Claisen Rearrangements of Equilibrating Allylic Azides

Donald Craig, John W. Harvey, Alexander G. O’Brien and Andrew J. P. White

1 General laboratory procedures

All reactions were performed under nitrogen unless otherwise stated. Melting points were determined using Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on Mattson 5000 FT-IR or Perkin-Elmer Spectrum RX FT-IR System spectrometers. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR), carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) and fluorine nuclear magnetic resonance (${ }^{19} \mathrm{~F}$ NMR) spectra were recorded in CDCl_{3} unless otherwise stated on a Brüker AV-400 or Brüker AV-500 spectrometer. Chemical shifts are in parts per million (ppm) and are referenced relative to the residual proton-containing solvent (${ }^{1} \mathrm{H}$ NMR: 7.26 ppm for $\mathrm{CDCl}_{3} ;{ }^{13} \mathrm{C}$ NMR: 77.0 ppm for CDCl_{3}). Coupling constants are given in Hertz (Hz). Mass spectra (CI, EI and ESI) were recorded using Micromass AutoSpec-Q, Micromass Platform II or Micromass AutoSpec Premier instruments. Elemental analyses were performed at the microanalytical laboratories of the London Metropolitan University. Analytical thin layer chromatography (TLC) was performed on pre-coated glass-backed Merck Kieselgel 60 F254 plates. Visualisation was effected with ultraviolet light, potassium permanganate or vanillin as appropriate. Flash column chromatography was performed using a Biotage Flash+ reservoir system with Biotage SNAP HP-Sil ($30 \mu \mathrm{~m}$) silica gel cartridges or using a Teledyne Isco Companion system fitted with RediSep (35-70 $\mu \mathrm{m}$) silica gel cartridges. Kugelrohr distillations were performed using a Büchi D56 Kugelrohr oven and controller system. The quoted boiling point corresponds to the internal oven temperature. Standard solvents were distilled under nitrogen prior to use; ether and THF from sodium-benzophenone ketyl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetonitrile from CaH_{2} and toluene from sodium. All other solvents were distilled prior to use. Petrol refers to petroleum ether of the fraction bp $40-60^{\circ} \mathrm{C}$. Ether refers to diethyl ether. All liquid
reagents were distilled prior to use. Potassium acetate was oven-dried at $120^{\circ} \mathrm{C}$ for several days prior to use. Microwave reactions were performed in a Biotage Initiator upgraded to version 2.5 and cooled using compressed air (4 bar) following the reaction.

2 Safety note

The preparation of numerous potentially explosive low molecular weight organic azides is reported herein. Although we did not experience any explosive behaviour during the course of our studies, all reactions involving azides were carried out behind a blast shield. Particular care was taken during the concentration and purification of organic azides. Sodium azide was handled using non-metallic utensils.

3 Preparation of oxirane starting materials 4a-g

Oxiranes 4a-g were prepared according to the procedure of Lautens. ${ }^{1}$ Noncommercially available α, β-unsaturated ketones $\mathbf{S 1 b}, \mathbf{d}, \mathbf{f}, \mathrm{h}$ were prepared from the corresponding aldehyde.

4 General synthetic procedures

General procedure \mathbf{A}, for the preparation of α, β-unsaturated ketones S1b,d,f,h

To a solution of 1-(triphenylphosphanylidene)propan-2-one ($22.5 \mathrm{mmol}, 1.5$ equiv) in dichloromethane (15 mL) was added the aldehyde ($15.0 \mathrm{mmol}, 1.0$ equiv) dropwise via syringe at rt. The resulting mixture was stirred until TLC (20% EtOAc/petrol) confirmed the consumption of starting material. Aqueous $\mathrm{HCl}(2 \mathrm{M}, 15 \mathrm{~mL})$ was added, the phases were separated and the aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was taken up in ether, filtered and purified by Kugelrohr distillation to afford the α, β-unsaturated ketone $\mathbf{S 1}$.

General procedure B, for the preparation of chlorohydrins S2a-g

To a solution of α, β-unsaturated carbonyl S1 (10.0 mmol, 1.0 equiv) in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$ was added chloroiodomethane ($15.0 \mathrm{mmol}, 1.5$ equiv), followed by slow addition of n-butyllithium (6.0 mL of a 2.50 M solution in hexanes, $15.0 \mathrm{mmol}, 1.5$ equiv) over 30 min . The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The mixture was warmed to rt and ether (50 mL) was added. The phases were separated and the aqueous layer was extracted with ether ($2 \times 50 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification over silica gel afforded the chlorohydrin S2.

General procedure C, for the preparation of oxiranes 4a-g

To a suspension of pentane-washed sodium hydride ($60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, 10.2 mmol, 1.3 equiv) and sodium iodide ($0.78 \mathrm{mmol}, 0.1$ equiv) in THF (11 mL) was added a solution of the chlorohydrin $\mathbf{S 2}(7.8 \mathrm{mmol}, 1.0$ equiv) in THF (11 mL) at 0 ${ }^{\circ} \mathrm{C}$. The resulting white suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The phases were separated and the aqueous layer was extracted with ether (30 mL). The combined organic extracts were dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the oxirane 4 , which were used without further purification.

General procedure D, for the preparation of allylic azidoalcohols 5/6a-g

To a solution of oxirane 4 (31.5 mmol , 1.0 equiv) in acetone (45 mL) and water (19 mL) was added sodium azide ($94.5 \mathrm{mmol}, 3.0$ equiv) in one portion. After heating the resulting solution under reflux for 8 h , the reaction mixture was cooled to rt and $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~g})$ was added. Water (50 mL) was added and the reaction mixture was concentrated under reduced pressure to remove acetone. The remaining aqueous layer was extracted with dichloromethane (3 x 100 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under reduced pressure and purified over silica gel to give a mixture of the allylic azidoalcohols $\mathbf{5 / 6}$.

General procedure E, for the preparation of esters 9a-g

To a solution of the allylic alcohol ($1.57 \mathrm{mmol}, 1.0$ equiv) in triethyl orthoacetate ($20.4 \mathrm{mmol}, 13.0$ equiv) was added propionic acid ($0.314 \mathrm{mmol}, 0.2$ equiv) dropwise via syringe. After heating under reflux until the starting material had been consumed, the reaction mixture was cooled to rt and concentrated under reduced pressure to give the ester 9.

General procedure F, for the preparation of allylic azidoesters 11/12a-g

To a solution of azidoalcohols $\mathbf{5 / 6}$ (5.46 mmol , 1.0 equiv) in dichloromethane (10 mL) was added DMAP (0.546 mmol , 0.1 equiv), followed by a solution of DCC (6.01 mmol, 1.1 equiv) in dichloromethane (10 mL) at rt. The mixture was stirred for 5 min before addition of 2-p-toluenesulfonylacetic acid ($1.29 \mathrm{~g}, 6.01 \mathrm{mmol}, 1.1$ equiv). After stirring the colourless suspension for 16 h , the reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. Purification of the residue over silica gel afforded mixtures of the esters 11/12.

General procedure G, for the preparation of homoallylic sulfones 14a,c,f,g

To a solution of the azidoesters $\mathbf{1 1 / 1 2}$ (0.132 mmol 1.0 equiv) in acetonitrile (1.0 M) was added N, O-bistrimethylsilylacetamide ($0.396 \mathrm{mmol}, 3.0$ equiv) and TEA (0.158 mmol, 1.2 equiv) in a capped microwave vial. The mixture was heated by microwave at $160{ }^{\circ} \mathrm{C}$ until TLC showed consumption of the starting material. The reaction mixture was cooled to rt , quenched with aqueous $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were passed though an SCX ion exchange column (conditioned with 10\% $\mathrm{MeOH} /$ dichloromethane) and concentrated under reduced pressure to afford the acid intermediate without further purification. To solution of the crude acid (1.0 equiv) in DMF (1.0 M) was added sodium hydrogencarbonate (1.2 equiv) in a microwave vial. The mixture was heated by microwave at $160^{\circ} \mathrm{C}$ for 35 min and cooled to rt. Water $(10 \mathrm{~mL})$ was added and the mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue over silica gel afforded sulfone 14.

General procedure \mathbf{H}, for the preparation of homoallylic sulfones $14 \mathrm{~b}, \mathrm{~d}, \mathrm{e}$

To solution of the azidoesters $\mathbf{1 1 / 1 2}$ (0.132 mmol 1.0 equiv) in acetonitrile (1.0 M) was added N, O-bistrimethylsilylacetamide (0.660 mmol , 5.0 equiv) and TEA (0.264 mmol, 2.0 equiv) in a capped microwave vial. The mixture was heated by microwave at $160{ }^{\circ} \mathrm{C}$ until TLC showed consumption of the starting material. The reaction mixture was cooled to rt , quenched with aqueous $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were passed though an SCX ion exchange column (conditioned with 10\% $\mathrm{MeOH} /$ dichloromethane) and concentrated under reduced pressure to afford the acid without further purification. To solution of the crude acid (1.0 equiv) in DMF (1.0 M) was added sodium hydrogencarbonate (1.2 equiv) in a microwave vial. The mixture was heated by microwave at $160^{\circ} \mathrm{C}$ for 35 min and cooled to rt. Water (10 mL) was added and the mixture was extracted with dichloromethane (3 x 10 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue over silica gel afforded sulfone 14.

5 Data for individual compounds

(E)-Non-3-en-2-one (S1b)

Hexanal ($1.85 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure A to afford (E)-non-3-en-2-one S1b (1.07 g, 51\%) as a colourless oil: bp 4 100-102 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film) 1677, 1628, 1466, 1360, 1253, 1176, $982 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 6.92 (1H, dt, J 16.0, 7.0, H-4), 6.08 (1H, d, J 16.0, H-3), 2.25 (3H, s, H-1), 2.25-2.21 (2H, m, H-5), 1.52-1.44 (2H, m, H-6), 1.36-1.27 (4H, m, H-7,8), 0.90 (3H, t, J 6.5, $\mathrm{H}-9) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.8$ (C-2), 148.7 (C-4), 131.3 (C-3), 32.4, 31.3, 27.8, 26.8, 22.4, 14.0; m/z (CI) $158\left[\mathrm{MNH}_{4}\right]^{+}, 141[\mathrm{MH}]^{+}, 125$; in agreement with published data. ${ }^{2}$

(E)-4-(Cyclohexyl)-but-3-en-2-one (S1d)

Cyclohexanecarboxaldehyde ($1.82 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure A to afford (E)-4-(cyclohexyl)-but-3-en-2-one S1d (917 mg, 40%) as a colourless oil: $\mathrm{bp}_{4} 95-100^{\circ} \mathrm{C}$, $v_{\max }(f i l m) 1698,1676,1624,1449,1357$, $1253,980 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.73$ ($1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0, \mathrm{H}-4$), 6.05 ($1 \mathrm{H}, \mathrm{d}, J$ 16.0, H-3), 2.45 (3H, s, H-1), 2.20-2.12 (1H, m, H-5), 1.78 (4H, d, J 11.0, cyclohexyl), 1.69 (1H, d, J 13.5, cyclohexyl), 1.36-1.15 (5H, m, cyclohexyl); δ_{C} (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 199.2 (C-2), 153.4 (C-4), 128.8 (C-3), 40.6 (C-5), 31.8 (cyclohexyl) 26.8 (C-1), 25.9 (cyclohexyl), 25.7 (cyclohexyl); m/z (CI) $170\left[\mathrm{MNH}_{4}\right]^{+}, 153[\mathrm{MH}]^{+}$ (Found: $[\mathrm{MH}]^{+}$, 153.1281. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ requires $[\mathrm{MH}]^{+}$, 153.1279).

(E)-4-(Pyridin-2-yl)-but-3-en-2-one (S1f)

2-Pyridinecarboxaldehyde ($1.43 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure A to afford (E)-4-(pyridin-2-yl)-but-3-en-2-one S1f (1.41 g, 64\%) as a colourless oil: $\mathrm{bp}_{4} 120-125^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (film) 1667, 1621, 1583, 1469, 1432, 1359, 1312, $1200,1152,980,766 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.57$ ($1 \mathrm{H}, \mathrm{s}$ (br), 6-pyridyl), 7.75-7.71 (1H, m, pyridyl), 7.52 ($1 \mathrm{H}, \mathrm{d}, ~ J ~ 16.5, ~ H-4), ~ 7.50-7.48$ ($1 \mathrm{H}, \mathrm{m}$, pyridyl), 7.30-7.27 (1H, m, pyridyl), 7.14 (1H, d, J 16.5, H-3), 2.41 (3H, s, H-1); $\delta_{\mathrm{C}}(101$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) 198.6 (C-2), 153.1 (2-pyridyl), 150.1 (6-pyridyl), 141.9 (C-4), 136.9 (pyridyl), 130.2 (C-3), 124.4, 124.3 (pyridyl), 28.1 (C-1); m/z (ESI) 148 [MH] ${ }^{+}$, 130, 120 (Found: $[\mathrm{MH}]^{+}, 148.0754 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$ requires $[\mathrm{MH}]^{+}, 148.0762$).

