Supporting information.

Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones.

Jonathan P. Hopewell, ^a José E. D. Martins, ^a Tarn C. Johnson, ^a Jamie Godfrey ^a and Martin Wills*^a

Department of Chemistry, The University of Warwick, Coventry, CV4 7AL UK. Fax: (+44) 24 7652 3260; Tel: (+44) 24 7652 4112; E-mail: <u>m.wills@warwick.ac.uk</u>.

Contents:

1) Synthesis of ligands and applications to reduction reactions.	S2
2) References.	S10
3) NMR spectra of novel Ru cyclone complexes and precursors.	S11
4) Shift reagent study on 7d to establish enantiomeric purity.	S23

1) Synthesis of ligands and applications to reduction reactions:

General experimental details follow those previously reported.¹

4-Phenyl-3-butyne-2-one 2^{1,2}

n-BuLi (1.6M in hexanes, 37.5 cm³, 60 mmol) was added to phenyl acetylene (6.58 cm³, 6.12 g, 60 mmol) in THF (60 cm³) at -78 °C and the mixture left to stir for 30 min. EtOAc (5.86 cm³, 5.29 g, 60 mmol) in THF (90 cm³) was added over 10 min followed by addition of BF₃.Et₂O (9.03 cm³, 10.15 g, 71.5 mmol). The mixture was kept at -78 °C for 30 min before being allowed to warm to room temperature and after 30 min was quenched with saturated NH₄Cl_(aq) (100 cm³). Following extraction with EtOAc (2 x 50 cm³) the organics were washed with brine (50 cm³) and dried over Na₂SO₄ and the was solvent removed in vacuo. Short path distillation (125 °C, 5.7 mbar) afforded the ketone² as a rich brown oil (4.86 g, 33.8 mmol, 56%); *m/z* (ESI) 167 [M +23]⁺, 145 [M +1]⁺; (Found (ESI): M+H 145.0652, C₁₀H₉O requires 145.0648); v_{max} 2195, 2124, 1665, 1487, 1355, 1274 and 1153 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.59-7.55 (2H, m, Ar), 7.48-7.43 (1H, m, Ar), 7.41-7.35 (2H, m, Ar), 2.45 (3H, s, CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 184.40 (C=O), 132.88 (CH, Ar) 130.60 (CH, Ar), 128.49 (CH, Ar), 119.73 (ipso, Ar), 90.14 (C=C), 88.12 (C=C), 32.58 (CH₃).

1-(t-Butyldimethylsilyl)-2-(trimethylsilyl)ethyne.³

To trimethysilylacetylene (10.0 g, 14.1 cm³, 0.102 mmol) in THF (160 cm³) was added ⁿBuLi (40 cm³, 2.5M, 0.1 mmol, 0.98 eq.) at -78 °C over 5 min. After 15 min the -78 °C ice bath was replaced with a 0 °C ice bath for 8 min after which the -78 °C bath was again reinstated. To the reaction mixture was added TBDMSCl (15.07 g, 0.1 mmol, 0.98 eq.) in THF (20 cm³) over 15 min. The ice bath was subsequently removed and the reaction mixture allowed to warm to room temperature over night (18.5 h). In air the reaction was quenched using saturated NH₄Cl solution (100 cm³) and extracted using Et₂O (2 x 100 cm³) the combined fractions were further washed

with brine (40 cm³) and dried over MgSO₄. Removal of the solvent *in vacuo* afforded a yellow oil (20.619 g, 0.097 mmol, 95% yield); $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.91 (9H, s, C(CH₃)₃), 0.14 (9H, s, Si(CH₃)₃), 0.07 (6H, s, Si(CH₃)₂); $\delta_{\rm C}$ (75 MHz, CDCl₃) 114.58 (quat., C=C), 112.13 (quat., C=C) 26.00 (CH₃, C(CH₃)₃), 16.43 (quat., *C*(CH₃)₃), 0.06 (CH₃, Si(CH₃)) -4.68 (CH₃, Si(CH₃)); $\delta_{\rm Si}$ (99 MHz, CDCl₃) -9.26 (*Si*(CH₃)₂C(CH₃)₃), -19.27 (*Si*(CH₃)₃).

