Supporting information.

Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones.

Jonathan P. Hopewell, ${ }^{\text {a }}$ José E. D. Martins, ${ }^{\text {a }}$ Tarn C. Johnson, ${ }^{\text {a }}$ Jamie Godfrey ${ }^{\text {a }}$ and Martin Wills* ${ }^{\circ}$

Department of Chemistry, The University of Warwick, Coventry, CV4 7AL UK. Fax: (+44) 247652 3260; Tel: (+44) 247652 4112; E-mail: m.wills@warwick.ac.uk.

Contents:

1) Synthesis of ligands and applications to reduction reactions. S2
2) References. S10
3) NMR spectra of novel Ru cyclone complexes and precursors. S11
4) Shift reagent study on 7d to establish enantiomeric purity. S23

1) Synthesis of ligands and applications to reduction reactions:

General experimental details follow those previously reported. ${ }^{1}$

4-Phenyl-3-butyne-2-one $2^{1,2}$
n -BuLi (1.6 M in hexanes, $37.5 \mathrm{~cm}^{3}, 60 \mathrm{mmol}$) was added to phenyl acetylene (6.58 $\left.\mathrm{cm}^{3}, 6.12 \mathrm{~g}, 60 \mathrm{mmol}\right)$ in THF $\left(60 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture left to stir for 30 min. EtOAc ($5.86 \mathrm{~cm}^{3}, 5.29 \mathrm{~g}, 60 \mathrm{mmol}$) in THF $\left(90 \mathrm{~cm}^{3}\right)$ was added over 10 min followed by addition of $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}\left(9.03 \mathrm{~cm}^{3}, 10.15 \mathrm{~g}, 71.5 \mathrm{mmol}\right)$. The mixture was kept at $-78{ }^{\circ} \mathrm{C}$ for 30 min before being allowed to warm to room temperature and after 30 min was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}\left(100 \mathrm{~cm}^{3}\right)$. Following extraction with EtOAc ($2 \times 50 \mathrm{~cm}^{3}$) the organics were washed with brine $\left(50 \mathrm{~cm}^{3}\right)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the was solvent removed in vacuo. Short path distillation ($125{ }^{\circ} \mathrm{C}$, 5.7 mbar) afforded the ketone ${ }^{2}$ as a rich brown oil ($4.86 \mathrm{~g}, 33.8 \mathrm{mmol}, 56 \%$); m/z (ESI) $167[\mathrm{M}+23]^{+}, 145[\mathrm{M}+1]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{H}$ 145.0652, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}$ requires 145.0648); $v_{\max } 2195,2124,1665,1487,1355,1274$ and $1153 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 7.59-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.48-7.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.41-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 2.45 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 184.40(\mathrm{C}=\mathrm{O}), 132.88(\mathrm{CH}, \mathrm{Ar}) 130.60(\mathrm{CH}$, Ar), $128.49(\mathrm{CH}, \mathrm{Ar}), 119.73$ (ipso, Ar), $90.14(\mathrm{C} \equiv \mathrm{C}), 88.12(\mathrm{C} \equiv \mathrm{C}), 32.58\left(\mathrm{CH}_{3}\right)$.

1-(t-Butyldimethylsilyl)-2-(trimethylsilyl)ethyne. ${ }^{3}$
To trimethysilylacetylene $\left(10.0 \mathrm{~g}, 14.1 \mathrm{~cm}^{3}, 0.102 \mathrm{mmol}\right)$ in THF $\left(160 \mathrm{~cm}^{3}\right)$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}\left(40 \mathrm{~cm}^{3}, 2.5 \mathrm{M}, 0.1 \mathrm{mmol}, 0.98\right.$ eq.) at $-78^{\circ} \mathrm{C}$ over 5 min . After 15 min the $-78{ }^{\circ} \mathrm{C}$ ice bath was replaced with a $0{ }^{\circ} \mathrm{C}$ ice bath for 8 min after which the $-78{ }^{\circ} \mathrm{C}$ bath was again reinstated. To the reaction mixture was added $\operatorname{TBDMSCl}(15.07 \mathrm{~g}, 0.1$ mmol, 0.98 eq.) in THF ($20 \mathrm{~cm}^{3}$) over 15 min . The ice bath was subsequently removed and the reaction mixture allowed to warm to room temperature over night (18.5 h). In air the reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(100 \mathrm{~cm}^{3}\right)$ and extracted using $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 100 \mathrm{~cm}^{3}\right)$ the combined fractions were further washed
with brine $\left(40 \mathrm{~cm}^{3}\right)$ and dried over MgSO_{4}. Removal of the solvent in vacuo afforded a yellow oil ($20.619 \mathrm{~g}, 0.097 \mathrm{mmol}, 95 \%$ yield); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.91(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.14\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.58$ (quat., $\mathrm{C} \equiv \mathrm{C}$), 112.13 (quat., $\mathrm{C} \equiv \mathrm{C}$) $26.00\left(\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.43$ (quat., $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06$ $\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)-4.68\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-9.26\left(\mathrm{Si}_{\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}\right.$ -19.27 ($\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