(E)-1-Phenylbut-2-en-1-one (S1g)

A solution of phenylmagnesium chloride (26.3 mL of a 1.90 M solution in THF, 50.0 mmol, 1.0 equiv) was added to a flask containing THF (150 mL) at $0{ }^{\circ} \mathrm{C}$ and crotonaldehyde ($4.1 \mathrm{~mL}, 50.0 \mathrm{mmol}, 1.0$ equiv) was added. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The reaction mixture was warmed to rt, partially concentrated under reduced pressure to remove THF and extracted with ether (2 x 120 mL). The combined organic extracts were washed with aqueous $\mathrm{HCl}(2 \mathrm{M}, 40 \mathrm{~mL})$, water (2 x 40 mL) and brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was taken up in DMF (10 mL) and added to a stirred solution of pyridinium dichromate ($20.4 \mathrm{~g}, 1.08$ equiv) in DMF (40 mL). After 1 h , the reaction mixture was diluted with ether (100 mL) and poured onto water (100 mL). The phases were separated and the organic layer was washed with water ($2 \times 100 \mathrm{~mL}$) and brine (40 mL). Concentration under reduced pressure and Kugelrohr distillation afforded (E)-1-phenylbut-2-en-1-one S1g ($2.02 \mathrm{~g}, 28 \%$) as a colourless oil: $\mathrm{bp}_{4} 120-125^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film) 1668, 1624, 1577, 1449, 1296, 1220, $966 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.58-7.42 (5H, m, Ph), $7.10(1 \mathrm{H}$, dq, J 15.0, 7.0, H-3), 6.93 (1H, d, J 15.0, H-2), 2.03 (3H, d, J 7.0, H-4); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 190.1 (C-1), 145.1, 143.5, 137.9, 132.6, 128.5, 128.2, 18.6 (Me); m/z (CI) 164 $\left[\mathrm{MNH}_{4}\right]^{+}, 147[\mathrm{MH}]^{+}, 131$; in agreement with published data. ${ }^{3}$

(E)-1-Chloronon-3-en-2-ol (S2a)

Octen-2-al S1a ($1.49 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure B to afford (E)-1-chloronon-3-en-2-ol S2a (1.42 g, 81\%) as a colourless oil after purification over silica gel (20\% ether/petrol): $v_{\text {max }}$ (film) 3354, 1671, 972, 760, $730 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.84(1 \mathrm{H}, \mathrm{dt}, J 15.5,7.5, \mathrm{H}-4), 5.48$ ($1 \mathrm{H}, \mathrm{ddt}, J 15.5$, $7.5,1.5, \mathrm{H}-3), 4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, [3.65 (1H, dd, J 11.0, 3.5) and $3.52(1 \mathrm{H}, \mathrm{dd}, J 11.0$,
7.5), H-1], 2.08 (1H, m, H-5), 1.45-1.29 (6H, m, H-6,7,8), 0.91 (3H, t, J 6.5, H-9); δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 135.2 (C-4), 127.9 (C-3), 72.4 (C-2), 50.0 (C-1), 32.2 (C-5), 31.3 (C-6), 28.6 (C-7), 22.5 (C-8), 14.0 (C-9); m/z (CI) $194\left[\mathrm{MNH}_{4}\right]^{+}, 176[\mathrm{M}]^{+}$(Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 194.1313. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 194.1312) (Found: C, 61.08; H, 9.72. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClO}$ requires $\mathrm{C}, 61.18 ; \mathrm{H}, 9.70$).

(E)-1-Chloro-2-methylnon-3-en-2-ol (S2b)

3-Nonen-2-one S1b ($936 \mathrm{mg}, 6.68 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{B} to afford (E)-1-chloro-2-methylnon-3-en-2-ol S2b (1.17 g, 92\%) as a colourless oil after purification over silica gel (20% TBME/petrol): $v_{\text {max }}$ (film) 3411 , $1669,1457,1376,973,745 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.80(1 \mathrm{H}, \mathrm{dt}, J 15.5,6.5, \mathrm{H}-$ 4), 5.53 (1H, dt, $J 15.5,1.0, \mathrm{H}-3$), 3.55 ($2 \mathrm{H}, \mathrm{AB}$ quartet, $J 10.0, \mathrm{H}-1$), 2.10 ($2 \mathrm{H}, \mathrm{dt}, J$ 13.0, 6.5, H-5), 1.39 (3H, s, 2-Me), 1.40-1.30 (6H, m, H-6,7,8), 0.92 (3H, t, J 7.0, H9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 132.8(\mathrm{C}-3), 131.3(\mathrm{C}-4), 72.0(\mathrm{C}-2), 54.7(\mathrm{C}-1), 32.2(\mathrm{C}-$ 5), 31.3 (C-6), 28.8 (C-7), 25.6 (2-Me), 14.1 (C-9); m/z (CI) $190\left[\mathrm{MNH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 177$, 172 [M-OH] ${ }^{+}, 137$ (Found: $\left[\mathrm{MNH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 190.1363 . \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}{ }^{-}\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 190.1357$).

(E)-1-Chloro-2-methylpent-3-en-2-ol (S2c)

3-Penten-2-one S1c ($2.44 \mathrm{~mL}, 25.0 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{B} to afford (E)-1-chloro-2-methylpent-3-en-2-ol S2c (1.18 g, 35\%) as a colourless oil after purification over silica gel (20% ether/petrol): $v_{\text {max }}$ (film) $3419,1671,1450,968,801,743 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.82(1 \mathrm{H}, \mathrm{dq}, J 15.5$, $6.5, \mathrm{H}-4), 5.55$ (1H, d, J 15.5, H-3), 3.53 (2H, AB quartet, J 15.0, H-1), 2.16 (1H, s (br), OH), 1.74 (3H, dd, J 6.5, 1.5, H-5), 1.38 (3H, s, 2-Me); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 134.1 (C-3), 125.9 (C-4), 72.0 (C-2), 54.6 (C-1), 25.5 (C-5), 17.8 (2-Me); m/z (CI) $136[\mathrm{M}-\mathrm{H}]^{+}, 134\left[\mathrm{MNH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 100$ (Found: $\left[\mathrm{MNH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 134.0739. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 134.0737).

(E)-1-Chloro-4-cyclohexyl-2-methylbut-3-en-2-ol (S2d)

(E)-4-(Cyclohexyl)-but-3-en-2-one S2d ($508 \mathrm{mg}, 3.94 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{B} to afford (E)-1-chloro-4-cyclohexyl-2-methylbut-3-en-2-ol S2d (562 mg, 84\%) as a colourless oil after purification over silica gel (10% ether/hexane): $v_{\max }$ (film) $3430,1668,1449,1373,1263,970,745 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.75$ (1H, dd, J 15.5, 7.5, H-4), 5.46 (1H, dd, J 15.5, 1.5, H-3), 3.53 (2H, AB quartet, J 11.0, H-1), 2.18 (1H, s (br), OH), 2.04-1.95 (1H, m, H-5), 1.781.65 ($5 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.39 (3H, s, 2-Me), 1.38-1.05 (5H, m, cyclohexyl); δ_{C} (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.9$ (C-4), 130.3 (C-3), 72.0 (C-2), 54.7 (C-1), 40.3 (C-5), 32.8, 26.1, 26.0 (cyclohexyl), 25.7 (2-Me); m/z (CI) 222, $220\left[\mathrm{MNH}_{4}\right]^{+}, 204,202[\mathrm{M}]^{+}, 187,185$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 220.1473. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 220.1468) (Found: C, 65.13; $\mathrm{H}, 9.36 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClO}$ requires $\mathrm{C}, 65.17$; $\mathrm{H}, 9.45$).

(E)-1-Chloro-4-phenylbut-3-en-2-ol (S2e)

Cinnamaldehyde S1e ($1.50 \mathrm{~g}, 11.35 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure B to afford (E)-1-chloro-4-phenylbut-3-en-2-ol S2e (2.06 g, 99\%) as a colourless oil after purification over silica gel (10% ether/petrol): $v_{\text {max }}$ (film) 3390, 3026, 1659, 1598, 1578, 1494, 1449, 1296, 1071, 967, 754, $693 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz, CDCl_{3}) 7.43 (2H, d, J 7.5, o-Ph), 7.37 (2H, dd, J 13.5, 7.5, m-Ph), 7.31 (1H, dd, J 13.5, 6.5, p-Ph), 6.76 (1H, d, J 15.5, H-4), 6.24 (1H, dd, J 15.5, 6.0, H-3), 4.57 (1H, dt, $J 7.0,6.0, \mathrm{H}-2)$, [3.57 (1H, dd, J 11.0, 3.5) and 3.64 (1H, dd, J 11.0, 6.5), H-1]; δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 136.1 (i-Ph), 132.8 (C-4), 128.7 ($m-\mathrm{Ph}$), 128.2 ($p-\mathrm{Ph}$), 127.2 (C3), 126.7 (o-Ph), 72.3 (C-2), 49.7 (C-1); m/z (CI) $200\left[\mathrm{MNH}_{4}\right]^{+}, 182[\mathrm{M}]^{+}, 165$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 200.0842 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 200.0842); in agreement with published data. ${ }^{4}$

(E)-1-Chloro-2-methyl-4-(pyridin-2-yl)but-3-en-2-ol (S2f)

(E)-4-(Pyridin-2-yl)-but-3-en-2-one S1f ($1.00 \mathrm{~g}, 6.80 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{B} to afford (E)-1-chloro-2-methyl-4-(pyridin-2-yl)but-3-en-2-ol S2f ($1.18 \mathrm{~g}, 88 \%$) as a yellow oil after purification over silica gel $(25 \%$

EtOAc, 5\% TEA/hexane): $v_{\max }$ (film) 3348, 1657, 1589, 1566, 1472, 1432, 1371, 977, $801,768,747 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.58(1 \mathrm{H}, \mathrm{d}, J 5.5,6$-pyridyl), $7.66(1 \mathrm{H}$, ddd, J 9.5, 8.0, 2.0, 4-pyridyl), 7.29 (1H, d, J 8.0, 3-pyridyl), 7.16 (1H, ddd, J 7.5, 5.0, 2.0, 5-pyridyl), 6.84 (2H, d, J 17.0, H-3, H-4), 3.67 (2H, AB quartet, J 11.0, H-1), $2.70(1 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{OH}), 1.29(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.7$ (2-pyridyl), 149.6 (6-pyridyl), 137.0 (C-4), 136.7 (4-pyridyl), 129.4 (C-3), 122.5 (5-pyridyl), 122.4 (3-pyridyl), 72.6 (C-2), 54.2 (C-1), 25.7 (2-Me); m/z (ESI) 201, 200, $198[\mathrm{MH}]^{+}$ (Found: $[\mathrm{MH}]^{+}$, 198.0680. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}$ requires $[\mathrm{MH}]^{+}$, 198.0686) (Found: C, 60.69; H, 6.03; N, 6.99. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}$ requires $\mathrm{C}, 60.76$; $\mathrm{H}, 6.12$; $\mathrm{N}, 7.09$).

(E)-1-Chloro-2-phenyl-pent-3-en-2-ol (S2g)

(E)-1-Phenylbut-2-en-1-one S1g ($1.89 \mathrm{~g}, 12.91 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{B} to afford (E)-1-chloro-2-phenyl-pent-3-en-2-ol S2g $(1.31 \mathrm{~g}, 52 \%)$ as a colourless oil after purification over silica gel (10% ether/hexane): $v_{\text {max }}$ (film) 3466, 1667, 1623, 1494, 1448, 1336, 1161, 1050, 967, 724, $699 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, o-\mathrm{Ph}), 7.40(2 \mathrm{H}, \mathrm{dd}, J 8.5,7.0, \mathrm{~m}-$ Ph), 7.32 (1H, dd, J 7.5, 7.0, p-Ph), 5.83-5.80 (2H, m, H-3 and H-4), 3.89 ($2 \mathrm{H}, \mathrm{AB}$ quartet, J 11.5, H-1), $2.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.78$ (3H, dd, J 5.0, 1.5, H-5); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 142.8 (i-Ph), 133.5, 128.5 (m-Ph), 128.4, 127.6, 125.6 (o-Ph), 75.9 (C-2), 54.0 (C-1), 17.8 (C-5); m/z (CI) 216, $214\left[\mathrm{MNH}_{4}\right]^{+}, 198,196[\mathrm{MH}]^{+}, 181,179$ (Found: [$\left.\mathrm{MNH}_{4}\right]^{+}$, 214.1003. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 214.0999) (Found: C, 67.24; H, 6.59. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}$ requires $\mathrm{C}, 67.18 ; \mathrm{H}, 6.66$).

(E)-2-(Hept-1-enyl)oxirane (4a)

Chlorohydrin S2a ($1.38 \mathrm{~g}, 7.82 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{C} to afford (E)-2-(hept-1-enyl)oxirane 4a ($1.06 \mathrm{~g}, 97 \%$) as a yellow oil: $v_{\text {max }}$ (film) 1669, 1466, 1369, 1245, 964, 835, 771, $727 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 5.98 (1H, dt, J 15.5, 6.5, H-4), 5.15 (1H, ddt, J 15.5, 8.0, 1.5, H-3), 3.34 (1H, ddd, J 8.0, 4.0, 3.0), [2.95 (1H, dd, J5.0, 4.0) and 2.67 (1H, dd, J 5.0, 3.0), H-1], 2.09 (2H, dt, J 7.5, 6.5, H-5), 1.46-1.38 (2H, m, H-6), 1.37-1.28 (4H, m H-7,8), 0.91 (3H, t, J
7.0, $\mathrm{H}-9$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.4(\mathrm{C}-4), 127.4(\mathrm{C}-3), 52.7(\mathrm{C}-2), 48.8(\mathrm{C}-1)$, 32.3 (C-5), 31.3 (C-7), 28.6 (C-6), 22.5 (C-8), 14.0 (C-9); m/z (CI) $158\left[\mathrm{MNH}_{4}\right]^{+}, 141$ $[\mathrm{MH}]^{+}, 123[\mathrm{M}-\mathrm{OH}]^{+}$(Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 158.1545 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 158.1545).