Me₂(But)Si

4-(t-Butyldimethylsilyl)-but-3-yn-2-one.⁴

To a suspension of AlCl₃ (4.059 g, 30.66 mmol, 1.3 eq.) in DCM (50 cm³) was added dropwise a solution of 1-(t-butyldimethylsilyl)-2-(trimethylsilyl)ethyne (5.00 g, 23.59 mmol, 1 eq.) and acetylchloride (1.68 cm³, 1.85 g, 23.6 mmol 1 eq.) in DCM (32 cm³) over 10 min at 0 °C. The reaction mixture was allowed to warm to room temperature over $\frac{1}{2}$ hours before being cooled to 0 °C and quenched using HCl(aq) (1N, 80 cm³, 80 mmol) and extracted using DCM (2 x 20 cm³). The combined organic fractions were further washed with brine solution (30 cm³) and dried over MgSO₄. Removal of the solvent *in vacuo* afforded a yellow oil (3.66 g, 20.110 mmol, 85 % crude yield). Purification by column chromatography (hexane/EtOAc) afforded a colourless oil (3.1645g, 17.387 mmol, 74 % yield); *m*/*z* (ESI) 183.1 [M + 1]⁺, 205.0 [M + 23]⁺; (Found (ESI): M+H 183.1204. C₁₀H₁₉O requires 183.1200); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.32 (3H, s, C=OCH₃), 0.94 (9H, s, C(CH₃)₃), 0.15 (6H, s, Si(CH₃)₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 184.14 (C=O), 103.17 (C=C), 96.13 (C=C) 32.57 (CH₃, C=OCH₃) 25.89 (CH₃, C(CH₃)₃), 16.47 (*C*(CH₃)₃), -5.27 (CH₃, Si(CH₃)); _{Si} (99 MHz, CDCl₃) -5.37 (*Si*(CH₃)₂C(CH₃)₃).

Racemic alcohol 11b.⁵

To 4-[(t-butyl)dimethylsilyl]-but-3-yn-2-one (0.100 g, 0.55 mmol, 1 eq) in methanol (3 cm³) was added sodiumborohydride (42 mg, 1.10 mmol, 2 eq.) portion wise at 0 $^{\circ}$ C. After 30 min the reaction was quenched using saturated NH₄Cl_(aq) (5 cm³) and the methanol carefully evaporated and the remaining aqueous suspension extracted using Et₂O (3 x 5 cm³). The combined organic extractions were then dried over MgSO₄ and

the solvent removed in vacuo to afford a colourless oil (0.070 g, 0.3804 mmol, 69 % crude yield); m/z 207.1 [M +23]⁺; (Found (ESI): M+Na 207.1179. C₁₀H₂₀NaOSi requires 207.1176); $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.53 (1H, q, J 6.5, CH(OH)CH₃), 1.78 (1H, bs, OH), 1.46 (3H, d, J 6.5, CH(OH)CH₃), 0.94 (9H, s, SiC(CH₃)₃), 0.11 (6H, s,

3-(t-Butyldimethylsilyl)-1-phenyl-prop-2-yn-1-one.