4-(t-Butyldimethylsilyl)-but-3-yn-2-one. ${ }^{4}$

To a suspension of $\mathrm{AlCl}_{3}\left(4.059 \mathrm{~g}, 30.66 \mathrm{mmol}, 1.3\right.$ eq.) in $\operatorname{DCM}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 1-(t-butyldimethylsily)-2-(trimethylsilyl)ethyne ($5.00 \mathrm{~g}, 23.59$ mmol, 1 eq.) and acetylchloride ($1.68 \mathrm{~cm}^{3}, 1.85 \mathrm{~g}, 23.6 \mathrm{mmol} 1$ eq.) in $\operatorname{DCM}\left(32 \mathrm{~cm}^{3}\right.$) over 10 min at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature over $1 / 2$ hours before being cooled to $0{ }^{\circ} \mathrm{C}$ and quenched using $\mathrm{HCl}(\mathrm{aq})\left(1 \mathrm{~N}, 80 \mathrm{~cm}^{3}\right.$, $80 \mathrm{mmol})$ and extracted using DCM ($2 \times 20 \mathrm{~cm}^{3}$). The combined organic fractions were further washed with brine solution ($30 \mathrm{~cm}^{3}$) and dried over MgSO_{4}. Removal of the solvent in vacuo afforded a yellow oil ($3.66 \mathrm{~g}, 20.110 \mathrm{mmol}, 85 \%$ crude yield). Purification by column chromatography (hexane/EtOAc) afforded a colourless oil (3.1645g, $17.387 \mathrm{mmol}, 74 \%$ yield); m / z (ESI) $183.1[\mathrm{M}+1]^{+}, 205.0[\mathrm{M}+23]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{H}$ 183.1204. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}$ requires 183.1200); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{OCH}_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 184.14(\mathrm{C}=\mathrm{O}), 103.17(\mathrm{C} \equiv \mathrm{C}), 96.13(\mathrm{C} \equiv \mathrm{C}) 32.57\left(\mathrm{CH}_{3}, \mathrm{C}=\mathrm{OCH}_{3}\right) 25.89$ $\left(\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.47\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-5.27\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ; \quad \text { si }\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.37}\right.$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Racemic alcohol 11b. ${ }^{5}$

To 4-[(t-butyl)dimethylsilyl]-but-3-yn-2-one ($0.100 \mathrm{~g}, 0.55 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol $\left(3 \mathrm{~cm}^{3}\right)$ was added sodiumborohydride ($42 \mathrm{mg}, 1.10 \mathrm{mmol}, 2$ eq.) portion wise at 0 ${ }^{\circ} \mathrm{C}$. After 30 min the reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}\left(5 \mathrm{~cm}^{3}\right)$ and the methanol carefully evaporated and the remaining aqueous suspension extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined organic extractions were then dried over MgSO_{4} and
the solvent removed in vacuo to afford a colourless oil $(0.070 \mathrm{~g}, 0.3804 \mathrm{mmol}, 69 \%$ crude yield); m/z 207.1 [M +23] ${ }^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na}$ 207.1179. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NaOSi}$ requires 207.1176); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.53\left(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 1.78$ $(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 1.46\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11(6 \mathrm{H}, \mathrm{s}$,