(E)-2-Methyl-2-(hept-1-enyl)oxirane (4b)

Chlorohydrin S2b ($1.12 \mathrm{~g}, 5.88 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure C to afford (E)-2-methyl-2-(hept-1-enyl)oxirane 4b (1.06 g, 40\%) as a colourless oil: $v_{\max }(f i l m) 1668,1585,1457,1379,968,905 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.81(1 \mathrm{H}, \mathrm{dt}, J 16.0,7.0, \mathrm{H}-4), 5.27(1 \mathrm{H}, \mathrm{dt}, J 16.0,1.5, \mathrm{H}-3),[2.82(1 \mathrm{H}, \mathrm{d}, J$ 5.0) and 2.75 (1H, d, J 5.0), H-1], 2.06 (2H, dt, J 8.0, 7.0, H-5), 1.46-1.23 (6H, m, H$6,7,8$), 0.90 (3H, t, J 7.5, H-9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.0$ (C-4), 130.9, (C-3), 55.8 (C-1), 55.6 (C-2), 32.4 (C-5), 31.4 (C-6), 28.8 (C-7), 22.5 (C-8), 19.7 (2-Me), 14.0 (C-9); m/z (CI) $155[\mathrm{MH}]^{+}$(Found: $[\mathrm{MH}]^{+}$, 155.1434. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ requires [MH] ${ }^{+}$, 155.1436).

(E)-2-Methyl-2-(prop-1-enyl)oxirane (4c)

Chlorohydrin S2c ($1.13 \mathrm{~g}, 8.40 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure C. Incomplete concentration under reduced pressure of the combined organic extracts afforded (E)-2-methyl-2-(prop-1-enyl)oxirane 4c (1.06 g of a colourless solution, $35 \% \mathrm{w} / \mathrm{w}$ in THF by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, 46%): $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.83$ (1H, dq, J 15.5, 6.5, H-4), 5.30 (1H, d, J 15.5, H-3), [2.81 (1H, d, J 5.0) and $2.75(1 \mathrm{H}, \mathrm{d}, J 5.0), \mathrm{H}-1], 1.75$ (3H, dd, $J 6.5,1.5, \mathrm{H}-5), 1.46$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$); δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 132.2 (C-3), 128.5 (C-4), 60.4 (C-2), 55.7 (C-1), 19.7 (2-Me), 17.8 (C-5).

2-[(E)-2-Cyclohexylethenyl]-2-methyloxirane (4d)

Chlorohydrin S2d ($0.533 \mathrm{~g}, 2.64 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure C to afford 2-[(E)-2-Cyclohexylethenyl]-2-methyloxirane 4d (431 mg,
98%) as a colourless oil: $v_{\text {max }}(f i l m)$ 1677, 1449, 1387, 1064, $968 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 5.75 (1H, dd, J 16.0, 6.5, H-4), 5.23 (1H, dd, J 16.0, 1.5, H-3), [2.82 (1H, d, J 5.0) and 2.75 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0$), $\mathrm{H}-1$], 2.03-1.96 (1H, m, H-5), [1.78-1.61 and 1.35-1.03 ($10 \mathrm{H}, \mathrm{m}$, cyclohexyl)], 1.46 (3H, s, 2-Me); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.5$ (C-4), 128.5 (C-3), 55.9 (C-1), 55.7 (C-2), 40.5 (C-5), 32.7, 26.1, 26.0, 19.7 (2-Me); m/z (CI) 184 $\left[\mathrm{MNH}_{4}\right]^{+}, 165[\mathrm{M}-\mathrm{H}]^{+}, 149$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 184.1700 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 184.1701).

(E)-2-Styryloxirane (4e)

Chlorohydrin S2e ($1.20 \mathrm{~g}, 6.59 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{C} to afford (E)-2-styryloxirane $\mathbf{4 e}\left(963 \mathrm{mg},>99 \%\right.$) as a yellow oil: $v_{\text {max }}$ (film) 3027, 1601, 1578, 1492, 1393, 1244, 1134, 1072, $965747,693 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz, CDCl_{3}) 7.43-7.27 (5H, m, Ph), 6.85 (1H, d, J 16.5, H-4), 5.91 (1H, dd, J 16.5, $7.5, \mathrm{H}-3), 3.56(1 \mathrm{H}$, ddd, $J 7.5,5.0,3.0, \mathrm{H}-2)$, [3.10 (1H, dd, J 5.5, 4.0) and $2.81(1 \mathrm{H}$, dd, J 5.0, 3.0), H-1]; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.3$ (i-Ph), 134.6 (C-4), 128.7, 128.1 (Ph), 127.0 (C-3), 126.5 (Ph), 52.7 (C-2), 49.3 (C-1); m/z (CI) 164 [$\left.\mathrm{MNH}_{4}\right]^{+}, 147$ $[\mathrm{MH}]^{+}, 129\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(Found: $[\mathrm{MH}]^{+}, 147.0812 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$ requires [MH] ${ }^{+}$, 147.0810); in agreement with published data. ${ }^{4}$

2-[(E)-2-(2-Methyloxiran-2-yl)ethenyl]pyridine (4f)

Chlorohydrin S2f ($1.16 \mathrm{~g}, 5.87 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure C to afford 2-[(E)-2-(2-Methyloxiran-2-yl)ethenyl]pyridine 4f (623 mg , 66%) as yellow oil: $v_{\max }($ film) 1654, 1555, 1387, 1305, 1150, 1065, 973, 907, 793, $766,742,611 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.57(1 \mathrm{H}, \mathrm{d}, J 5.0,6-$ pyridyl), $7.65(1 \mathrm{H}$, ddd, J 9.5, 8.0, 2.0, 4-pyridyl), 7.29 (1H, d, J 8.0, 3-pyridyl), 7.16 (1H, ddd, J 8.0, 5.0, 2.0, 5-pyridyl), [6.77 (1H, d, J 16.0) and 6.57 (1H, d, J 16.0), H-3,4], [2.94 (1H, d, J 5.0) and 2.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0$), $\mathrm{H}-1], 1.61$ (3H, s, 2-Me); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.8$ (2pyridyl), 149.6 (6-pyridyl), 136.6 (4-pyridyl), [135.2 and 131.3 (C-3 and C-4)], 122.4 (5-pyridyl), 121.7 (3-pyridyl), 55.3 (C-1), 55.7 (C-2), 19.7 (2-Me); m/z (ESI) 181,

180, $162[\mathrm{MH}]^{+}, 130$ (Found: $[\mathrm{MH}]^{+}$, 162.0912. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ requires $[\mathrm{MH}]^{+}$, 162.0919).

(E)-2-Methyl-2-styryloxirane (4g)

Chlorohydrin S2g ($1.26 \mathrm{~g}, 6.43 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{C} to afford (E)-2-Methyl-2-styryloxirane $\mathbf{4 g}$ ($1.01 \mathrm{~g}, 98 \%$): $v_{\text {max }}$ (film) $1681,1598,1495,1448,965,760,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44-7.32(5 \mathrm{H}, \mathrm{m}$, Ph), 5.73-5.70 (2H, m, CHCHMe), [3.14 (1H, d, J 5.5) and 3.00 ($1 \mathrm{H}, \mathrm{d}, J 5.5$), OCH_{2}], 1.77 (3H, dd, J 5.0, 2.0, Me); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 153.0 (i-Ph), 131.2, 130.4, 128.2 (o-Ph), 127.7 (p-Ph), 127.0 ($m-\mathrm{Ph}$), 60.1 (C-2), $56.7\left(\mathrm{OCH}_{2}\right), 17.8$ (Me); m / z (CI) $178\left[\mathrm{MNH}_{4}\right]^{+}, 161[\mathrm{MH}]^{+}, 143,105$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 178.1231 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 178.1232$).

(E)-2-Azidonon-3-en-1-ol (5a) and (E)-4-azidonon-2-en-1-ol (6a)

Oxirane 4a ($4.41 \mathrm{~g}, 31.5 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure D to afford a 73:27 mixture of (E)-2-azidonon-3-en-1-ol 5a and (E)-4-azidonon-2-en-1-ol 6a respectively ($4.04 \mathrm{~g}, 70 \%$) as a colourless oil after purification over silica gel (30\% TBME/petrol).

Data for the mixture: $v_{\max }\left(\right.$ film) 3352, 2101, 1667, 1462, 1240, $1072 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $201\left[\mathrm{MNH}_{4}\right]^{+}$, 191, 158, 126 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 201.1715. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 201.1715$.

NMR data for $5 \mathbf{a}: \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85(1 \mathrm{H}, \mathrm{dt}, J 15.5,6.5, \mathrm{H}-4), 5.40(1 \mathrm{H}, \mathrm{ddt}$, J 15.5, 8.0, 1.5, H-3), 4.03 (1H, dt, J 11.5, 5.0, H-2), [3.60 (1H, dd, J 11.5, 5.0) and 3.52 (1H, dd, J 11.5, 7.5), H-1], 2.09-2.11 (2H, m, H-5), 1.66 (2H, s (br), OH), 1.431.25 (12H, m, H-6,7,8), 0.89 (6H, t, J 7.0, H-9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 138.2, 123.4, 66.3, 65.0, 32.3, 31.2, 28.7, 22.4, 14.0.

NMR data for 6a: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.88$ ($1 \mathrm{H}, \mathrm{dt}, J 15.0,5.5, \mathrm{H}-2$), 5.66 (1H, ddt, J 15.5, 7.5, 1.5, H-3), 4.21 (2H, dd, J 5.5, 1.5, H-1), 3.85 (1H, dt, J 14.0, 7.5, H-4), 1.66 (2H, s (br), OH), 1.56-1.49 (2H, m, H-5), 1.43-1.25 (12H, m, H-6,7,8), 0.89
(6H, t, J 7.0, H-9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 132.9, 128.9, 64.0, 62.6, 34.5, 31.4, 35.5, 22.5, 14.0.
(E)-2-Azido-2-methylnon-3-en-1-ol (5b) and (E)-4-azido-2-methylnon-2-en-1-ol (6b)

Oxirane 4b (497 mg, 3.22 mmol , 1.0 equiv) was reacted according to general procedure \mathbf{D} to afford a 61:39 mixture of (E)-2-azido-2-methylnon-3-en-1-ol $\mathbf{5 b}$ and (E)-4-azido-2-methylnon-2-en-1-ol $\mathbf{6 b}$ respectively ($150 \mathrm{mg}, 25 \%$) as a colourless oil after purification over silica gel (20% TBME/hexane).

Data for the mixture: $v_{\max }($ film $) 3370,2102,1666,1456,1379,1247,1056 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $215\left[\mathrm{MNH}_{4}\right]^{+}, 172,155\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+}, 137$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 215.1872. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 215.1871).

NMR data for $\mathbf{5 b}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.82(1 \mathrm{H}, \mathrm{dt}, J 16.0,7.0, \mathrm{H}-4), 5.50(1 \mathrm{H}, \mathrm{dt}$, J 16.0, 2.0, H-3), 3.46 (2H, AB quartet, J 11.5, H-1), 2.11 (2H, dt, J 9.0, 7.0, H-5), $1.71-1.55$ ($1 \mathrm{H}, \mathrm{s}(\mathrm{br}$), OH), 1.40 (3H, s, 2-Me), 1.38-1.27 (6H, m, H-6,7,8), 0.99 (3H, $\mathrm{t}, J 6.5, \mathrm{H}-9) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.1$ (C-4), 128.5 (C-3), 69.3 (C-1), 66.1 (C-2), 32.5, 31.3, 28.9, 22.4 (2-Me), 20.2, 14.0 (C-9).

NMR data for $\mathbf{6 b}$: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0, \mathrm{H}-3), 4.22-4.15(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4$), 4.11 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 1.77 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $1.71-1.55$ ($1 \mathrm{H}, \mathrm{s}$ (br), OH), 1.38-1.27 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,6,7,8$), 0.99 (3H, t, J 6.5, H-9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 140.3$ (C-2), 122.7 (C-3), 67.7 (C-1), 59.4 (C-4), 35.0, 31.5, 25.5, 22.5 (2-Me), 14.3, 14.0 (C-9).
(E)-2-Azido-2-methylpent-3-en-1-ol (5c) and (E)-4-azido-2-methylpent-2-en-1-ol (6c)

A solution of oxirane $\mathbf{4 c}$ in THF ($6.36 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{D} to afford a 64:36 mixture of (E)-2-azido-2-methylpent-3-en-1-ol 5c and (E)-4-azido-2-methylpent-2-en-1-ol 6c respectively (634 mg, 71\%) as a colourless oil after purification over silica gel (20% ether/petrol).

Data for the mixture: $v_{\max }(f i l m) 3374,2105,1652,1449,1379,1250,1052,970 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 159\left[\mathrm{MNH}_{4}\right]^{+}, 116,114,96$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 159.1248. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 159.1246\right)$.

NMR data for $5 \mathrm{c}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85(1 \mathrm{H}, \mathrm{dq}, J 15.5,6.5, \mathrm{H}-4), 5.53(1 \mathrm{H}, \mathrm{dd}$, J 15.5, 1.5, H-3), 3.47 (2H, AB quartet, J 12.0, H-1), 1.80 (3H, dd, J 6.5, 1.5, H-5), 1.41 (3H, s, 2-Me); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 129.9$ (C-3), 128.6 (C-4), 69.2 (C-1), 67.5 (C-2), 20.1 (2-Me), 18.0 (C-5).

NMR data for 6c: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.46$ ($1 \mathrm{H}, \mathrm{dd}, J 9.5,1.5, \mathrm{H}-3$), 4.37 ($1 \mathrm{H}, \mathrm{dq}, ~ J$ 9.5, 6.5, H-4), 4.10 (2H, s, H-1), 1.77 (3H, s, 2-Me), 1.28 (3H, d, J 6.5, H-5); δ_{C} (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.5$ (C-2), 123.7 (C-3), 66.0 (C-1), 54.7 (C-4), 20.8 (C-Me), 14.1 (C5).
(E)-2-Azido-4-cyclohexyl-2-methylbut-3-en-1-ol (5d) and (E)-4-azido-4-cyclohexyl-2-methylbut-2-en-1-ol (6d)

Oxirane 4d (265 mg, 1.60 mmol , 1.0 equiv) was reacted according to general procedure \mathbf{D} to afford a 72:28 mixture of (E)-2-azido-4-cyclohexyl-2-methylbut-3-en-1-ol 5d and (E)-4-azido-4-cyclohexyl-2-methylbut-2-en-1-ol 6d respectively (196 mg , 59\%) as a colourless oil after purification over silica gel (15% ether/hexane).