To a suspension of AlCl₃ (8.11 g, 61.32 mmol, 1.3 eq.) in DCM (100 cm³) was added dropwise a solution of 1-(t-butyldimethylsilyl)-2-(trimethylsilyl)ethyne (10.00 g, 47.17 mmol, 1 eq.) and benzoylchloride (5.48 cm³, 6.63 g, 47.2 mmol 1 eq.) in DCM (75 cm³) over 10 min at 0 °C. The reaction mixture was allowed to warm to room temperature over 30 min. before being cooled to 0 °C and quenched using HCl(aq) (1N, 150 cm³, 150 mmol) and extracted using DCM (2 x 40 cm³). The combined organic fractions were further washed with brine solution (60 cm³), dried over MgSO₄. Removal of the solvent in vacuo afforded a yellow oil (11.07 g, 45.36 mmol, 96 % crude yield). Purification by column chromatography (hexane/EtOAc) afforded a colourless oil (8.43 g, 34.55 mol, 73.4 % yield); m/z (ESI) 245.1 [M+1]⁺, 267.0 [M+ 23]⁺; (Found (ESI): M+H 245.1367. C₁₅H₂₁OSi requires 245.1356); v_{max} 2952, 2928, 2885, 2857, 2115, 1774 and 1643 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.15 (2H, d, J 8.2, Ar), 7.61 (1H, t, J 7.5, Ar), 7.48 (2H, t, J 7.5, Ar), 1.03 (9H, s, SiC(CH₃)₃), 0.26 (6H, s, Si(CH₃)₂); δ_C (100 MHz, CDCl₃) 177.48 (ipso, C=O), 136.53 (ipso, Ar), 134.08 (CH, Ar), 129.51 (CH, Ar), 128.91 (CH, Ar), 101.61 (quat., C=C), 99.26 (quat., C=C), 26.01 (CH₃, SiC(CH₃)₃), 16.64 (quat., SiC(CH₃)₃), -5.12 (CH₃, $Si(CH_3)_2$; δ_{Si} (99 MHz, CDCl₃) -5.14 (s, Si(CH₃)₂C(CH₃)₃).

HO______Si(tBu)Me₂

Racemic alcohol 11d.

To 3-(t-butyldimethylsilyl)-1-phenyl-prop-2-yn-1-one, (2.762 g, 11.32 mmol, 1 eq) in methanol (80 cm³) was added sodium borohydride (0.8603 g, 22.64 mmol, 2 eq.) in

10 portions at 0 °C. After 30 min the reaction was quenched using saturated NH₄Cl_(aq) (135 cm³), the methanol carefully evaporated and the remaining aqueous suspension extracted using Et₂O (3 x 67 cm³). The combined organic extracts were then dried over MgSO₄ and the solvent removed in vacuo to afford **11d** as a colourless oil (1.41 g, 5.7317 mmol, 51 % crude yield); m/z 269.2 [M+ 23]⁺; (Found (ESI): M+Na 269.1333. C₁₅H₂₂NaOSi requires 269.1332); v_{max} 3362 (OH), 2926, 2857, 1671, 1446 and 1003 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.568 (2H, d, *J* 7.1 Ar), 7.36 (3H, m, Ar), 5.47 (1H, s, Ar), 0.99 (9H, s, SiC(CH₃)₃), 0.17 (6H, s, Si(CH₃)₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 140.36 (ipso, Ar), 128.49 (CH, Ar), 128.26 (CH, Ar), 126.70 (CH, Ar), 105.69 (quat., C=C), 89.81 (quat., C=C), 64.90 (*C*H(OH)), 26.03 (SiC(*C*H₃)₃), 16.50 (quat., SiC(CH₃)₃), -4.71 (Si(*C*H₃)₂); $\delta_{\rm Si}$ (99 MHz, CDCl₃) -7.64 (s, Si(CH₃)₂C(CH₃)₃).

1-(Triisopropylsilyl)-2-(trimethylsilyl)-ethyne.⁶

To trimethysilylacetylene (10.385 g, 0.1057 mol) in THF (160 cm³) was added nBuLi (64.9 cm³, 1.6M, 0.1038 mol, 0.98 eq.) at -78 °C over 10 min. After 15 min the -78 °C ice bath was replaced with a 0 °C ice bath for 10 min after which the -78 °C bath was again reinstated. To the reaction mixture was added TIPSCI (20.012 g, 22.2 cm³, 0.1038 mol, 0.98 eq.) over 5 min. The ice bath was subsequently removed and the reaction mixture allowed to warm to room temperature over night. In air the reaction was quenched using saturated NH₄Cl_(aq) solution (100 cm³) and extracted using Et₂O (2 x 100 cm³), the combined fractions were washed with brine solution (40 cm³). Removal of the solvent in vacuo afforded a yellow oil (26.23 g, 0.1033 mol, 98% yield); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.12-1.01 (21H, m, Si(CH(CH₃)₂)₃) 0.17 (9H, s, Si(CH₃)₃).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

3-(Tri(isopropyl)silyl)-1-phenyl-prop-2-yn-1-one.