3-(t-Butyldimethylsilyl)-1-phenyl-prop-2-yn-1-one.
To a suspension of $\mathrm{AlCl}_{3}\left(8.11 \mathrm{~g}, 61.32 \mathrm{mmol}, 1.3\right.$ eq.) in $\operatorname{DCM}\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 1-(t-butyldimethylsilyl)-2-(trimethylsilyl)ethyne (10.00 g , 47.17 mmol, 1 eq.) and benzoylchloride ($5.48 \mathrm{~cm}^{3}, 6.63 \mathrm{~g}, 47.2 \mathrm{mmol} 1$ eq.) in DCM $\left(75 \mathrm{~cm}^{3}\right)$ over 10 min at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature over 30 min . before being cooled to $0^{\circ} \mathrm{C}$ and quenched using $\mathrm{HCl}(\mathrm{aq})$ $\left(1 \mathrm{~N}, 150 \mathrm{~cm}^{3}, 150 \mathrm{mmol}\right)$ and extracted using DCM $\left(2 \times 40 \mathrm{~cm}^{3}\right)$. The combined organic fractions were further washed with brine solution $\left(60 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4}. Removal of the solvent in vacuo afforded a yellow oil ($11.07 \mathrm{~g}, 45.36 \mathrm{mmol}$, 96 \% crude yield). Purification by column chromatography (hexane/EtOAc) afforded a colourless oil ($8.43 \mathrm{~g}, 34.55 \mathrm{~mol}, 73.4 \%$ yield); m/z (ESI) $245.1[\mathrm{M}+1]^{+}, 267.0$ [M+23] ${ }^{+}$; (Found (ESI): M +H 245.1367. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{OSi}$ requires 245.1356); $\mathrm{v}_{\max }$ 2952, 2928, 2885, 2857, 2115, 1774 and $1643 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.15(2 \mathrm{H}, \mathrm{d}, J$ 8.2, Ar), 7.61 ($1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 7.48(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26$ (6H, s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.48$ (ipso, $\mathrm{C}=\mathrm{O}$), 136.53 (ipso, Ar), $134.08(\mathrm{CH}, \mathrm{Ar}), 129.51(\mathrm{CH}, \mathrm{Ar}), 128.91(\mathrm{CH}, \mathrm{Ar}), 101.61$ (quat., $\mathrm{C} \equiv \mathrm{C}), 99.26$ (quat., $\mathrm{C} \equiv \mathrm{C}$), $26.01\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.64$ (quat., $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.12\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.14\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Racemic alcohol 11d.

To 3-(t-butyldimethylsilyl)-1-phenyl-prop-2-yn-1-one, ($2.762 \mathrm{~g}, 11.32 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol ($80 \mathrm{~cm}^{3}$) was added sodium borohydride ($0.8603 \mathrm{~g}, 22.64 \mathrm{mmol}, 2 \mathrm{eq}$.) in

10 portions at $0{ }^{\circ} \mathrm{C}$. After 30 min the reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ ($135 \mathrm{~cm}^{3}$), the methanol carefully evaporated and the remaining aqueous suspension extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 67 \mathrm{~cm}^{3}\right)$. The combined organic extracts were then dried over MgSO_{4} and the solvent removed in vacuo to afford $\mathbf{1 1 d}$ as a colourless oil (1.41 $\mathrm{g}, 5.7317 \mathrm{mmol}, 51 \%$ crude yield); m/z 269.2 [M+23] ; (Found (ESI): M+Na 269.1333. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaOSi}$ requires 269.1332); $v_{\max } 3362(\mathrm{OH})$, 2926, 2857, 1671, 1446 and $1003 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.568(2 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{Ar}), 7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.47$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 0.99\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 140.36 (ipso, Ar), 128.49 (CH, Ar), 128.26 (CH, Ar), $126.70(\mathrm{CH}, \mathrm{Ar}), 105.69$ (quat., $\mathrm{C} \equiv \mathrm{C}$), 89.81 (quat., $\mathrm{C} \equiv \mathrm{C}$), $64.90\left(\mathrm{CH}(\mathrm{OH})\right.$), $26.03\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.50$ (quat., $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.71\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-7.64\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