Data for the mixture: $v_{\text {max }}$ (film) 3359, 2103, 1665, 1448, 1250, 1052, $970 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $227\left[\mathrm{MNH}_{4}\right]^{+}, 210[\mathrm{MH}]^{+}$, 184, 149 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 227.1870. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 227.1872$).

NMR data for $5 \mathbf{d}$: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.76(1 \mathrm{H}, \mathrm{dd}, J 15.5,6.5, \mathrm{H}-4), 5.45(1 \mathrm{H}, \mathrm{dd}$, J 15.5, 1.5, H-3), 3.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 2.08-0.85 (11H, m, cyclohexyl), 1.40 ($3 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.9$ (C-4), 125.9 (C-3), 69.3 (C-1), 42.4 (C-2), 40.7, 33.0, 32.9, 25.9, 20.2 .

NMR data for 6d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.47$ (1H, d, J 10.0, H-3), 4.12 (2H, d, J 4.0, H-1), 3.96 (1H, dd, J 10.0, 7.5, H-4), 2.08-0.85 (11H, m, cyclohexyl), 1.75 (3H, s, 2$\mathrm{Me}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 121.2$ (C-3), 67.7 (C-1), 65.9 (C-2), 64.6 (C-4), 29.5, 29.3, 26.3, 26.0, 14.3.

(E)-2-Azido-4-phenylbut-3-en-1-ol (5e)

Oxirane $4 \mathbf{e}$ ($950 \mathrm{mg}, 6.50 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure \mathbf{D} to afford (E)-2-azido-4-phenylbut-3-en-1-ol 5 e (739 mg, 60\%) as a yellow oil after purification over silica gel ($20 \% \mathrm{EtOAc} /$ hexane) : $v_{\text {max }}$ (film) 2109, $1650,1449,1246,1040,969,750,693 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$, p-Ph), 7.38 (2H, dd, J 8.0, 7.5, m-Ph), 7.35 (2H, d, J 7.5, o-Ph), 6.76 (1H, d, J 17.0, H-4), 6.18 (1H, dd, J 17.0, 8.0, H-3), 4.28 (1H, dt, J 8.0, 4.5, H-2), [3.76 (1H, dd, J $11.0,4.5$) and 3.67 ($1 \mathrm{H}, \mathrm{dd}, J 11.0,7.0$), $\mathrm{H}-1], 1.99$ ($1 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{OH}$); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 135.7$ (i-Ph), 135.4 (C-4), 128.7 (o-Ph), 128.5 ($\left.p-\mathrm{Ph}\right), 126.7$ ($m-\mathrm{Ph}$), 122.9 (C3), 66.3 (C-2), 65.0 (C-1); m/z (CI) $207\left[\mathrm{MNH}_{4}\right]^{+}, 189[\mathrm{M}]^{+}, 164,147$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 207.1247. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 207.1246); in agreement with published data. ${ }^{4}$

(E)-2-Azido-2-methyl-4-(pyridin-2-yl)but-3-en-1-ol (5f)

Oxirane 4 ($600 \mathrm{mg}, 3.73 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure \mathbf{D} to afford (E)-2-azido-2-methyl-4-(pyridin-2-yl)but-3-en-1-ol $5 \mathbf{f}$ (600 mg , 79%) as a colourless oil after purification over silica gel (20\% EtOAc/5\% TEA/hexane): $v_{\max }$ (film) 3339, 2105, 1656, 1590, 1473, 1260, 1153, 1061, 975, 766 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.55$ (1H, d, J 5.0, 6-pyridyl), 7.68 (1H, dt, J 7.5, 1.5, 4pyridyl), 7.32 (1H, d, J 7.5, 3-pyridyl), 7.19 (1H, dd, J 8.0, 7.5, 5-pyridyl), 6.81 (1H, d, J 16.0, H-4), 6.77 (1H, d, J 16.0, H-3), 3.64 (2H, dd, J 3.0, 2.5, H-1), 1.55 (3H, s, 2-Me); δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 154.4 (2-pyridyl), 149.6 (6-pyridyl), 136.8 (4-pyridyl), [133.3 and 131.2, (C-3) and (C-4)], 122.8 (5-pyridyl), 122.5 (3-pyridyl), 69.1 (C-1), 66.0 (C-2), 20.4 (2-Me); m/z (CI), 205 [MH] ${ }^{+}$, 164, 145, 102 (Found: [MH] ${ }^{+}$, 205.1081. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ requires [MH] ${ }^{+}$, 205.1076) (Found: C, 58.88; H, 5.87; N, 27.59. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ requires C, 58.81; H, 5.92; $\mathrm{N}, 27.43$).

(E)-4-Azido-2-methyl-4-phenylbut-2-en-1-ol (E-6g) and (Z)-4-azido-2-methyl-4-phenylbut-2-en-1-ol (Z-6g)

To a solution of oxirane $\mathbf{4 g}$ ($490 \mathrm{mg}, 3.06 \mathrm{mmol}, 1.0$ equiv) in acetone (10 mL) and water (3 mL) was added sodium azide ($597 \mathrm{mg}, 9.18 \mathrm{mmol}, 3.0$ equiv) in one portion. The reaction mixture was stirred at rt for 4 h , and ammonium chloride (500 mg) was added. The resulting mixture was stirred at rt for 10 min . Water (10 mL) was added and the mixture was concentrated under reduced pressure to remove acetone. The aqueous layer was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue over silica gel (10\% EtOAc/petrol) afforded a 75:25 mixture of (E)-4-azido-2-methyl-4-phenylbut-2-en-1-ol E-6g and (Z)-4-azido-2-methyl-4-phenylbut-2-en-1-ol Z-6g respectively ($461 \mathrm{mg}, 74 \%$) as a colourless oil.

Data for the mixture: $v_{\max }$ (film) 3366, 2101, 1492, 1446, 1238, 1074, $702 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $221\left[\mathrm{MNH}_{4}\right]^{+}, 210,178\left[\mathrm{MNH}_{4}-\mathrm{N}_{3}\right]^{+}, 161\left[\mathrm{MH}-\mathrm{N}_{3}\right]^{+}$(Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 221.1411. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 221.1402).

NMR data for $E-6 g: \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [7.47-7.38 (3H, m) and 7.19-7.17 $(2 \mathrm{H}$, m), Ph], 5.71 (1H, dt, J 10.0, 1.5, H-3), 4.36 (2H, s (br), H-1), 4.06 (1H, dq, J 10.0, $6.5, \mathrm{H}-4), 1.62$ ($1 \mathrm{H}, \mathrm{s}\left(\mathrm{br}\right.$), OH), 1.24 (3H, d, J 6.5, H-5); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 144.5, 136.9, 128.6, 128.5, 126.9, 125.6 (C-3), 66.9 (C-1), 55.4 (C-4), 20.6 (C-5).

NMR data for Z-6g: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [7.47-7.38 (3H, m) and 7.19-7.17 $(2 \mathrm{H}$, m), Ph], 5.47 (1H, d, J 9.0, H-3), 4.62 (2H, s (br), H-1), 4.59 (1H, dq, J 9.0, 7.0, H-4), 1.57 (1H, s (br), OH), 1.39 (3H, d, J 7.0, H-5); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 142.7, 139.6, 130.0 (C-3), 128.1, 127.9, 126.7, 60.1 (C-1), 54.7 (C-4), 20.8 (C-5).

(E)-2-(Hydroxymethyl)non-3-enenitrile (7) and (E)-non-3-ene-1,2-diol (8)

To a solution of oxirane $\mathbf{4 a}(1.19 \mathrm{~g}, 8.52 \mathrm{mmol}, 1.0$ equiv) in acetone (10 mL) and water (5 mL) was added potassium cyanide ($0.61 \mathrm{~g}, 9.37 \mathrm{mmol}, 1.1$ equiv) in one portion at rt . The resulting solution was stirred at rt for 30 min and heated to reflux for 16 h . The reaction mixture was cooled to rt and $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{mg})$ was added. After stirring for 10 min , the reaction mixture was concentrated under reduced pressure to
remove acetone and the residue was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue over silica gel (25% ether/petrol) afforded less polar (E)-2-(hydroxymethyl)non-3-enenitrile 7 ($271 \mathrm{mg}, 19 \%$) as a colourless oil: $v_{\max }$ (film) 3435, 2252, 1671, 1467, 1042, $973 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.84$ (1H, dt, J 15.5, 6.5, H-4), 5.55 (1H, ddt, J 15.5, 6.5, 2.0, H-3), 4.42 (1H, dt, J 6.5, 6.0, H-2), $2.60\left(2 \mathrm{H}\right.$, doublet of AB quartets, $\left.J 16.5,6.0, \mathrm{CH}_{2}\right), 2.33(1 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{OH}), 2.08(2 \mathrm{H}$, dt, J 7.5, 6.5, H-5), 1.44-1.27 (6H, m, H-6,7,8), 0.91 (3H, t, J 7.0, H-9); δ_{C} (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 135.3 (C-4), 129.2 (C-3), 117.4 (CN), 68.7 (C-2), 32.0 (C-5), 31.3 (C6), 28.5 (C-7), 26.3 (C-1), 22.5 (C-8), 14.0 (C-9); m/z (CI) 185 [MNH $]^{+}$, 52 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 185.1660. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 185.1654) (Found: C, 71.89; H, 10.26; $\mathrm{N}, 8.43 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 71.81 ; \mathrm{H}, 10.25$; $\mathrm{N}, 8.37$); and more polar (E)-non-3-ene-1,2-diol 8 ($82 \mathrm{mg}, 6 \%$) as a colourless oil: $v_{\max }$ (film) 3433, 1671, 1456, $1074,1027,971 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.77(1 \mathrm{H}, \mathrm{dt}, J 15.5,6.5, \mathrm{H}-4), 5.44(1 \mathrm{H}$, dd, J 15.5, 6.5, H-3), 4.19 (1H, dt, J 7.0, 3.5, H-2), [3.62 (1H, dd, J 11.0, 3.5) and 3.47 (1H, dd, J 11.0, 8.0), H-1], 3.02 (1H, s (br), OH), 2.04 (2H, dt, J 7.5, 7.0, H-5), 1.42-1.24 (6H, m, H-6,7,8), 0.90 (3H, t, J 7.0, H-9); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.2$ (C4), 128.2 (C-3), 73.2 (C-2), 66.6 (C-1), 32.3 (C-5), 31.4 (C-6), 28.7 (C-7), 22.5 (C-8), 14.0 (C-9); m/z (CI) $176{\left[M N H_{4}\right]}^{+}, 158[\mathrm{MH}]^{+}, 96$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 176.1653$. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 176.1651$).

Ethyl 4-azido-3-ethenylnonanoate (9a)

A 73:27 mixture of allylic azides $\mathbf{5 a}$ and $\mathbf{6 a}$ respectively ($100 \mathrm{mg}, 0.546 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{E} to afford ethyl 4-azido-3ethenylnonanoate 9a (137 mg, 99\%, 50:50 syn:anti mixture of diastereomers) as a colourless oil without further purification: $v_{\max }$ (film) 2102, 1736, 1641, 1465, 1257, $923 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [5.74 (1H, ddd, $\left.J 17.0,10.0,4.0\right)$, and $5.65(1 \mathrm{H}, \mathrm{ddd}$, J 17.0, 10.0, 4.0), syn+anti CHCH_{2}), 5.19-5.13 (4H, m, syn+anti CHCH_{2}), [4.14 (2H, q, J 7.5) and $4.15(2 \mathrm{H}, \mathrm{q}, J 7.5)$, syn+anti $\left.\mathrm{OCH}_{2}\right],[3.84-3.43(1 \mathrm{H}, \mathrm{m})$ and 3.26-3.06 (1H, m), syn+anti H-4], 2.77-2.69 (2H, m, syn+anti H-3), [2.56 (2H, dd, J 15.0, 5.0) and 2.41 (2H, dd, J 15.0, 8.0), syn+anti H-2], 1.62-1.32 (16H, m, syn+anti H-5,6,7,8), [1.27 (3H, t, J 7.5), and 1.26 (3H, t, J 7.5), syn+anti $\mathrm{OCH}_{2} \mathrm{CH}_{3}$], 0.91 (6H, t, J 6.0
syn+anti $\mathrm{H}-9)$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.0(\mathrm{C}-1)$, [137.2 and 135.6, $\left(\mathrm{CHCH}_{2}\right)$], [118.3 and 117.8, $\left(\mathrm{CHCH}_{2}\right)$], [65.8 and 65.3, (C-4)], $60.5\left(\mathrm{OCH}_{2}\right)$, [44.9 and 44.5, (C3)], [37.0 and 36.3, (C-2)], 32.2, 32.0, 31.5, 26.0, 25.8, 22.5, 14.2, 14.0; m/z (CI) 271 $\left[\mathrm{MNH}_{4}\right]^{+}, 254[\mathrm{MH}]^{+}, 226$ (Found: $[\mathrm{MH}]^{+}, 254.1858 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires [MH] ${ }^{+}$, 254.1869).

Ethyl 4-azido-3-(prop-1-enyl)nonanoate (9b)

A 61:39 mixture of allylic azides $\mathbf{5 b}$ and $\mathbf{6 b}$ respectively ($88 \mathrm{mg}, 0.446 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{E} to afford ethyl 4-azido-3-(prop-1-enyl)nonanoate 9b ($86 \mathrm{mg}, 72 \%, 59: 41$ syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (10% ether/hexane).