To a suspension of AlCl₃ (8.00 g, 60.423 mmol, 1.3 eq.) in DCM (100 cm³) was added dropwise a solution of 1-(triisopropylsilyl)-2-(trimethylsilyl)-ethyne (11.8057 g, 46.479 mmol, 1 eq.) and benzoylchloride (5.40 cm³, 6.533 g, 46.4792 mmol 1 eq.) in DCM (70 cm³) over 10 min at 0 °C. The reaction mixture was allowed to warm to room temperature over 30 min. before being cooled to 0 °C and quenched using HCl_(aq) (1N, 150 cm³, 150 mmol) and extracted using DCM (2 x 40 cm³). The combined organic fractions were further washed with brine solution (60 cm³), dried over MgSO₄. Removal of the solvent in vacuo afforded a yellow oil (12.45 g, 43.54 mmol, 94 % crude yield); m/z 287.2 [M⁺ +1]; (Found (ESI): M+Na 309.1640 C₁₈H₂₆NaOSi requires 309.1645); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.18 (2H, d, *J* 7.1, Ar) 7.61 (1H, t, *J* 7.4, Ar), 7.54-7.46 (3H, m, Ar), 1.24-1.15 (21H, m, Si(CH(CH₃)₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 177.55 (quat., C=O), 136.76 (ipso, Ar), 132.42 (CH, Ar), 129.42 (CH, Ar), 128.57 (CH, Ar), 103.05 (quat., C=C), 98.02 (quat., C=C), 18.59 (Si(CH(CH₃)₂)₃), 11.15 (Si(CH(CH₃)₂)₃).

HO______Si(iPr)₃

Racemic alcohol 11e. JPH137

3-(Tri(isopropyl)silyl)-1-phenyl-prop-2-yn-1-one, (1.00 g, 3.4965 mmol, 1 eq.) in methanol (25 cm³) was added sodium borohydride (0.266 g, 6.9930 mmol, 2 eq.) in small portions at 0 °C. After 30 min the reaction was quenched using saturated $NH_4Cl_{(aq)}$ (50 cm³), the methanol carefully evaporated and the remaining aqueous suspension extracted using Et₂O (3 x 25 cm³). The combined organic extracts were then dried over MgSO₄ and the solvent removed in vacuo to afford **11e** as a colourless oil in quantitative yield;

Complex 16.⁷

A pressure tube was charged with 1,1'-(oxydi-1-propyne-3,1-diyl)bis[1,1,1-trimethylsilane, (0.100 g, 0.4302 mmol 1 eq.), toluene (2 cm³) and Ru₃(CO)₁₂ (0.2686 g, 0.4202 mmol, 1 eq.) and purged under a steady stream of N₂. The tube was then sealed and heated to 105 °C. After 3 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM (2 cm³) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to 20 %) to afford an orange solid (0.1110 g, 0.2461 mmol, 59 %); *m/z* 453.0 [M+1]⁺, 474.9 [M+23]⁺; (Found (ESI): 474.9945 M+Na C₁₆H₂₂NaO₅RuSi₂ requires 474.9945); $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.78 (4H, s, *CH*₂) 0.25 (18H, s, Si(*CH*₃)); $\delta_{\rm C}$ (100 MHz, CDCl₃) 193.89 (quat., C=O), 185.72 (quat., C=O), 144.12 (quat.), 68.12 (quat.), 65.72 (quat.), -0.43 (CH₃); $\delta_{\rm Si}$ (99 MHz, CDCl₃), -4.03.