1-(Triisopropylsilyl)-2-(trimethylsilyl)-ethyne. ${ }^{6}$

To trimethysilylacetylene $(10.385 \mathrm{~g}, 0.1057 \mathrm{~mol})$ in THF $\left(160 \mathrm{~cm}^{3}\right)$ was added nBuLi ($64.9 \mathrm{~cm}^{3}, 1.6 \mathrm{M}, 0.1038 \mathrm{~mol}, 0.98$ eq.) at $-78{ }^{\circ} \mathrm{C}$ over 10 min . After 15 min the $-78{ }^{\circ} \mathrm{C}$ ice bath was replaced with a $0{ }^{\circ} \mathrm{C}$ ice bath for 10 min after which the $-78^{\circ} \mathrm{C}$ bath was again reinstated. To the reaction mixture was added $\operatorname{TIPSCl}\left(20.012 \mathrm{~g}, 22.2 \mathrm{~cm}^{3}\right.$, $0.1038 \mathrm{~mol}, 0.98$ eq.) over 5 min . The ice bath was subsequently removed and the reaction mixture allowed to warm to room temperature over night. In air the reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ solution $\left(100 \mathrm{~cm}^{3}\right)$ and extracted using $\mathrm{Et}_{2} \mathrm{O}$ $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, the combined fractions were washed with brine solution $\left(40 \mathrm{~cm}^{3}\right)$. Removal of the solvent in vacuo afforded a yellow oil ($26.23 \mathrm{~g}, 0.1033 \mathrm{~mol}, 98 \%$ yield); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.12-1.01\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) 0.17(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

3-(Tri(isopropyl)silyl)-1-phenyl-prop-2-yn-1-one.
To a suspension of $\mathrm{AlCl}_{3}\left(8.00 \mathrm{~g}, 60.423 \mathrm{mmol}, 1.3 \mathrm{eq}\right.$.) in $\mathrm{DCM}\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 1-(triisopropylsily)-2-(trimethylsilyl)-ethyne (11.8057 $\mathrm{g}, 46.479 \mathrm{mmol}, 1 \mathrm{eq}$.) and benzoylchloride ($5.40 \mathrm{~cm}^{3}, 6.533 \mathrm{~g}, 46.4792 \mathrm{mmol} 1 \mathrm{eq}$.) in DCM $\left(70 \mathrm{~cm}^{3}\right)$ over 10 min at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature over 30 min . before being cooled to $0{ }^{\circ} \mathrm{C}$ and quenched using $\mathrm{HCl}_{(\mathrm{aq})}\left(1 \mathrm{~N}, 150 \mathrm{~cm}^{3}, 150 \mathrm{mmol}\right)$ and extracted using DCM ($2 \times 40 \mathrm{~cm}^{3}$). The combined organic fractions were further washed with brine solution $\left(60 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4}. Removal of the solvent in vacuo afforded a yellow oil ($12.45 \mathrm{~g}, 43.54$ mmol, 94 \% crude yield); m/z 287.2 [$\left.\mathrm{M}^{+}+1\right]$; (Found (ESI): M+Na 309.1640 $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaOSi}$ requires 309.1645); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.18$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1, \mathrm{Ar}$) 7.61 (1H, t, J 7.4, Ar), 7.54-7.46 (3H, m, Ar), 1.24-1.15 ($21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 177.55 (quat., $\mathrm{C}=\mathrm{O}$), 136.76 (ipso, Ar), 132.42 (CH, Ar), 129.42 (CH, Ar), $128.57(\mathrm{CH}, \mathrm{Ar}), 103.05$ (quat., $\mathrm{C} \equiv \mathrm{C}$), 98.02 (quat., $\mathrm{C} \equiv \mathrm{C}$), 18.59 $\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.15\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$.

Racemic alcohol 11e. JPH137
3-(Tri(isopropyl)silyl)-1-phenyl-prop-2-yn-1-one, ($1.00 \mathrm{~g}, 3.4965 \mathrm{mmol}, 1 \mathrm{eq}$.) in methanol ($25 \mathrm{~cm}^{3}$) was added sodium borohydride ($0.266 \mathrm{~g}, 6.9930 \mathrm{mmol}, 2 \mathrm{eq}$.) in small portions at $0{ }^{\circ} \mathrm{C}$. After 30 min the reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}\left(50 \mathrm{~cm}^{3}\right)$, the methanol carefully evaporated and the remaining aqueous suspension extracted using $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 25 \mathrm{~cm}^{3}$). The combined organic extracts were then dried over MgSO_{4} and the solvent removed in vacuo to afford 11e as a colourless oil in quantitative yield;