Data for the mixture: $v_{\max }(f i l m)$ 2012, 1733, 1648, 1464, 1379, 1273, 1123, 1073, $899 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $285\left[\mathrm{MNH}_{4}\right]^{+}, 268[\mathrm{MH}]^{+}, 240$ (Found: $[\mathrm{MH}]^{+}, 268.2025$ $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires [MH] ${ }^{+}$, 268.2025).

NMR data for syn-9b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.94\left(1 \mathrm{H}, \mathrm{t}, J 1.5\right.$, trans- $\left.\mathrm{CMeCH}_{2}\right), 4.86$ (1 H , s (br), cis- CMeCH_{2}), 4.15 ($2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}$), $3.44-3.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.81$ (1H, dt, J 8.0, 6.0, H-3), 2.49 (2H, dd, J 15.0, 9.0, H-2), 1.80 (3H, s, Me), 1.60-1.25 (8H, m, H-5,6,7,8), 1.27 (3H, t, J 7.0, OCH CH_{3}), 0.93 (6H, t, J 6.5, H-9); $\delta_{\mathrm{C}}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.1(\mathrm{C}-1), 143.4\left(\mathrm{CMeCH}_{2}\right), 114.5\left(\mathrm{CMeCH}_{2}\right), 65.1(\mathrm{C}-4), 60.5$ $\left(\mathrm{OCH}_{2}\right), 47.0(\mathrm{C}-3), 35.7,31.7,31.6,26.2,22.5,21.0,14.0$.

NMR data for anti-9b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.93\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.5\right.$, trans- $\left.\mathrm{CMeCH}_{2}\right), 4.86$ (1H, s (br), cis-CMeCH ${ }_{2}$), $4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right), 3.24(1 \mathrm{H}, \mathrm{dt}, J 8.0,3.0, \mathrm{H}-4)$, 2.67 (1H, dt, J 8.0, 5.0, H-3), 2.57 (2H, dd, J 15.0, 6.0, H-2), 1.74 (3H, s, Me), 1.601.25 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,6,7,8$), 1.26 (3H, t, J 7.0, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 0.93 ($6 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{H}-9$); δ_{C} $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.2(\mathrm{C}-1), 143.8\left(\mathrm{CMeCH}_{2}\right), 114.3\left(\mathrm{CMeCH}_{2}\right), 64.6(\mathrm{C}-4), 60.4$ $\left(\mathrm{OCH}_{2}\right), 47.9$ (C-3), 36.3, 32.5, 31.5, 25.9, 22.5, 20.1, 14.2.

Ethyl 4-azido-3-(prop-1-enyl)pentanoate (9c)

A 64:36 mixture of allylic azides $5 \mathbf{c}$ and $\mathbf{6 c}$ respectively ($88 \mathrm{mg}, 0.446 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{E} to afford ethyl 4-azido-3-(prop-1-enyl)pentanoate 9c ($86 \mathrm{mg}, 86 \%, 60: 40$ syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (10% ether/hexane).

Data for the mixture: $v_{\text {max }}$ (film) 2101, 1736, 1650, 1446, 1378, 1258, $1034 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $229\left[\mathrm{MNH}_{4}\right]^{+}, 212[\mathrm{MH}]^{+}$, 184, 117 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 229.1666. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 229.1665\right)$.

NMR data for syn-9c: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.93\left(1 \mathrm{H}, \mathrm{t}, J 1.5\right.$, trans- $\left.\mathrm{CMeCH}_{2}\right), 4.83$ (1H, s (br), cis-CMeCH2), 4.13 ($2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}$), $3.64(1 \mathrm{H}, \mathrm{dq}, J 13.0,6.0, \mathrm{H}-4)$, 2.74-2.69 (1H, m, H-3), 2.56-2.36 (2H, m, H-2), 1.78 (3H, s, CMeCH $), 1.27(3 \mathrm{H}, \mathrm{t}$, $J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.25 (3H, d, J 6.0, H-5); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.2$ (C-1), 139.3 $\left(\mathrm{CMeCH}_{2}\right), 116.7\left(\mathrm{CMeCH}_{2}\right), 60.1\left(\mathrm{OCH}_{2}\right), 46.6(\mathrm{C}-4), 43.9(\mathrm{C}-3), 34.8(\mathrm{C}-2), 20.3$ $\left(\mathrm{CMeCH}_{2}\right), 14.3(\mathrm{C}-5), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

NMR data for anti-9c: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.89\left(1 \mathrm{H}, \mathrm{t}, J 1.5\right.$, trans- $\left.\mathrm{CMeCH}_{2}\right), 4.83$ (1H, s (br), cis-CMeCH ${ }_{2}$), 4.12 (2H, q, J 7.0, OCH 2), 3.40 (1H, dq, J 9.0, 6.5, H-4), 2.74-2.69 (1H, m, H-3), 2.56-2.36 (2H, m, H-2), 1.72 (3H, s, CMeCH $)$, 1.26 (3H, t, $\left.J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.7(\mathrm{C}-1), 139.9$ $\left(\mathrm{CMeCH}_{2}\right), 116.0\left(\mathrm{CMeCH}_{2}\right), 60.0\left(\mathrm{OCH}_{2}\right), 47.0(\mathrm{C}-4), 44.0(\mathrm{C}-3), 33.4(\mathrm{C}-2), 20.3$ $\left(\mathrm{CMeCH}_{2}\right), 14.3(\mathrm{C}-5), 13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl 4-azido-4-cyclohexyl-3-(prop-1-enyl)pentanoate (9d)

A 63:37 mixture of allylic azides $\mathbf{5 d}$ and $\mathbf{6 d}$ respectively ($50 \mathrm{mg}, 0.239 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{E} to afford ethyl 4-azido-4-cyclohexyl-3-(prop-1-enyl)pentanoate 9d ($86 \mathrm{mg}, 94 \%, 63: 37$ syn:anti mixture of diastereomers) as a colourless oil without further purification.

Data for the mixture: $v_{\max }(f i l m) 2099,1738,1647,1449,1256,1156,1038,899 \mathrm{~cm}^{-1}$; m / z (CI) $297\left[\mathrm{MNH}_{4}\right]^{+}, 280[\mathrm{MH}]^{+}, 252$ (Found: $[\mathrm{MH}]^{+}, 280.2018 \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.[\mathrm{MH}]^{+}, 280.2025\right)$.

NMR data for syn-9d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [4.92 $(1 \mathrm{H}, \mathrm{s})$ and $4.88(1 \mathrm{H}, \mathrm{s})$, CMeCH_{2}], $4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{OCH}_{2}\right), 3.17-3.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.82(1 \mathrm{H}, \mathrm{dt}, J 10.0$, 4.5, H-3), 2.63-2.42 (2H, m, H-2), 1.75 (3H, s, CMeCH_{2}), 1.70-1.10 ($11 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.28-1.23 (3H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.2$ (C-1), 143.7 $\left(\mathrm{CMeCH}_{2}\right), 114.3\left(\mathrm{CMeCH}_{2}\right), 71.4(\mathrm{C}-4), 60.4\left(\mathrm{OCH}_{2}\right), 45.0(\mathrm{C}-3), 40.6(\mathrm{C}-5), 36.0$ (C-2), 31.3, 27.1, 26.0, 20.0, 14.2.

NMR data for anti-9d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [4.93 $(1 \mathrm{H}, \mathrm{s})$ and $4.90(1 \mathrm{H}, \mathrm{s})$, CMeCH_{2}], $4.14\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right), 3.17-3.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.93(1 \mathrm{H}, \mathrm{dt}, J 9.0,6.5$, $\mathrm{H}-3), 2.63-2.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMeCH}_{2}\right), 1.70-1.10(11 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.28-1.23 (3H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.9$ (C-1), 143.6 $\left(\mathrm{CMeCH}_{2}\right), 115.1\left(\mathrm{CMeCH}_{2}\right), 70.8(\mathrm{C}-4), 60.5\left(\mathrm{OCH}_{2}\right), 44.5(\mathrm{C}-3), 40.3(\mathrm{C}-5), 36.8$ (C-2), 31.1, 27.8, 26.3, 26.1, 20.5, 14.2.

Ethyl 3-(1-azidoethyl)-4-phenylpent-4-enoate (9g)

A 75:25 mixture of allylic azide $E-6 \mathbf{g}$ and $Z-6 \mathbf{g}$ respectively ($100 \mathrm{mg}, 0.492 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure \mathbf{E} to afford ethyl 3-(1-azidoethyl)-4-phenylpent-4-enoate 9 g ($100 \mathrm{mg}, 75 \%, 50: 50$ syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (5\% ether/hexane): $v_{\text {max }}(f i l m) 2105,1734,1631,1256,1176,1037 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-$ 7.33 ($10 \mathrm{H}, \mathrm{m}$, syn+anti Ph), [5.41 ($2 \mathrm{H}, \mathrm{d}, ~ J 3.0$) and 5.19 ($2 \mathrm{H}, \mathrm{s}$ (br)), syn+anti $\left.\mathrm{CPhCH}_{2}\right]$, [4.17 (2H, q, J 7.0) and $4.03(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0)$, syn+anti $\left.\mathrm{OCH}_{2}\right]$, [3.65 (1H, dq, $J 6.5,4.5)$ and $3.54(1 \mathrm{H}, \mathrm{dq}, J 7.0,6.5)$, syn+anti $\left.\left.\mathrm{CHN}_{3}\right)\right]$, [3.46 (1H, dt, J 6.5, 5.5) and $3.21(1 \mathrm{H}, \mathrm{dt}, J 6.5,5.5)$, syn+anti $\left.\left.\mathrm{CHCPhCH}_{2}\right)\right], 2.84-2.63(4 \mathrm{H}, \mathrm{m}$, syn+anti $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), [1.27 (3H, t, J 7.0) and 1.24 (3H, t, J 7.0), syn+anti $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$], [1.27 (3H, d, J 6.5) and 1.16 (3H, d, J 6.5), syn+anti Me)]; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) [172.3 and 172.1 (syn+anti $\mathrm{C}=\mathrm{O}$)], [149.2 and 148.1 (syn+anti CPhCH_{2})], [142.3 and 142.2 (syn+anti i-Ph)], [128.5, 128.4, 127.8, 127.7, 126.9 and 126.7 (syn+anti Ph)], [115.1 and 114.8 (syn+anti CPhCH_{2})], [60.7 and $60.6\left(\right.$ syn+anti $\left.\mathrm{OCH}_{2}\right)$], [60.6 and 58.9 (syn+anti CHN_{3})], [46.0 and 44.7 (syn+anti $\mathrm{CHCPhCH}_{2}$)], [36.1 and 34.4 (syn+anti $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$], [18.0 and 15.1 (syn+anti Me)], 14.2 (syn+anti $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); m/z (CI) 291
$\left[\mathrm{MNH}_{4}\right]^{+}, 274[\mathrm{MH}]^{+}, 246,205$ (Found: $[\mathrm{MH}]^{+}$, 274.1563. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.[\mathrm{MH}]^{+}, 274.1556\right)$.

Ethyl 4-azido-4-(pyridin-2-yl)-3-(prop-1-enyl)pentanoate (9f)

Allylic azide $\mathbf{5 f}(80 \mathrm{mg}, 0.392 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure \mathbf{E} to afford an impure sample of ethyl 4-azido-4-(pyridin-2-yl)-3-(prop-1enyl)pentanoate $\mathbf{9 f}$ ($4 \mathrm{mg},<4 \%, 77: 23$ syn:anti mixture of diastereomers) as a brown oil after purification over silica gel (10\% ether/5\% TEA/petrol).

NMR data for syn-9f inter alia: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0,6$-pyridyl), 7.78-7.67 (1H, m, 4-pyridyl), 7.34-7.19 (2H, m, 3,5-pyridyl), 4.80 (1H, s, transCMeCH_{2}), 4.77 ($1 \mathrm{H}, \mathrm{s}$, cis- CMeCH_{2}), 4.58 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-4$), $4.20-4.05$ ($2 \mathrm{H}, \mathrm{m}$, OCH_{2}), 3.26, 1H, dd, J 8.0, $5.0, \mathrm{H}-3$), [2.73 (1H, dd, $J 14.5,4.0$) and $2.59(1 \mathrm{H}, \mathrm{dd}, J$ 14.5, 9.5), H-2], 1.69 (3H, s, CMeCH_{2}), 1.31-1.23 (3H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 149.7 (6-pyridyl), 136.8 (4-pyridyl), $114.5\left(\mathrm{CMeCH}_{2}\right), 68.9$ (C-4), 60.4 $\left(\mathrm{OCH}_{2}\right), 47.4(\mathrm{C}-3), 35.5(\mathrm{C}-2), 20.3\left(\mathrm{CMeCH}_{2}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

NMR data for anti-9f inter alia: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.63(1 \mathrm{H}, \mathrm{d}, J 5.0,6$-pyridyl), 7.78-7.67 (1H, m, 4-pyridyl), 7.34-7.19 (2H, m, 3,5-pyridyl), 5.00 (1H, s, trans$\left.\mathrm{CMeCH}_{2}\right), 4.96\left(1 \mathrm{H}, \mathrm{s}\right.$, cis- CMeCH_{2}), $4.51(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}-4), 4.20-4.05(2 \mathrm{H}, \mathrm{m}$, OCH_{2}), 3.35-3.28 (1H, m, H-3), [2.34 (1H, dd, J 15.0, 10.0) and 2.21 (1H, dd, J 15.0, 5.0), $\mathrm{H}-2], 1.83$ (3H, CMeCH_{2}), $1.31-1.23$ (3H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 149.5 (6-pyridyl), 136.7 (4-pyridyl), 69.1 (C-4), $60.4\left(\mathrm{OCH}_{2}\right), 47.4$ (C-3), 20.9 $\left(\mathrm{CMeCH}_{2}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

5-Methyl-4-(prop-1-enyl)pyrrolidin-2-one (10)

Procedure using polystyrene- $P \mathrm{Ph}_{3}$:
To a solution of ester 9c ($51 \mathrm{mg}, 0.242 \mathrm{mmol}, 1.0$ equiv) in THF ($242 \mu \mathrm{~L}$) in a $0.2-$ 0.5 mL microwave vial was added polystyrene supported diphenylphosphine (286 mg of a $1.10 \mathrm{mmol} / \mathrm{g}$ resin, $0.314 \mathrm{mmol}, 1.3$ equiv) and water ($5.6 \mu \mathrm{~L}, 0.314 \mathrm{mmol}, 1.3$ equiv). The vial was flushed with nitrogen gas and capped. After heating by
microwave at $120{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was cooled and filtered, washing the resin with dichloromethane (15 mL). The filtrate was concentrated under reduced pressure and the residue purified over silica gel (20-30 \% EtOAc/dichloromethane) to afford 5-methyl-4-(prop-1-enyl)pyrrolidin-2-one 10 (33 mg, 87\% 60:40 syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (20-30 \% EtOAc/dichloromethane).

