Electronic Supplementary Information (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Meta-substituted benzamide oligomers that complex mono-, di- and tricarboxylates: folding-induced selectivity and chirality

Zhu-Ming Shi, Shi-Gui Chen, Xin Zhao,* Xi-Kui Jiang and Zhan-Ting Li*

State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.

E-mail: xzhao@mail.sioc.ac.cn, ztli@mail.sioc.ac.cn. Fax: +86-21-64166128 Tel: +86-21-54925023

Table of Contents

Fig. S1 Partial ¹ H NMR spectra of T2 at different concentrations	2
Fig. S2 Partial NOESY spectrum of the mixture of T1 and 10	2
Fig. S3 Partial NOESY spectrum of the mixture of T3 and 10	3
Fig. S4 Benesi-Hildebrand (BH) plots	4
Fig. S5 CD spectrum of L-16	5
Fig. S6 Partial NOESY spectrum of T1.	5
Fig. S7 Partial NOESY spectrum of T2	6
Fig. S8 Partial NOESY spectrum of T3.	6
Fig. S9 Partial COSY spectrum of T1	7
Fig. S10 Partial COSY spectrum of the mixture of T1 and 10	7
Fig. S11 Partial COSY spectrum of T2	8
Fig. S12 Partial COSY spectrum of the mixture of T2 and 10	8
Fig. S13 Partial COSY spectrum of T3	9
Fig. S14 Partial COSY spectrum of the mixture of T3 and 10	9
Fig. S15-22 ¹ H NMR and ¹³ C NMR of new compounds	10-17
Fig. S23-28 ¹ H NMR spectra of compounds 11-16	18 -20

Fig. S1 Partial ¹H NMR spectra of T2 at different concentrations in DMSO- d_6 at 25 °C.

Fig. S2 Partial NOESY spectrum (400 MHz) of the mixture of T1 (10 mM) + 10 (10 mM) in DMSO- d_6 at 25 °C (mixing time = 0.3 s).

Fig. S3 Partial NOESY spectrum (400 MHz) of the mixture of **T3** (10 mM) + **10** (10 mM) in DMSO- d_6 at 25 °C (mixing time = 0.3 s).

Fig. S4 Benesi-Hildebrand (BH) plots using ¹H NMR titration data of (a) **T1-10**, (b) **T2-10**, (c) **T3-10**, (d) **T3-11**, (e) **T3-12**, (f) **T3-13**, (g) **T3-14** and (h) **T3-15**. All fit to 1:1 binding model.

Fig. S5 CD spectrum of L-16 (20.0 mM) in CHCl₃ at 25 °C.

Fig. S6 Partial NOESY spectrum (400 MHz) of **T1** (10 mM) in DMSO- d_6 at 25 °C (mixing time = 0.3 s).

Fig. S7 Partial NOESY spectrum (400 MHz) of T2 (10 mM) in DMSO- d_6 at 25 °C (mixing time = 0.3 s).

Fig. S8 Partial NOESY spectrum (400 MHz) of T3 (10 mM) in DMSO- d_6 at 25 °C (mixing time = 0.3 s).

Fig. S9 Partial COSY spectrum (400 MHz) of T1 (10 mM) in DMSO-d₆ at 25 °C.

Fig. S10 Partial COSY spectrum (400 MHz) of the mixture of T1 (10 mM) + 10 (10 mM) in DMSO- d_6 at 25 °C.

Fig. S11 Partial COSY spectrum (400 MHz) of T2 (10 mM) in DMSO-d₆ at 25 °C.

Fig. S12 Partial COSY spectrum (400 MHz) of the mixture of T2 (10 mM) + 10 (10 mM) in DMSO- d_6 at 25 °C.

Fig. S13 Partial COSY spectrum (400 MHz) of T3 (10 mM) in DMSO-d₆ at 25 °C.

Fig. S14 Partial COSY spectrum (400 MHz) of the mixture of T3 (10 mM) + 10 (10 mM) in DMSO- d_6 at 25 °C.

Fig. S15 ¹H NMR and ¹³C NMR spectra of compound **3** in CDCl₃.

Fig. S16 ¹H NMR and ¹³C NMR spectra of compound T1 in DMSO- d_6 .

Fig. S17 ¹H NMR and ¹³C NMR spectra of compound 6 in DMSO- d_6 .

Fig. S18 ¹H NMR and ¹³C NMR spectra of compound 7 in acetone- d_6 .

Fig. S19 ¹H NMR and ¹³C NMR spectra of compound T2 in DMSO- d_6 .

Fig. S20 ¹H NMR and ¹³C NMR spectra of compound 8 in CDCl₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Fig. S21 ¹H NMR and ¹³C NMR spectra of compound 9 in DMSO- d_6 .

Fig. S22 ¹H NMR and ¹³C NMR spectra of compound T3 in DMSO- d_6 .

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Fig. S23 ¹H NMR spectrum of compound 11 in DMSO- d_6 .

Fig. S24 ¹H NMR spectrum of compound 12 in DMSO- d_6 .

Fig. S25 ¹H NMR spectrum of compound 13 in DMSO- d_6 .

Fig. S26 ¹H NMR spectra of compound 14 in DMSO- d_6 .

Fig. S27 ¹H NMR spectrum of compound 15 in DMSO- d_6 .

Fig. S28 ¹H NMR spectrum of compound L-16 in DMSO- d_6 .