Complex 16. ${ }^{7}$
A pressure tube was charged with 1,1'-(oxydi-1-propyne-3,1-diyl)bis[1,1,1-trimethylsilane, $(0.100 \mathrm{~g}, 0.4302 \mathrm{mmol} 1 \mathrm{eq}$.$) , toluene \left(2 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.2686 \mathrm{~g}$, $0.4202 \mathrm{mmol}, 1 \mathrm{eq}$.) and purged under a steady stream of N_{2}. The tube was then sealed and heated to $105{ }^{\circ} \mathrm{C}$. After 3 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM ($2 \mathrm{~cm}^{3}$) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to 20%) to afford an orange solid (0.1110 g , $0.2461 \mathrm{mmol}, 59 \%$); m/z $453.0[\mathrm{M}+1]^{+}, 474.9[\mathrm{M}+23]^{+}$; (Found (ESI): 474.9945 $\mathrm{M}+\mathrm{Na} \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{5} \mathrm{RuSi}_{2}$ requires 474.9945$)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.78\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ 0.25 ($18 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.89$ (quat., $\mathrm{C}=\mathrm{O}$), 185.72 (quat., $\mathrm{C}=\mathrm{O}$), 144.12 (quat.), 68.12 (quat.), 65.72 (quat.), $-0.43\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, -4.03.

Complex 17.
A pressure tube was charged with (oxydi-1-propyne-3,1-diyl)bis[(1,1-dimethylethyl)dimethyl-silane ($0.5535 \mathrm{~g}, 1.7189 \mathrm{mmol} 3$ eq.), acetonitrile ($3 \mathrm{~cm}^{3}$) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.3661 \mathrm{~g}, 0.5730 \mathrm{mmol}, 1 \mathrm{eq}$.$) and purged under a steady stream of \mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM ($2 \mathrm{~cm}^{3}$) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to 5%) to afford an orange solid ($0.5454 \mathrm{~g}, 1.0194 \mathrm{mmol}, 59 \%$); m/z $537.1[\mathrm{M}+1]^{+}$; (Found (ESI): M+H 537.1068 $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{RuSi}_{2}$ requires 537.1066); $v_{\text {max }}$ 2926, 2853, 2073, 2007 and1638 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.81(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CHH}), 4.76(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CHH}), 0.96(18 \mathrm{H}$, s, $\left.\operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.36\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
193.78 (quat., $\mathrm{C}=\mathrm{O}$), 184.64 (quat., $\mathrm{C}=\mathrm{O}$), 115.11 (quat.), 68.50 (quat./ CH_{2}), 65.67
(quat./ CH_{2}), $27.27\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.51\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.01\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)\right),-4.99\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)$;
$\delta \mathrm{Si}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), -4.01.

Complex 18. ${ }^{7}$

A pressure tube was charged with 1,1'-(oxydi-1-propyne-3,1-diyl)bis-benzene (0.4901 $\mathrm{g}, 1.9922 \mathrm{mmol} 3 \mathrm{eq}$.$) , acetonitrile (3.5 \mathrm{~cm}^{3}$) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.4244 \mathrm{~g}, 0.6641 \mathrm{mmol}$, 1 eq.) and purged under a steady stream of N_{2}. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM (2 cm^{3}) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAC/Hexane 0 to 20%) to afford a yellow solid ($0.1263 \mathrm{~g}, 0.2752 \mathrm{mmol}, 14 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.44-7.28(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.30(2 \mathrm{H}, \mathrm{d}, J$ $11.0, \mathrm{CHH}), 5.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CHH})$.

Data for Ru-hydrides formed from tricarbonyl complexes.