Data for the mixture: $v_{\max }$ (film) 3321, 1693, $1652 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 157\left[\mathrm{MNH}_{4}\right]^{+}, 140$ $[\mathrm{MH}]^{+}$(Found: $[\mathrm{MH}]^{+}$, 140.1081. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}$ requires $[\mathrm{MH}]^{+}$, 140.1075).

NMR data for syn-10: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.81(1 \mathrm{H}, \mathrm{s}$, trans$\left.\mathrm{CMeCH}_{2}\right) 4.76\left(1 \mathrm{H}, \mathrm{s}\right.$, cis- CMeCH_{2}), 3.85 ($1 \mathrm{H}, \mathrm{dq}, J 7.0,6.0, \mathrm{H}-5$), 3.06 ($1 \mathrm{H}, \mathrm{dt}, J$ 10.0, 7.0, H-4), [2.43 (1H, dd, J 17.0, 4.0) and 2.23 (1H, dd, J 17.0, 8.0), H-3], 1.73 (3H, s, CMeCH_{2}), 0.97 (3H, d, J 6.0, 5-Me); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.5$ (C-2), 143.2 $\left(\mathrm{CMeCH}_{2}\right), 112.5\left(\mathrm{CMeCH}_{2}\right), 51.7(\mathrm{C}-5), 45.6(\mathrm{C}-4), 32.6(\mathrm{C}-3), 21.9\left(\mathrm{CMeCH}_{2}\right)$, 16.5 (5-Me).

NMR data for anti-10: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.93(1 \mathrm{H}, \mathrm{s}$, trans$\mathrm{CMeCH}_{2}$), 4.81 (1H, s, cis-CMeCH2), 3.59 (1H, dq, J 7.0, 6.0, H-5), 2.57 (1H, dt, J 9.5, 7.0, H-4), [2.45 (1H, dd, J 16.5, 4.5) and 2.32 (1H, dd, J 16.5, 10.0), H-3], 1.72 (3H, s, CMeCH_{2}), 1.21 (3H, d, J 6.0, 5-Me); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.9$ (C-2), 141.9 $\left(\mathrm{CMeCH}_{2}\right), 112.4\left(\mathrm{CMeCH}_{2}\right), 53.6(\mathrm{C}-5), 50.7(\mathrm{C}-4), 36.0(\mathrm{C}-3), 20.7\left(\mathrm{CMeCH}_{2}\right)$, 19.7 (5-Me).

Following an alternative procedure using PMe_{3}, epimerisation of the mixture occurred:

To a mixture of ester 9c ($85 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv, 60:40 syn:anti mixture of diastereomers) and water ($6.5 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5$ equiv) was added trimethylphosphine (0.66 mL of a 1 M solution in THF, $0.66 \mathrm{mmol}, 1.5$ equiv) dropwise via syringe at rt. The resulting solution was stirred until TLC (20\% ether/petrol) confirmed consumption of the starting material. Water (5 mL) was added and the mixture was extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford 5-methyl-4-
(prop-1-enyl)pyrrolidin-2-one 10 (33 mg, 59\% 45:55 syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (20-30 \% EtOAc/dichloromethane).

(E)-2-Azidonon-3-enyl 2-tosylacetate (11a) and (E)-4-azidonon-2-enyl 2tosylacetate (12a)

A 73:27 mixture of allylic azides $\mathbf{5 a}$ and $\mathbf{6 a}$ respectively ($1.00 \mathrm{~g}, 5.46 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford a 58:42 mixture of the esters (E)-2-azidonon-3-enyl 2-tosylacetate 11a and (E)-4-azidonon-2-enyl 2tosylacetate 12a (2.05 g , 99\%) respectively as a colourless oil after purification over silica gel (25% ether/petrol).

Data for the mixture: $v_{\text {max }}($ film $) 2932,2099,1747,1598,1455,1330,1152,1085$, $975,814,728,646, \mathrm{~cm}^{-1} ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.2,162.1,138.7,133.2,129.9$, $128.5,125.9,128.5,125.9,122.3,67.1,65.5,63.5,62.0,60.8,34.2,32.2,31.4,31.2$, 28.5, 25.4, 22.5, 22.4, 21.7, 14.0; m/z (CI) $397\left[\mathrm{MNH}_{4}\right]^{+}, 352,243$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 397.1926. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 397.1910$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 11a: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85-7.81(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ts}), 7.39-7.37$ (2H, m, m-Ts), 5.82 (1H, dt, J 15.0, 7.0, H-4), 5.31 (1H, ddt, J 15.0, 7.0, 1.5, H-3), 4.62 (2H, d, J 5.0, H-1), 4.13 (2H, d, J 5.0, CH2Ts), 4.10-3.90 (1H, m, H-2), 2.47 (3H, s, TsMe), 2.10-2.15 (2H, m, H-5), 1.57-1.28 (6H, m, H-6,7,8), 0.89 (3H, t, J 7.5, H-9).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 12b: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85-7.81(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ts}), 7.39-7.37$ (2H, m, m-Ts), 5.74-5.65 (2H, m, H-2,3), 4.62 (2H, d, J 5.0, H-1), 4.13 (2H, d, J 5.0, $\mathrm{CH}_{2} \mathrm{Ts}$), 3.82 ($1 \mathrm{H}, \mathrm{dt}, J 14.0,7.0, \mathrm{H}-4$), 2.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{TsMe}$), $1.57-1.28$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 5,6,7,8), 0.89 (3H, t, J 7.5, H-9).

(E)-2-Azido-2-methylnon-3-enyl 2-tosylacetate (11b) and (E)-4-azido-2-methylnon-2-enyl 2-tosylacetate (12b)

A 61:39 mixture of allylic azides $\mathbf{5 b}$ and $\mathbf{6 b}$ respectively ($795 \mathrm{mg}, 4.03 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford a 65:35 mixture of the esters (E)-4-azido-2-methylnon-3-enyl 2-tosylacetate 12b and (E)-2-azido-2-methylnon-2-enyl 2-tosylacetate 11b respectively ($1.09 \mathrm{~g}, 69 \%$) as a colourless oil after purification over silica gel (20% ether/petrol).

Data for the mixture: $v_{\max }$ (film) 2099, 1745, 1673, 1597, 1454, 1331, 1157, 1085, $831,727 \mathrm{~cm}^{-1} ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.2,162.1,145.6,145.5,135.8,134.5,134.1$, 130.2, 129.9, 129.34, 129.1, 128.5, 127.7, 127.3, 70.7, 70.4, 62.9, 61.0, 60.8, 59.1, 34.7, 33.6, 32.4, 31.5, 31.2, 28.8, 27.7, 26.1, 25.4, 22.5, 21.7, 20.9, 14.4; m/z (CI) 411 $\left[\mathrm{MNH}_{4}\right]^{+}, 366,207,137$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 411.2074. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 411.2066\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 12b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 7.84(2 \mathrm{H}, \mathrm{d}, J 7.5, o-\mathrm{Ts}), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.5, m-T s), 5.42$, ($1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}-3$), 4.16 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ts}$), 4.02 ($2 \mathrm{H}, \mathrm{AB}$ quartet, J 11.0, H-1), 2.48 (3H, s, TsMe), 1.72 (3H, d, J 1.5, 2-Me), 1.63-1.26 (8H, m, H5,6,7,8), 0.91 (6H, t, J 7.0, H-9).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 11b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 7.83(2 \mathrm{H}, \mathrm{d}, J 7.5, o-\mathrm{Ts}), 7.40(2 \mathrm{H}, \mathrm{d}, J$ 7.5, m-Ts), 5.79 (1H, dt, J 15.5, 7.0, H-4), 5.40 (1H, d, J 15.5, H-3), 4.57 (2H, s, $\mathrm{CH}_{2} \mathrm{Ts}$), 4.14-4.11 (2H, m, H-1), 2.48 (3H, s, TsMe), 2.09 (2H, dt, J 7.5, 7.0, H-5), 1.63-1.26 (6H, m, H-6,7,8), 1.35 (3H, s, 2-Me), 0.91 (6H, t, J 7.0, H-9).

(E)-2-Azido-2-methylpent-3-enyl 2-tosylacetate (11c) and (E)-4-azido-2-methylpent-2-enyl 2-tosylacetate (12c)

A 64:36 mixture of allylic azides $\mathbf{5 c}$ and $\mathbf{6 c}$ respectively ($300 \mathrm{mg}, 2.13 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford a 70:30 mixture of (E)-4-azido-2-methylpent-3-enyl 2-tosylacetate 12c and (E)-2-azido-2-methylpent-2-enyl 2-tosylacetate 11c respectively ($667 \mathrm{mg}, 97 \%$) as a colourless oil after purification over silica gel (30\% ether/petrol).

Data for the mixture: $v_{\max }$ (film) 2102, 1744, 1664, 1597, 1450, 1328, 1152, 1085, $813,727 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.2,162.1,145.6,145.55,135.9,133.9$, 130.4, 130.0, 129.1, 128.6, 128.3, 70.7, 70.3, 63.0, 61.1, 60.9, 54.5, 32.4, 30.5, 25.9, 24.8, 21.8, 20.8, 20.3, 18.0, 14.3; m/z (CI) $355\left[\mathrm{MNH}_{4}\right]^{+}$, 310, 295, 201 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 355.1446 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 355.1440$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 12c: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{d}, J 7.5, o-\mathrm{Ts}), 7.00(2 \mathrm{H}, \mathrm{d}, J$ $7.5 \mathrm{~m}-\mathrm{Ts}$), 5.44 ($1 \mathrm{H}, \mathrm{d}, J$ 9.5, H-3), 4.33 ($1 \mathrm{H}, \mathrm{dq}, J 9.5,7.0, \mathrm{H}-4$), 4.17 ($2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ts}$), 3.98 (2H, s, H-1), 2.46 (3H, s, TsMe), 1.68 (3H, d, J 1.5, 2-Me), 1.24 (3H, d, J 7.0, H-5).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 11c: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, o-\mathrm{Ts}), 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.5 \mathrm{~m}-\mathrm{Ts}$), 5.83 ($1 \mathrm{H}, \mathrm{dq}, J 15.5,6.5, \mathrm{H}-4$), 5.45 ($1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}-3$), 4.56 ($2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ts}$), 4.16 (2H, s, H-1), 2.46 (3H, s, TsMe), 1.32 (3H, s, 2-Me), 1.21 (3H, d, J 6.5, H-5).
(E)-2-Azido-4-cyclohexyl-2-methylbut-3-enyl 2-tosylacetate (11d) and (E)-4-azido-4-cyclohexyl-2-methylbut-2-enyl 2-tosylacetate (12d).

A 72:28 mixture of allylic azides $\mathbf{5 d}$ and $\mathbf{6 d}$ respectively ($618 \mathrm{mg}, 2.96 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford a 68:32 mixture of (E)-4-azido-4-cyclohexyl-2-methylbut-3-enyl 2-tosylacetate 12d and (E)-2-azido-4-cyclohexyl-2-methylbut-2-enyl 2-tosylacetate 11d respectively (1.10 g, 92\%) as a colourless oil after purification over silica gel (20% ether/petrol).

Data for the mixture: $v_{\text {max }}$ (film) 2096, 1742, 1650, 1598, 1450, 1329, 1152, 1085, 813, 727, 697, $603 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 162.2, 145.6, 145.5, 140.1, 135.8, 135.7, 134.6, 129.9, 128.5, 128.4, 128.3, 127.9, 125.9, 125.2, 70.7, 70.5, 64.4, 64.3, 62.9, 61.0, 42.3, 40.6, 32.9. 32.8, 29.5, 26.3, 25.9, 25.8, 21.7, 20.9, 14.5; m/z (ESI) 428 [MNa] ${ }^{+}$, 378, 309, 149 (Found: $[M N a]^{+}$, 428.1635. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires [MNa] ${ }^{+}$, 428.1620).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 12d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84(2 \mathrm{H}, \mathrm{d}, J 7.5, o-\mathrm{Ts}), 7.39(2 \mathrm{H}, \mathrm{d}, J$ $7.5, m-T s), 5.45(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}-3), 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ts}\right), 4.02$ ($2 \mathrm{H}, \mathrm{AB}$ quartet, J
11.5, H-1), 3.91 (1H, dd, J 9.5, 8.0, H-4), 4.28 (3H, s, TsMe), [1.77-1.58 and $1.45-$ 0.88 (11H, m, cyclohexyl)], 1.71 (3H, s, 2-Me).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for 11d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84(2 \mathrm{H}, \mathrm{d}, J 7.5, o-\mathrm{Ts}), 7.39(2 \mathrm{H}, \mathrm{d}, J$ $7.5, \mathrm{~m}-\mathrm{Ts}$), 5.73 (1H, dd, J 16.0, 7.0, H-4), 5.36 (1H, d, J 16.0, H-3), 4.58 (2H, s, $\mathrm{CH}_{2} \mathrm{Ts}$), 4.15-4.12 (2H, m, H-1), 4.28 (3H, s, TsMe), 2.05-1.96 (1H, m, A-5), [1.771.58 and $1.45-0.88$ ($10 \mathrm{H}, \mathrm{m}$, cyclohexyl)], 1.34 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$).

