Org. Lett., 2011, 13, 1122.

(*S*)-3-Phenylcyclopentanone (Table 2, entry 17): colorless oil; $[\alpha]_D^{20} = -86.6$ (*c* 0.94, CHCl₃) (91% ee) [lit.: $[\alpha]_D^{20} = -73.8$ (*c* 0.82, CHCl₃) (97% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.30 (m, 2H), 7.29-7.21 (m, 3H), 3.48-3.34 (m, 1H), 2.66 (dd, *J* = 18.4, 8.0 Hz, 1H), 2.52-2.39 (m, 2H), 2.39-2.23 (m, 2H), 2.06-1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 218.5, 143.2, 128.9, 126.9, 46.0, 42.4, 39.0, 31.4.

Y. Takaya, M. Ogasawara and T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579.

(*S*)-3-*p*-Tolylcyclopentanone (Table 2, entry 18): colorless oil; $[\alpha]_D^{20} = -78.6$ (*c* 1.03, CHCl₃) (89% ee) [lit.: $[\alpha]_D^{24} = -81.0$ (*c* 1.16, CHCl₃) (93% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.16 (s, 4H), 3.46-3.31 (m, 1H), 2.66 (dd, *J* = 18.4, 7.6 Hz, 1H), 2.52-2.23 (m, 4H), 2.35 (s, 3H), 2.04-1.89 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 218.7, 140.2, 136.5, 129.5, 126.8, 46.1, 42.0, 39.0, 31.5, 21.1. Y. Takaya, M. Ogasawara, and T. Hayashi, Tetrahedron Lett., 1999, 40, 6957.

(*S*)-4-Phenyltetrahydro-2*H*-pyran-2-one (Table 2, entry 19): colorless oil; $[\alpha]_D^{20} = -4.2$ (*c* 0.90, CHCl₃) (97% ee) [lit.: $[\alpha]_D^{25} = +4.0$ (*c* 2.70, CHCl₃) (98% ee) for *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.32 (m, 2H), 7.31-7.24 (m, 1H), 7.23-7.17 (m, 2H), 4.56-4.46 (m, 1H), 4.44-4.34 (m, 1H), 3.30-3.18 (m, 1H), 2.98-2.86 (m, 1H), 2.64 (dd, *J* = 17.6, 10.4 Hz, 1H), 2.24-2.13 (m, 1H), 2.11-1.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 143.0, 129.2, 127.4, 126.7, 68.8, 37.7, 37.6, 30.5.

Y. Takaya, T. Senda, H. Kurushima, M. Ogasawara and T. Hayashi, *Tetrahedron: Asymmetry*, 1999, **10**, 4047.

(*S*)-4-Phenylheptan-2-one (Table 2, entry 20): colorless oil; $[\alpha]_D^{20} = +21.2$ (*c* 1.20, CHCl₃) (60% ee) [lit.: $[\alpha]_D^{23} = -37.0$ (*c* 1.01, CHCl₃) (75% ee) for *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.23 (m, 2H), 7.21-7.14 (m, 3H), 3.16-3.09 (m, 1H), 2.73-2.67 (m, 2H), 2.00 (s, 3H), 1.62-1.51 (m, 2H), 1.21-1.11 (m, 2H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 208.1, 144.8, 128.6, 127.7, 126.5, 51.1, 41.3, 38.9, 30.8, 20.7, 14.1.

S. Oi, A. Taira, Y. Honma and Y. Inoue, Org. Lett., 2003, 5, 97.

(*S*)-4-Phenylnonan-2-one (Table 2, entry 21): colorless oil; $[\alpha]_D^{20} = -79.5$ (*c* 0.79, CHCl₃) (60% ee) [lit.: $[\alpha]_D = -17.0$ (*c* 1.26, CHCl₃) (92% ee)]; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (t, *J* = 8.0 Hz, 2H), 7.22-7.12 (m, 3H), 3.16-3.05 (m, 1H), 2.78-2.63 (m, 2H), 2.00 (s, 3H), 1.67-1.58 (m, 2H), 1.27-1.05 (m, 6H), 0.89-0.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 208.2, 144.8, 128.6, 127.6, 126.5, 51.1, 41.5, 36.6, 31.9, 30.8, 27.2, 22.7, 14.2.

Y. Takaya, M. Ogasawara and T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579.

The chromatograms for determination of the enantiomeric excess

Table 2, entry 1

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 210 nm

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (97/3); Flow rate: 1.0 mL/min; Detection: UV 214 nm

Table 2, entry 3

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (98/2); Flow rate: 1.0 mL/min; Detection: UV 211 nm Racemic Chiral

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (97/3); Flow rate: 1.0 mL/min; Detection: UV 214 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 218 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (90/10); Flow rate: 0.8 mL/min; Detection: UV 210 nm

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (95/5); Flow rate: 0.7 mL/min; Detection: UV 222 nm Racemic Chiral

. และสินระนะ และเรื่องสิน

Table 2, entry 10

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 0.7 mL/min; Detection: UV 217 nm

Table 2, entry 11

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (85/15); Flow rate: 0.5 mL/min; Detection: UV 254 nm

Table 2, entry 12

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (97/3); Flow rate: 1.0 mL/min; Detection: UV 214 nm

HPLC Conditions: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (97/3); Flow rate: 1.0 mL/min; Detection: UV 214 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 208 nm

10.733| 49.583|1.472e4|

13.830| 50.417|1.497e4|

	1
1	(1)の曲々に(1)の病毒を含むなど(二二二二二二二二二二一一)
1	1
1	
1	물건 승규님은 말한 것이 안 많은 것이 하는 것이 가지 않는 것이 있다.
	1 9.864 98.44511.051e4
1	
4	
1	

1 T

21

فسيت ساعت

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV 228 nm Racemic Chiral

HPLC Conditions: Column: Chiralcel OB-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (90/10); Flow rate: 0.7 mL/min; Detection: UV 219 nm

S17

HPLC Conditions: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (60/40); Flow rate: 0.6 mL/min; Detection: UV 214 nm Racemic Chiral

Table 2, entry 20

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99.5/0.5); Flow rate: 0.5 mL/min; Detection: UV 216 nm Racemic Chiral

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 0.5 mL/min; Detection: UV 211 nm