Complex 17.

charged with (oxydi-1-propyne-3,1-diyl)bis[(1,1-А pressure tube was dimethylethyl)dimethyl-silane (0.5535 g, 1.7189 mmol 3 eq.), acetonitrile (3 cm³) and Ru₃(CO)₁₂ (0.3661 g, 0.5730 mmol, 1 eq.) and purged under a steady stream of N₂. The tube was then sealed and heated to 100 °C. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM (2 cm^3) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to 5 %) to afford an orange solid $(0.5454 \text{ g}, 1.0194 \text{ mmol}, 59 \%); m/z 537.1 [M+1]^+;$ (Found (ESI): M+H 537.1068 $C_{22}H_{35}O_5RuSi_2$ requires 537.1066); v_{max} 2926, 2853, 2073, 2007 and 1638 cm⁻¹; δ_H (400 MHz, CDCl₃) 4.81 (2H, d, J 11.3, CHH), 4.76 (2H, d, J 11.3, CHH), 0.96 (18H, s, SiC(CH₃)₃), 0.36 (6H, s, Si(CH₃)), 0.06 (6H, s, Si(CH₃)); δ_C (100 MHz, CDCl₃)

193.78 (quat., C=O), 184.64 (quat., C=O), 115.11 (quat.), 68.50 (quat./CH₂), 65.67 (quat./CH₂), 27.27 (SiC(CH₃)₃), 18.51 (SiC(CH₃)₃), -4.01 (Si(CH₃)), -4.99 (Si(CH₃)); δSi (99 MHz, CDCl₃), -4.01.

Complex 18.⁷

A pressure tube was charged with 1,1'-(oxydi-1-propyne-3,1-diyl)bis-benzene (0.4901 g, 1.9922 mmol 3 eq.), acetonitrile (3.5 cm³) and Ru₃(CO)₁₂ (0.4244 g, 0.6641 mmol, 1 eq.) and purged under a steady stream of N₂. The tube was then sealed and heated to 100 °C. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM (2 cm³) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAC/Hexane 0 to 20 %) to afford a yellow solid (0.1263 g, 0.2752 mmol, 14 %); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.86 (4H, d, *J* 8.0, Ar), 7.44-7.28 (6H, m, Ar), 5.30 (2H, d, *J* 11.0, CHH), 5.15 (2H, d, *J* 11.0, CHH).

Data	for	Ru-hy	drides	formed	from	tricarbony	l com	olexes.

Experiment code in	Complex used.	m/z.	δ _H hydride shift (CDCl ₃)
which Ru-H was formed.			
JPH115, JPH160, jph223	TBS*-TMS phenyl 15b	<i>m/z</i> 543.0	300 MHz, -10.32 (1H, s),
		[M ⁺];	-10.48 (0.25H, s).
JPH154, jph164	TBS*-TIPS phenyl 15a	<i>m/z</i> 627 [M ⁺];	400 MHz, -10.31 (1H, s),
			-10.36 (0.06H, s).
Jph145, jph161	TBS*-Ph phenyl 15c		400 MHz, -10.33 (1H, s),
			-10.39 (0.04H, s).
Jph155, 224	TIPS*-TMS phenyl 15d		400 MHz, -10.01 (1H, s),
			-10.16 (0.02H, s), -10.40
			(0.33H, s).
Jph168	TIPS*-TBS phenyl 15f		400 MHz, -9.93 (1H, s), -
			10.36 (0.6H, s).
Jph163, jph152	TIPS*-Ph phenyl 15e	<i>m/z</i> 589 [M ⁺];	400 MHz, -10.14 (1H, s),
			-10.25(0.04H, s-10.39
			(0.63H, s), -19.06 (0.03H,
			s).
JPH146, jph159	TBS-TBS sym 17	<i>m/z</i> 509 [M ⁺];	400 MHz, -10.44 (1H, s).
Jph114, jph158	TMS-TMS sym 16	<i>m/z</i> 425 [M ⁺];	400 MHz, -10.51 (1H, s).
Jph153,jph169	Ph-Ph sym 18	<i>m</i> / <i>z</i> 433 [M ⁺];	300 MHz -17.33 (1H, s).