(E)-2-Azido-4-phenylbut-3-enyl 2-tosylacetate (11e)

Allylic azide 5 ($500 \mathrm{mg}, 2.64 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford (E)-2-azido-4-phenylbut-3-enyl 2-tosylacetate 11e (1.03 g, 97\%) as a colourless oil after purification over silica gel (15% EtOAc/hexane): $v_{\text {max }}$ (film) 2109, 1747, 1598, 1328, 1151, 1085, 971, 814, 754, 695, $646 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz, CDCl_{3}) 7.81 (2H, d, J 8.5, o-Ts), 7.40-7.28 (5H, m, Ph), 7.34 (2H, d, J 8.5, mTs), 6.69 (1H, d, J 16.0, H-4), 6.04 (1H, dd, J 16.0, 7.5, H-3), 4.28-4.20 (1H, m, H-2), 4.14 (2H, s, CH2Ts), 4.13-4.07 (2H, m, H-1), 2.42 (3H, s, TsMe); δ_{C} (101 MHz , CDCl_{3}) 162.2, 145.6, 135.9 (C-4), 135.7, 135.3, 129.9, 128.8, 128.7, 128.6, 126.8 (mTs), 121.7 (C-3), 67.0 (C-2), 62.2 ($\mathrm{CH}_{2} \mathrm{Ts}$), 60.9 (C-1), 21.7 (TsMe); m/z (CI) 403 $\left[\mathrm{MNH}_{4}\right]^{+}, 355,244,212$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 403.1445. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 403.1440\right)$.

(E)-2-Azido-2-methyl-4-(pyridin-2-yl)but-3-enyl 2-tosylacetate (11f)

Allylic azide $5 \mathbf{f}$ ($532 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford (E)-2-azido-2-methyl-4-(pyridin-2-yl)but-3-enyl 2-tosylacetate 11 f ($259 \mathrm{mg}, 52 \%$) as a yellow oil after purification over silica gel (30\% EtOAc/5\% TEA/hexane): $v_{\text {max }}$ (film) 2106, 1748, 1586, 1329, 1151, 1085, 970, $768 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz, CDCl_{3}) 8.61 (1H, d, J 5.0, 6-pyridyl), 7.85 (2H, d, J 8.0, o-Ts), 7.70 (1H, dt, J 7.5, 2.0, 4-pyridyl), 7.38 (2H, d, J 8.0, m-Ts), 7.35 (1H, d, J 7.5, 3-pyridyl), 7.22 (1H, dd, J 7.5, 5.0, 5-pyridyl), 6.79 (1H, d, J 16.0, H-4), 6.73 (1H, d, J 16.0, H-3), 4.19 (2H, s, CH2Ts), 4.17 (2H, d, J 2.0, H-1), 2.47 (3H, s, TsMe), 1.53 (3H, s, 2-Me); δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.1 (C=O), 154.0 (2-pyridyl), 149.7 (6-pyridyl), 145.6, 136.8
(4-pyridyl), 135.7, [131.8 and 131.7 (C-3) and [C-4)], 130.0 (m-Ts), 128.5 (o-Ts), 123.0 (5-pyridyl) 122.7 (3-pyridyl), 7.05 (C-1), 63.1 ($\mathrm{C}-2$), $60.9\left(\mathrm{CH}_{2} \mathrm{Ts}\right), 21.7$ (TsMe), 21.0 (2-Me); m/z (CI) $401[\mathrm{MH}]^{+}, 360,188$ (Found: $[\mathrm{MH}]^{+}$, 401.1276. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.[\mathrm{MH}]^{+}, 401.1284\right)$.

(E)-4-Azido-2-methyl-4-phenylbut-2-enyl 2-tosylacetate (E-12g) and (Z)-4-azido-2-methyl-4-phenylbut-2-enyl 2-tosylacetate (Z-12g)

Allylic azide $\mathbf{6 g}$ ($212 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{F} to afford a 75:25 mixture of (E)-4-azido-2-methyl-4-phenylbut-2-enyl 2tosylacetate E-12g and (Z)-4-azido-2-methyl-4-phenylbut-2-enyl 2-tosylacetate Z-12g respectively ($313 \mathrm{mg}, 75 \%$) as a colourless oil after purification over silica gel (25% ether/hexane).

Data for the mixture: $v_{\text {max }}(f i l m)$ 2101, 1742, 1598, 1329, 1151, $1055,814 \mathrm{~cm}^{-1} ; \delta_{\mathrm{C}}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.3 (Z C-1), 162.1 (E C-1), 148.5, 138.9, 138.4, 136.4, 136.0, 135.8, 135.7, 133.6, 129.9, 129.6, 128.7, 128.6, 128.5, 128.4, 128.2, 126.4, 69.1 (E С1), 62.4 ($\mathrm{Z} \mathrm{C-1}$), 60.9 (E and $Z \mathrm{CH}_{2} \mathrm{Ts}$), 55.2 ($E \mathrm{C}-4$), 54.9 ($\mathrm{Z} \mathrm{C-4}$), 21.7 (E and Z TsMe), 20.7 (Z C-5), 20.4 (E C-5); m/z (ESI) $423[\mathrm{MHNa}]^{+}, 422[\mathrm{MNa}]^{+}, 417,394$, 196, 143 (Found: [MNa$]^{+}$, 422.1153. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires [MNa] ${ }^{+}$, 422.1150).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for $E-\mathbf{1 2 g}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{~m}-\mathrm{Ts}), 7.43-7.35$ (5H, m, Ph), 7.17 (2H, d, J 8.5, o-Ts), 5.72 (1H, dt, J 9.5, 1.5, H-3), 4.83 (2H, d, J 1.5, $\mathrm{H}-1$), 4.13 (2H, s, CH2Ts), 4.05 (1H, dq, J 9.5, 6.5, H-4), 2.48 (3H, s, TsMe), 1.25 (3H, d, J 6.5, H-5).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for $\mathrm{Z-12g}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77$ (2H, d, J 8.5, m-Ts), 7.43-7.35 (5H, m, Ph), 7.33 (2H, d, J 8.5, o-Ts), 5.93 (1H, d, J 9.5, H-3), 5.09 (2H, AB quartet, J 12.5, H-1), 4.54 ($1 \mathrm{H}, \mathrm{dq}, J 9.5,6.5, \mathrm{H}-4$), $4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ts}\right), 2.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Z}$ TsMe), 1.36 (3H, d, J 6.5, H-5).

1-[(3-Azido-2-ethenyloctane)sulfonyl]-4-methylbenzene (14a)

A 58:42 mixture of allylic azides 11a and 12a respectively ($50 \mathrm{mg}, 0.132 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{G} to afford 1-[(3-azido-2-ethenyloctane)sulfonyl]-4-methylbenzene 14a ($38 \mathrm{mg}, 86 \%, 84: 16$ syn:anti mixture of diastereomers) as a white solid after purification over silica gel ($2-10 \%$ ether/petrol).

An alternative one-step procedure gave 14a in a lower yield:

N, N-bis(trimethylsilyl)acetamide ($0.484 \mathrm{~mL}, 1.98 \mathrm{mmol}$, 5.0 equiv), a $58: 42$ mixture of allylic azides 11a and 12a respectively ($150 \mathrm{mg}, 0.396 \mathrm{mmol}, 1.0$ equiv) and potassium acetate ($4 \mathrm{mg}, 0.396 \mathrm{mmol}$, 0.1 equiv) were combined in a $0.2-0.5 \mathrm{~mL}$ microwave vial. The vial was flushed with nitrogen, sealed and heated under microwave irradiation at $170^{\circ} \mathrm{C}$ for two cycles of 5 min . The reaction mixture was concentrated under reduced pressure and the residue was purified over silica gel (2$10 \%$ ether/petrol) to afford 1-[(3-azido-2-ethenyloctane)sulfonyl]-4-methylbenzene 14a ($42 \mathrm{mg}, 32 \%, 84: 16$ syn:anti mixture of diastereomers) as a white solid. Repeated purification over silica gel ($2-10 \%$ ether/petrol) followed by recrystallisation (EtOAc/petrol) afforded an analytical sample of syn-14a and an analytical sample enriched in anti-14a.

Data for syn-14a: m.p $72-74{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film) 2902, 2100, 1456, 1142, 880, 771, 706, $670 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81(2 \mathrm{H}, \mathrm{d}, J 8.5, o-\mathrm{Ts}), 7.39(2 \mathrm{H}, \mathrm{d}, J 8.5, m-\mathrm{Ts})$, 5.60 (1H, ddd, J 17.0, 10.0, 8.5, CHCH 2), 5.17 (1H, d, J 10.0, trans-CHCH ${ }_{2}$), 5.12 (1H, d, J 17.0, cis-CHCH ${ }_{2}$), 3.70 (1H, ddd, J 8.5, 5.5, 3.0, H-3), [3.40 (1H, dd, J 14.0, 7.0) and 3.15 (1H, dd, J 14.0, 6.0), H-1], 2.90 (1H, dddd, J 12.5, 9.5, 6.0, 3.0, H-2), 2.48 (3H, s, TsMe), 1.62-1.31 (8H, m, H-4,5,6,7), 0.92 (3H, t, J 6.0, H-8); $\delta_{\mathrm{C}}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.9$ (Ts), 136.9 (Ts), 133.7 (CHCH_{2}), 130.0 ($\mathrm{m}-\mathrm{Ts}$), 128.0 (o-Ts), 119.5 (CHCH_{2}), 64.3 (C-3), 58.1 (C-1), 42.5 (C-2), 32.2 (C-4), 31.5 (C-5), 25.8 (C-6), 22.5 (C-7), 21.7 (TsMe), 14.0 (C-8); m/z (CI) 353 [$\left.\mathrm{MNH}_{4}\right]^{+}, 310,226,174,152 ; \mathrm{m} / \mathrm{z}$ (CI) $353\left[\mathrm{MNH}_{4}\right]^{+}, 310,226,152$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 353.2020 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}$, 353.2011) (Found: C, 60.95; H, 7.47; N, 12.48. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C , 60.87; H, 7.51; N, 12.53).

NMR data for anti-14a: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79$ (2H, d, J 8.0, o-Ts), 7.38 (2H, d, J $8.0, m-T s), 5.68$ (1 H, ddd, J 17.5, 10.0, 8.5, CHCH 2), 5.17 ($1 \mathrm{H}, \mathrm{d}, J 10.0$, trans$\mathrm{CHCH}_{2}$), 5.16 (1H, d, J 17.5, cis- CHCH_{2}), 3.41-3.36 (1H, m, H-3), [3.31 (1H, dd, J $14.5,3.5$) and 3.20 ($1 \mathrm{H}, \mathrm{dd}, J 14.5,9.0$), H-1], 2.80-2.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 2.48 ($3 \mathrm{H}, \mathrm{s}$, TsMe), 1.63-1.28 (8H, m, H-4,5,6,7), 0.91 (3H, t, J 7.0, H-8); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 144.4 (Ts), 135.9 (Ts), $135.5\left(\mathrm{CHCH}_{2}\right), 129.9$ (m-Ts), 128.1 ($\left.o-\mathrm{Ts}\right), 118.9\left(\mathrm{CHCH}_{2}\right)$, 65.8 (C-3), 56.9 (C-1), 43.0 (C-2), 31.6 (C-4), 31.4 (C-5), 25.3 (C-6), 22.4 (C-7), 21.7 (TsMe), 13.6 (C-8).

1-\{[3-Azido-2-(prop-1-en-2-yl)octane]sulfonyl\}-4-methylbenzene (14b)

A 68:32 mixture of allylic azides $\mathbf{1 2 b}$ and $\mathbf{1 1 b}$ respectively ($161 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{H} to afford 1-\{[3-azido-2-(prop-1-en-2-yl)octane]sulfonyl\}-4-methylbenzene 14b (97 mg, 68\%, 68:32 syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (15% ether/petrol). Further purification over silica gel (10% ether/petrol) afforded an analytical sample of syn-14b and an analytical sample enriched in anti-14b.

Data for syn-14b: $v_{\max }$ (film) 2103, 1647, 1597, 1455, 1303, 1142, 1088, 899, $815 \mathrm{~cm}^{-}$ ${ }^{1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}, J 8.0, o-\mathrm{Ts}), 7.34(2 \mathrm{H}, \mathrm{d}, J 8.0, m-\mathrm{Ts}), 4.87(1 \mathrm{H}$, t, J 1.5, trans-CMeCH2), 4.78 (1H, s, cis-CMeCH2), 3.61 (1H, dt, J 7.0, 5.0, H-3), [3.37 (1H, dd, J 14.5, 6.5) and 3.19 (1H, dd, J 14.5, 6.5), H-1], 2.86 (1H, dt, J 6.5, 5.0, H-2), 2.43 (3H, s, TsMe), 1.64 (3H, s, CMeCH2), 1.49-1.23 (8H, m, H-4,5,6,7), 0.87 (3H, t, J 6.5, H-8); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 144.8, 141.4, 136.9, 129.9 (o-Ts), $128.0(\mathrm{~m}-\mathrm{Ts}), 116.4\left(\mathrm{CMeCH}_{2}\right), 64.2(\mathrm{C}-3), 57.1(\mathrm{C}-1), 44.7(\mathrm{C}-2), 32.3,31.5,26.2$, 22.5, 21.0, 14.0 (C-8); m/z (CI) $367\left[\mathrm{MNH}_{4}\right]^{+}, 350[\mathrm{MH}]^{+}, 324,240$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 367.2172 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 367.2168\right)$.

