Supporting Information for

Versatile trifunctional chemosensor of rhodamine derivative for Zn²⁺, Cu²⁺ and His/Cys in aqueous solution and living cell

Lin Xu, Yufang Xu, Weiping Zhu, Bubing Zeng, Chunmei Yang, Bin Wu and Xuhong Qian*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. Fax: +86 21 6425 2603; Tel: +86 21 6425 3589; E-mail: xhqian@ecust.edu.cn

Contents:

- 1. Materials and Apparatus
- 2. Synthesis of chemosensor RP
- 3. The characterization data of chemosensor RP
- 4. The pH-titration of free RP and [RP@Zn²⁺]
- 5. The selective and competitive experiments
- 6. Job's plot of RP and Cu²⁺, Zn²⁺
- 7. ESI-MS of RP in the presence of Cu²⁺ or Zn²⁺
- 8. Partial ¹H NMR spectra of RP and Zn²⁺
- 9. Partial ¹H NMR spectra of RP and Cu²⁺
- **10. Reference**

1. Materials and Apparatus

Unless otherwise mentioned, all the reagents were of analytic grade. ¹H-NMR and ¹³C-NMR spectras were measured on a Bruker AM-400 spectrometer with chemical shifts reported as ppm (in CDCl₃, TMS as internal standard). Mass spectrometry were obtained with a HP 5989A spectrometer. All pH measurements were made with a Sartorius basic pH-Meter PB-20. Absorption spectra were determined on a Varian Cary 100 Spectrophotometer. Fluorescence spectra were determined on a Varian Cary Eclipse. HPLC strace was determined on a HP-1100 spectrometer. IR was obtained with a Nicolet-470 spectrometer.

2. Synthesis of chemosensor RP

Rhodamine B hydrozide (1): In this work, **1** was synthesized according to the reference¹. To a 50 mL flask, rhodamine B (480 mg, 1.0 mmol) was dissolved in 12 mL ethanol. 1.2 mL (excess) hydrazine hydrate (85%) was then added. After the addition, the mixture was heated to reflux for 2 h. The solution changed from dark purple to light orange and became clear. Then the mixture was cooled and solvent was removed under redured pressure. 1 M HCl (about 20 mL) was added to the solid in the flask to generate a clear red solution. After that, 1 M NaOH (about 28 mL) was added slowly with stirring until the pH of the solution reached 9~10. The resulting precipatate was filtered and washed 3 times with 6 mL water, and then dired in air. The product was then chromatographed on silica gel using dichloromethane/methanol 30: 1 (v/v) as eluant to afford 365 mg (80%) **1** as pink solid.

RP: 1 (0.21 mmol, 100 mg) was dissolved in 2 mL absolute methanol, di-2-pyridyl ketone (0.42 mmol, 78 mg) were added, and then 2 drops of acetic acid were added to the mixture. The mixture was heated to reflux and stirred for 3 h. After that, the solvent was removed in vacuum to give a purple solid. The crude product was then chromatographed on silica gel using dichloromethane/methanol 20: 1 (v/v) as eluant to afford 88 mg (65%) **RP** as purple solid. Mp: 125.2 °C. IR (KBr), v: 2965, 2354, 2327, 1704, 1615, 1502, 1454, 1430, 1301, 1218, 1116, 791, 745 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 1.20 (t, *J* = 7.2 Hz, 12H), 3.35-3.40 (m, 8H), 6.34 (dd, *J*_{*I*} = 9.0 Hz, *J*₂ = 2.6 Hz, 2H), 6.43 (d, *J* = 2.4 Hz, 2H), 6.63 (d, *J* = 8.8 Hz, 2H), 7.17-7.23 (m, 3H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.0 Hz, 1H), 7.48 (td, *J*_{*I*} = 7.4 Hz, *J*₂ = 1.0 Hz, 1H), 7.58 (td, *J*_{*I*} = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 8.44 (d, *J* = 4.4, 1H), 8.62 (d, *J* = 4.4, 1H). ¹³C NMR (CDCl₃, 400 MHz): δ 12.66, 44.40, 67.74, 98.00, 106.99, 107.78,

123.08, 123.31, 123.76, 123.98, 124.03, 124.09, 128.19, 130.41, 132.66, 135.37, 136.17, 148.43, 148.70, 148.99, 151.39, 153.82. 154.70, 156.10, 160.87, 165.47. HRMS (ES+): Calcd for ([M+H])⁺, 623.3134, found, 623.3138.

3. The characterization data of chemosensor RP

Fig. S1 (b) The 13 C NMR spectra of **RP**

Fig. S1 (c) HPLC trace of RP

4. The pH-titration of free RP and [RP@Zn²⁺]

Fig. S2 The influence of pH on the UV-vis absorption and fluorescence of **RP** (10 μ M) without Zn²⁺ (a and b) and with 10 μ M Zn²⁺ (c) in MeCN/water solution (5:5, v/v), the pH of the solution was adjusted by adding 10% HClO₄ or 2 M NaOH. Excitation was performed at 562 nm.

5. The selective and competitive experiments

Fig. S3 Left figures were the selective experiments and right figures were the competitive experiments. Figures (a, b) all metal ions were 20 μ M; figures (c, d) all metal ions were 10 μ M; figure (e) all amino acids were 100 μ M; figure (f) the competitive experiments of His (all amino acids were 100 μ M). Excitation was performed at 530 nm.

6. Job's plot of RP and Cu^{2+} , Zn^{2+}

Fig. S4 (a) Job's plot of RP and Cu^{2+} ([RP]+[Cu^{2+}]=20 µM) in DMSO-H₂O (19:1, v/v).

Fig. S4 (b) Job's plot of **RP** and Zn^{2+} ([**RP**]+[Zn^{2+}]=20 µM) in CH₃CH₂OH-H₂O (40:60, v/v, 10 mM Tris-HClO₄, pH 7.40). Excitation was performed at 562 nm.

7. ESI-MS of RP in the presence of Cu²⁺ or Zn²⁺

Fig. S5 (a) ESI-MS of RP in the presence of Cu²⁺ in DMSO.
(b) ESI-MS of RP in the presence of Zn²⁺ in CH₃CH₂OH.

8. Partial ¹H NMR spectra of RP and Zn²⁺

Fig. S6 ¹H-NMR spectra of (a) free sensor **RP**, (b) sensor **RP** + Zn^{2+} (0.3 eq), and (c) sensor **RP** + Zn^{2+} (0.5 eq) in CD₃CN. Inset: proposed binding mode of sensor **RP** with Zn^{2+} .

d) 3.50 7.50 7.00 8.00 6.50 c) 8.50 7.50 7.00 6.50 8.00 b) M Mul. м T 7.00 6.50 8.00 7.50 a) MM. M 3.50 8.00 7.50 7.00 6.50

9. Partial ¹H NMR spectra of RP and Cu²⁺

Fig. S7 ¹H-NMR spectra of (a) free sensor **RP**, (b) sensor **RP** + Cu^{2+} (0.01 eq), (c) sensor **RP** + Cu^{2+} (0.03 eq) and (d) sensor **RP** + Cu^{2+} (0.09 eq) in DMSO- d_6 .

10. Reference

[1] Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett., 2006, 8, 2863-2866.