Experiment code in which Ru-H was formed.	Complex used.	m / \mathbf{z}	δ_{H} hydride shift (CDCl_{3})
JPH115, JPH160, jph223	TBS*-TMS phenyl 15b	$\begin{aligned} & m / z 543.0 \\ & {\left[\mathrm{M}^{+}\right] ;} \end{aligned}$	$\begin{aligned} & 300 \mathrm{MHz},-10.32(1 \mathrm{H}, \mathrm{~s}), \\ & -10.48(0.25 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
JPH154, jph164	TBS*-TIPS phenyl 15a	m/z $627\left[\mathrm{M}^{+}\right] ;$	$\begin{aligned} & \text { 400 MHz, }-10.31(1 \mathrm{H}, \mathrm{~s}), \\ & -10.36(0.06 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
Jph145, jph161	TBS*-Ph phenyl 15c		$\begin{aligned} & \hline 400 \mathrm{MHz},-10.33(1 \mathrm{H}, \mathrm{~s}), \\ & -10.39(0.04 \mathrm{H}, \mathrm{~s}) . \\ & \hline \end{aligned}$
Jph155, 224	TIPS*-TMS phenyl 15d		$\begin{aligned} & 400 \mathrm{MHz},-10.01(1 \mathrm{H}, \mathrm{~s}), \\ & -10.16(0.02 \mathrm{H}, \mathrm{~s}),-10.40 \\ & (0.33 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
Jph168	TIPS*-TBS phenyl 15f		$\begin{aligned} & 400 \mathrm{MHz},-9.93(1 \mathrm{H}, \mathrm{~s}),- \\ & 10.36(0.6 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
Jph163, jph152	TIPS*-Ph phenyl 15e	m/z $589\left[\mathrm{M}^{+}\right] ;$	$\begin{aligned} & 400 \mathrm{MHz},-10.14(1 \mathrm{H}, \mathrm{~s}), \\ & -10.25(0.04 \mathrm{H}, \mathrm{~s}-10.39 \\ & (0.63 \mathrm{H}, \mathrm{~s}),-19.06(0.03 \mathrm{H}, \\ & \text { s). } \end{aligned}$
JPH146, jph159	TBS-TBS sym 17	m/z $509\left[\mathrm{M}^{+}\right] ;$	$400 \mathrm{MHz},-10.44$ (1H, s).
Jph114, jph158	TMS-TMS sym 16	m/z $425\left[\mathrm{M}^{+}\right] ;$	$400 \mathrm{MHz},-10.51$ (1H, s).
Jph153,jph169	Ph-Ph sym 18	m/z $433\left[\mathrm{M}^{+}\right] ;$	$300 \mathrm{MHz}-17.33$ (1H, s).

Jph225 major	Ph*-TMS methyl major 12a		$400 \mathrm{MHz},-10.34$ (1H, s).
JPH226-minor	Ph*-TMS- methyl minor 12b	m/z $443\left[\mathrm{M}^{+}\right] ;$	$\begin{aligned} & 400 \mathrm{MHz},-10.49(0.2 \mathrm{H}, \\ & \mathrm{s}),-19.20(1 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
Jph251	Ph*-TIPS- methyl major 12c	$\begin{aligned} & \text { m/z } 568\left[\mathrm{M}^{+}\right. \\ & +\mathrm{K}] ; \end{aligned}$	$400 \mathrm{MHz},-10.38$ (1H, s).
Jph229	Ph*-Ph- methyl major 12e	m/z $447\left[\mathrm{M}^{+}\right] ;$	$300 \mathrm{MHz},-17.80$ (1H, s).
Jph252	Ph*-TBS*- methyl-methyl $13 \mathrm{a} / \mathrm{b}$	$\begin{aligned} & m / z 540\left[\mathrm{M}^{+}\right. \\ & +\mathrm{K}] ; \end{aligned}$	$300 \mathrm{MHz},-10.47$ (1H, s).

The results for complexes $\mathbf{1 2}, \mathbf{1 3}, \mathbf{1 6 - 1 8}$ are given in the main paper. The results for complexes $\mathbf{1 5}$ are given in a table below.

Table 1; Asymmetric reduction of acetophenone using complexes 15a-15f.