Jph225 major	Ph*-TMS methyl major		400 MHz, -10.34 (1H, s).
	12a		
JPH226-minor	Ph*-TMS- methyl minor	m/z 443 [M ⁺];	400 MHz, -10.49 (0.2H,
	12b		s), -19.20 (1H, s).
Jph251	Ph*-TIPS- methyl major	<i>m/z</i> 568 [M ⁺	400 MHz, -10.38 (1H, s).
	12c	+K];	
Jph229	Ph*-Ph- methyl major 12e	m/z 447 [M ⁺];	300 MHz, -17.80 (1H, s).
Jph252	Ph*-TBS*- methyl-methyl	m/z 540 [M ⁺	300 MHz, -10.47 (1H, s).
-	13a/b	+K];	

The results for complexes **12**, **13**, **16-18** are given in the main paper. The results for complexes **15** are given in a table below.

Complex	Conditions by expt no.	time	Conv/%	Ee (R/S)
15a (3:1)	154 iPrOH 60 °C	166	14	19.7 (S)
	154 FA/TEA 60 °C	140	18	21(S)
	164a iPrOH 60 °C	168	14	20 (S)
	164b FA/TEA 60 °C	168	25 (17% alc)	21 (S)
15b (3:1)	115 iPrOH 60 °C	162	10	2(R)
	115 FA/TEA 60 °C	238	26	2(R)
	160a iPrOH 60 °C	168	57	1.6 (<i>R</i>)
	160b FA/TEA 60 °C	168	41 (35% alc)	0
15c (4:1)	145 iPrOH 60 °C	168	94	4 (<i>R</i>)
	145 FA/TEA 60°C	165h	72	6.2 (<i>R</i>)
	161a iPrOH 60 °C	168	90	4.5 (<i>R</i>)
	161b FA/TEA 60 °C	168	71 (67% alc)	5.2 (<i>R</i>)
15d (7:3)	155 iPrOH 60 °C	92	12	10 (<i>R</i>)
	155 FA/TEA 60 °C	92	8.5	12.0 (<i>R</i>)
15e (3:2)	152 iPrOH 60	166	76	6 (<i>R</i>)
	152 FA/TEA 60°C	168	44	7 (<i>R</i>)
	163a iPrOH 60 °C	168	78	5.9 (<i>R</i>)
	163b FA/TEA 60 °C	168	61 (55% alc)	6.6 (<i>R</i>)
15f (3:2)	168 iPrOH 60 °C	168	10	4.9 (<i>R</i>)
	168 FA/TEA 60 °C	168	15	9.4(R)

Table 1; Asymmetric reduction of acetophenone using complexes 15a-15f.

Formate ees for reactions with FA/TEA;**160** (6% formate, 0% ee), **161** (4% formate, 5% ee R) **163** (6% formate, 7.8% ee R), **164** (8% formate, 21.2% ee, S). The RuH complex was formed and characterised prior to use.

References.

1) T. C. Johnson, G. J. Clarkson and M. Wills, Organometallics 2011, 30, 1859-1868.

2) M. Schuler, F. Silva, Ca. Bobbio, A. Tessier and V. Gouverneur, *Angew. Chem. Int. Ed.* 2008, **47**, 7927–7930.

3) C. Dallaire and M. A. Brook, Organometallics 1993, 12, 2332-2338.

4) T. Schubert, W. Hummel, M.-R. Kula and M. Müller, *Eur. J. Org. Chem.* 2001, 4181-4187.

5) J. H. Smitrovich and K. A. Woerpel, J. Org. Chem. 2000, 65, 1601–1614.

6) C. J. Helal, P. A. Magriotis, and E. J. Corey J. Am. Chem. Soc., 1996, **118**, 10938–10939.

7) Y. Yamamoto, Y. Miyabe and K.Itoh, Eur. J. Inorg. Chem. 2004, 3651-3661.

3) NMR spectra of novel Ru cyclone complexes and precursors.

JPH220 C13

4) Shift reagent study on 7d to establish enantiomeric purity:

Chiral shift data for complex 7d using Europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate].

Racemic 7d without Eu

Racemic 7d with Eu

Expansion of racemic 7d with Eu

Aug12-2011.020.001.1r.esp

1 .

Asymmetric 7d without Eu

Aug11-2011.020.001.1r.esp

Expansion of asymmetric 7d with Eu

Expansion of asymmetric 7d without Eu

Separation is clearly visible and integration of the peaks indicates a minimal enantiomeric purity of 7c of 92% ee.