NMR data for anti-14b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.0, o-\mathrm{Ts}), 7.32(2 \mathrm{H}, \mathrm{d}$, J 8.0, o-Ts), 4.89 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.5$, trans- CMeCH_{2}), 4.83 ($1 \mathrm{H}, \mathrm{s}$, cis- CMeCH_{2}), [3.94 (1 H , dd, J 14.5, 3.0) and 3.27 (1H, dd, J 14.5, 8.0), H-1], 3.17-3.12 (1H, m, H-3), 2.60 (1H, ddd, J 10.0, 8.0, 3.0, H-2), 2.43 (3H, s, TsMe), 1.63 (3H, s, CMeCH2), 1.49-1.23 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,5,6,7$), 0.87 (3H, t, J 6.5, H-8); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 144.7, 141.8,
136.8, 129.8 ($o-\mathrm{Ts}$), 128.1 ($\mathrm{m}-\mathrm{Ts}$), $116.2\left(\mathrm{CMeCH}_{2}\right), 64.7$ (C-3), 56.2 (C-1), 45.8 (C2), 32.1, 31.4, 25.8, 21.6, 19.8, 14.0 (C-8).

1-[2-(1-Azidoethyl)-3-methylbut-3-ene-1-sulfonyl]-4-methylbenzene (14c)

A 70:30 mixture of allylic azides 12c and 11c respectively ($50 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{G} to afford 1-[2-(1-azidoethyl)-3-methylbut-3-ene-1-sulfonyl]-4-methylbenzene 14c ($36 \mathrm{mg}, 82 \%$, $91: 9$ syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (10% ether/petrol). Further purification over silica gel (10\% ether/petrol) afforded an analytical sample of syn-14c and an analytical sample enriched in anti-14c.

Data for syn-14c: $v_{\text {max }}$ (film) 2110, 1648, 1598, 1452, 1304, 1146, 1087, 871, $693 \mathrm{~cm}^{-1}$ ${ }^{1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, o-\mathrm{Ts}), 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, m-\mathrm{Ts}), 4.95(1 \mathrm{H}$, s, trans- CMeCH_{2}), $4.83\left(1 \mathrm{H}, \mathrm{s}\right.$, cis- CMeCH_{2}), $3.89(1 \mathrm{H}, \mathrm{dq}, J 6.5,5.0, \mathrm{H}-3)$, [3.40 (1H, dd, J 14.0, 6.0) and 3.25 (1H, dd, J 14.0, 7.0), H-1], 2.81 (1H, dt, J 6.0, 5.0, H2), 2.48 (3H, s, TsMe), 1.70 (3H, s, CMeCH2), 1.26 (3H, d, J 6.5, H-4); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 144.8, 141.2, 136.8, 129.8 ($\mathrm{m}-\mathrm{Ts}$), 128.0 ($o-\mathrm{Ts}$), $116.5\left(\mathrm{CMeCH}_{2}\right), 58.7(\mathrm{C}-3)$, 56.8 (C-1), 45.7 (C-2), 21.7 (TsMe), 21.1 (CMeCH_{2}), 16.9 (C-4); m/z (CI), 311 $\left[\mathrm{MNH}_{4}\right]^{+}, 294[\mathrm{MH}]^{+}, 268$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}$, 311.1542. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 311.1542\right)$.

NMR data for anti-14c inter alia: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, o-\mathrm{Ts})$, 7.37 ($2 \mathrm{H}, \mathrm{d}, ~ J 7.5, ~ m-T s), ~ 4.87\left(1 \mathrm{H}, \mathrm{s}\right.$, trans-CMeCH2), 4.54 ($1 \mathrm{H}, \mathrm{s}$, cis- CMeCH_{2}), 2.06-1.93 (1H, m, H-3), 1.05 (3H, d, J 7.0, H-4), $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 129.7$ (m-Ts), 128.1 (o-Ts).

1-\{2-[Azido(cyclohexyl)methyl]-3-methylbut-3-ene-1-sulfonyl\}-4-methylbenzene (14d)

A 65:35 mixture of allylic azides 12d and 11d respectively ($234 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{H} to afford 1-\{2-[azido(cyclohexyl)methyl]-3-methylbut-3-ene-1-sulfonyl\}-4-methylbenzene 14d (92
mg, 44\%, 82:18 syn:anti mixture of diastereomers) as a colourless gum after purification over silica gel (15\% ether/petrol).

Data for the mixture: $v_{\text {max }}($ film) 2100, 1646, 1597, 1449, 1302, 1143, 1087, 815, 761 $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) $379\left[\mathrm{MNH}_{4}\right]^{+}$, 336, 240, 184, 112 (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 379.2170$. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\left[\mathrm{MNH}_{4}\right]^{+}, 379.2168\right)$.

NMR data for syn-14d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.82$ (2H, d, J 8.5, o-Ts), 7.39 (2H, d, J 8.5, m-Ts), 4.90 ($1 \mathrm{H}, \mathrm{t}, J 1.5$, trans- CMeCH_{2}), 4.85 ($1 \mathrm{H}, \mathrm{s}$, cis- CMeCH_{2}), 3.85-3.42 (2H, m, H-1 and H-3), 3.21 (1H, dd, J 14.5, 6.0, H-1), 3.08 (1H, dt, J 7.5, 6.0, H-2), 2.49 (3H, s, TsMe), 1.89-1.07 (11H, m, cyclohexyl), 1.67 (3H, s, CMeCH2); $\delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.8 ($i-\mathrm{Ts}$), 141.9 ($p-\mathrm{Ts}$), 129.9 ($m-\mathrm{Ts}$), 128.1 ($o-\mathrm{Ts}$), 116.6 $\left(\mathrm{CMeCH}_{2}\right), 77.2\left(\mathrm{CMeCH}_{2}\right), 70.1(\mathrm{C}-3), 57.7(\mathrm{C}-1), 42.2(\mathrm{C}-2), 40.6,30.5,29.1,26.1$, 25.8, 20.8.

NMR data for anti-14d: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(2 \mathrm{H}, \mathrm{d}, J 8.5, o-\mathrm{Ts}), 7.37(2 \mathrm{H}, \mathrm{d}$, $J 8.5, m-T s), 4.95\left(1 \mathrm{H}, \mathrm{t}, J 1.5\right.$, trans-CMeCH ${ }_{2}$), $4.91\left(1 \mathrm{H}, \mathrm{s}\right.$, cis- $\left.\mathrm{CMeCH}_{2}\right), 3.43-3.29$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.08-3.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 2.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{TsMe}$), 1.891.07 ($11 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.70 (3H, s, CMeCH_{2}); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 144.6 (iTs), 136.9 (p-Ts), 129.7 ($m-\mathrm{Ts}$), 128.2 (o-Ts), $115.8\left(\mathrm{CMeCH}_{2}\right)$, $77.2\left(\mathrm{CMeCH}_{2}\right)$, 71.5 (C-3), 56.0 (C-1), 42.6 (C-2), 40.6, 30.8, 27.6, 25.7, 21.7, 20.0.

1-\{2-[Azido(phenyl)methyl]but-3-ene-1-sulfonyl\}-4-methylbenzene (14e)

Allylic azide 11e ($213 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.0$ equiv) was reacted according to general procedure \mathbf{H} to afford 1-\{2-[azido(phenyl)methyl]but-3-ene-1-sulfonyl\}-4methylbenzene 14e ($36 \mathrm{mg}, 22 \%$, $75: 25$ syn:anti mixture of diastereomers) after purification over silica gel (10% ether/petrol).

Data for the mixture: $v_{\max }$ (film) 2104, 1640, 1598, 1300, 1146, 1087, 755, $662 \mathrm{~cm}^{-1}$; m / z (CI) $359\left[\mathrm{MNH}_{4}\right]^{+}, 342[\mathrm{MH}]^{+}, 316,311,266$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 359.1546$. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 359.1542$).

NMR data for syn-14e: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81$ (2H, d, J 8.0, o-Ts), 7.38 (2H, d, J 8.0, m-Ts), $7.31-7.17$ (5H, m, Ph), 5.68 (1H, ddd, J 17.5, 10.0, 7.5, CHCH_{2}), 5.38
(1H, d, J 17.5, cis-CHCH 2), 5.19 (1H, d, J 10.0, trans-CHCH 2), 4.96 (1H, d, J 8.5, H3), [3.41 (1H, dd, J 14.5, 9.5) and 3.38 (1H, dd, J 14.5, 5.5), H-1], 3.24-3.18 (1H, m, $\mathrm{H}-2$), 2.48 (3H, s, TsMe); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.5,135.3,129.9,129.6,129.4$, 128.0, 127.9, 127.4, 127.3, 117.3, 67.8 (C-3), 56.7 (C-1), 45.7 (C-2), 21.7 (TsMe).

NMR data for anti-14e: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J 8.0, o-\mathrm{Ts}), 7.37(2 \mathrm{H}, \mathrm{d}, J$ 8.0, m-Ts), 7.31-7.17 (5H, m, Ph), 5.57 (1H, ddd, J 17.0, 10.0, 8.5, CHCH ${ }_{2}$), 5.10 (1H, d, J 10.0, trans-CHCH 2), 4.91 (1H, d, J 8.5, H-3), 4.85 (1H, d, J 17.0, cisCHCH_{2}), [3.26 (1H, dd, $J 14.5,7.0$) and $\left.3.10(1 \mathrm{H}, \mathrm{dd}, J 14.5,7.0), \mathrm{H}-1\right], 3.03-2.96$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), $2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{TsMe})$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inter alia 141.1, 133.9, 130.0, 128.5, 119.7, 65.5 (C-3), 57.3 (C-1), 44.7 (C-2), 21.1 (TsMe).

1-[2-(1-Azidoethyl)-3-phenylbut-3-ene-1-sulfonyl]-4-methylbenzene (14g)

A 75:25 mixture of allylic azides $E-\mathbf{1 2 g}$ and $Z-\mathbf{1 2 g}$ respectively ($297 \mathrm{mg}, 0.74 \mathrm{mmol}$, 1.0 equiv) was reacted according to general procedure \mathbf{G} to afford 1-[2-(1-azidoethyl)-3-phenylbut-3-ene-1-sulfonyl]-4-methylbenzene $\mathbf{1 4 g}$ ($87 \mathrm{mg}, 32 \%, 73: 27$ syn:anti mixture of diastereomers) as a colourless oil after purification over silica gel (10-40\% ether/hexane).

Data for the mixture: $v_{\max }$ (film) 2109, 1626, 1597, 1494, 1317, 1143, 1087, 907, 815, $779 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 373\left[\mathrm{MNH}_{4}\right]^{+}, 355[\mathrm{M}]^{+}, 330,178$ (Found: $\left[\mathrm{MNH}_{4}\right]^{+}, 373.1698$. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left[\mathrm{MNH}_{4}\right]^{+}, 373.1698$).

NMR data for syn-14g: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7 \square 82(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, o-\mathrm{Ts}), 7.38-7.32$ (7H, m-Ts, CPhCH 2), [5.43 (1H, s) and $\left.5.19(1 \mathrm{H}, \mathrm{s}), \mathrm{CPhCH}_{2}\right], 3.94(1 \mathrm{H}, \mathrm{dq}, 6.5,4.0$, H-3), 3.63-3.42 (3H, m, H-1,2), 2.48 (3H, s, TsMe), 1.15 (3H, d, J 6.5, H-4); $\delta_{\mathrm{C}}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 145.9\left(\mathrm{CPhCH}_{2}\right), 144.9,142.0,136.9,130.0,129.8,128.6,128.1$, 128.0, $117.0\left(\mathrm{CPhCH}_{2}\right), 58.8(\mathrm{C}-3), 57.1$ (C-1), 42.8 (C-2), 21.7 (TsMe), 16.2 (C-4).

NMR data for anti-14g: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75$ (2H, d, J 8.0, o-Ts), 7.38-7.32 ($7 \mathrm{H}, \mathrm{m}-\mathrm{Ts}, \mathrm{CPhCH}_{2}$), [5.12 $(1 \mathrm{H}, \mathrm{s})$ and $\left.5.39(1 \mathrm{H}, \mathrm{s}), \mathrm{CPhCH}_{2}\right], 3.63-3.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 1,3), 3.20 (1 H , ddd, J 9.0, 6.5, 3.0, H-2), 2.46 (3H, s, TsMe), 1.29 (3H, d, J 6.5, H4); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inter alia $147.1\left(\mathrm{CPhCH}_{2}\right), 141.1,128.5,127.9,127.0$, 126.5, 116.4 (CPhCH_{2}), 60.3 (C-3), 57.0 (C-1), 44.7 (C-2), 21.7 (TsMe), 17.7 (C-4).

[^0]
[^0]: ${ }^{1}$ M. Lautens, M. L. Maddess, E. L. O. Sauer and S. G. Ouelle, Org. Lett., 2002, 4, 83.
 ${ }^{2}$ T. Kourouli, P. Kefalas, N. Ragoussis and V. Ragoussis, J. Org. Chem., 2002, 67, 4615.
 ${ }^{3}$ M. Egi, Y. Yamaguchi, N. Fujiwara and S. Akai, Org. Lett., 2008, 10, 1867.
 4 R. R. Hung, J. A. Straub and G. M. Whitesides, J. Org. Chem., 1991, 56, 3849.