Complex	Conditions by expt no.	time	Conv/\%	Ee (R/S)
15a (3:1)	154 iPrOH $60^{\circ} \mathrm{C}$ 154 FA/TEA $60^{\circ} \mathrm{C}$ 164a iPrOH $60^{\circ} \mathrm{C}$ 164b FA/TEA $60^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 166 \\ & 140 \\ & 168 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 18 \\ & 14 \\ & 25(17 \% \text { alc }) \\ & \hline \end{aligned}$	$\begin{aligned} & 19.7(S) \\ & 21(S) \\ & 20(S) \\ & 21(S) \\ & \hline \end{aligned}$
15b (3:1)	115 iPrOH $60^{\circ} \mathrm{C}$ 115 FA/TEA $60^{\circ} \mathrm{C}$ 160a $\mathrm{iPrOH} 60^{\circ} \mathrm{C}$ 160b FA/TEA $60^{\circ} \mathrm{C}$	$\begin{aligned} & 162 \\ & 238 \\ & 168 \\ & 168 \end{aligned}$	$\begin{aligned} & 10 \\ & 26 \\ & 57 \\ & 41(35 \% \text { alc }) \end{aligned}$	$\begin{aligned} & 2(R) \\ & 2(R) \\ & 1.6(R) \\ & 0 \end{aligned}$
15c (4:1)	145 iPrOH $60^{\circ} \mathrm{C}$ $145 \mathrm{FA} /$ TEA $60^{\circ} \mathrm{C}$ 161a iPrOH $60^{\circ} \mathrm{C}$ 161b FA/TEA $60^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 168 \\ & 165 \mathrm{~h} \\ & 168 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 94 \\ & 72 \\ & 90 \\ & 71(67 \% \text { alc }) \end{aligned}$	$\begin{aligned} & \hline 4(R) \\ & 6.2(R) \\ & 4.5(R) \\ & 5.2(R) \\ & \hline \end{aligned}$
15d (7:3)	$\begin{aligned} & 155 \mathrm{iPrOH} 60^{\circ} \mathrm{C} \\ & \mathbf{1 5 5} \mathrm{FA} / \text { TEA } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 92 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 10(R) \\ & 12.0(R) \end{aligned}$
15e (3:2)	152 iPrOH 60 152 FA/TEA $60^{\circ} \mathrm{C}$ 163a $\operatorname{iPrOH} 60^{\circ} \mathrm{C}$ 163b FA/TEA $60^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 166 \\ & 168 \\ & 168 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 76 \\ & 44 \\ & 78 \\ & 61 \text { (55\% alc) } \end{aligned}$	$\begin{aligned} & \hline 6(R) \\ & 7(R) \\ & 5.9(R) \\ & 6.6(R) \\ & \hline \end{aligned}$
15 f (3:2)	$\begin{aligned} & \mathbf{1 6 8} \text { iPrOH } 60^{\circ} \mathrm{C} \\ & \mathbf{1 6 8} \text { FA/TEA } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 168 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9(R) \\ & 9.4(R) \\ & \hline \end{aligned}$

Formate ees for reactions with FA/TEA; 160 (6% formate, 0% ee), $\mathbf{1 6 1}$ (4% formate, 5% ee R) $\mathbf{1 6 3}$ (6% formate, 7.8% ee R), $\mathbf{1 6 4}$ (8% formate, 21.2% ee, S). The RuH complex was formed and characterised prior to use.

References.

1) T. C. Johnson, G. J. Clarkson and M. Wills, Organometallics 2011, 30, 1859-1868.
2) M. Schuler, F. Silva, Ca. Bobbio, A. Tessier and V. Gouverneur, Angew. Chem. Int. Ed. 2008, 47, 7927 -7930.
3) C. Dallaire and M. A. Brook, Organometallics 1993, 12, 2332-2338.
4) T. Schubert, W. Hummel, M.-R. Kula and M. Müller, Eur. J. Org. Chem. 2001, 4181-4187.
5) J. H. Smitrovich and K. A. Woerpel, J. Org. Chem. 2000, 65, 1601-1614.
6) C. J. Helal, P. A. Magriotis, and E. J. Corey J. Am. Chem. Soc., 1996, 118, 1093810939.
7) Y. Yamamoto, Y. Miyabe and K.Itoh, Eur. J. Inorg. Chem. 2004, 3651-3661.
8) NMR spectra of novel Ru cyclone complexes and precursors.

Jph200 TBS-Me-OH- 11b

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Jph241

JPH241 C13

JPF244 H

JPH220 1H

JPH218 H

JPH218 C

JPH219H

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

JPH227H

JPH227C

JPH221 majorH 12a

JPH221 major C 12a

JPH221 minor H 12b

JPH221 minor C 12b

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

JPH222H 12c

Jph222C 12c

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

JPH228H 12e

Jph228 12e.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

JPH240H 13a/b

JPH240C

4) Shift reagent study on 7d to establish enantiomeric purity:

Chiral shift data for complex 7d using Europium tris[3-
(heptafluoropropylhydroxymethylene)-(+)-camphorate].
Racemic 7d without Eu

Racemic 7d with Eu

Expansion of racemic 7d with Eu

Asymmetric 7d without Eu

Aug11-2011.020.001.1r.esp

Expansion of asymmetric 7d with Eu

Expansion of asymmetric 7d without Eu

Separation is clearly visible and integration of the peaks indicates a minimal enantiomeric purity of $\mathbf{7 c}$ of $\mathbf{9 2 \%}$ ee.

