Electronic Supplementary Information

pH-Responsive Self-Duplex of ^{Py}A-Substituted Oligodeoxyadenylate in Graphene Oxide Solution as a Molecular Switch

Jeong Wu Yi,[†] Jaesung Park,[‡] Kwang S. Kim,[‡] and Byeang Hyean Kim^{†,*}

[†]Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Division of IBB, Pohang University of Science and Technology, Pohang 790-784, South Korea

[‡]Center for Superfunctional Materials, Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology, Pohang 790-784, South Korea

Tel: (+82)54-279-2115, Fax: (+82)54-279-3399; E-Mail: bhkim@postech.ac.kr

Page	Contents		
S 3	Table S1. MALDI-TOF mass spectral data ([M+]) for the ODNs		
S4	Fig. S1 The AFM image of used graphene oxide and thickness profile of graphene oxide		
S5	Fig. S2 Fluorescence emission spectra of ^{Py} A-substituted oligonucleotides at the different pH conditions.		
S6	Fig. S3 CD spectra of ^{Py} A-substituted oligonucleotides (ODN A and B) at the different pH conditions.		
S7	Fig. S4 Fluorescence emission spectra of ^{Py} A-substituted oligonucleotides (ODN A and B) in the presence of GO at different concentrations		
S8	Fig. S5 Fluorescence emission spectra of ^{Py} A-substituted oligonucleotides (ODN A and B) at a fixed concentration of GO related to pH shifts.		
S9	Fig. S6 Cycling of the molecular switch as observed by fluorescence spectroscopy.		

Table S1. MALDI-TOF mass spectral data ([M+]) for the ODN

Sequence	Calc. <i>m/z</i>	Found <i>m/z</i>
ODN A	5800.1	5799.6
ODN B	5931.9	5931.1
ODN C	6921.4	6920.7
ODN D	6853.2	6852.8

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Fig. S1 A) The AFM image of used graphene oxide on SiO_2 and thickness profile of graphene oxide. B) IR spectrum of used graphene oxide.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Fig. S2 Fluorescence emission spectra of ^{Py}A-substituted oligonucleotides at the different pH conditions. Spectra were recorded at 20 °C in 10 mM Tris–HCl (pH 7.0), 10 mM MgCl₂, 100 mM NaCl. Each concentration of ODN was 3.0 μ M. (A) ODN A, (B) ODN B, (C) ODN C and (D) ODN D fluorescence emission spectrum

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Fig. S3 CD spectra of ^{Py}A-substituted oligonucleotides (ODN A and B) at the different pH conditions. Spectra were recorded in 10 mM Tris–HCl (pH 7.0), 10 mM MgCl₂, 100 mM NaCl at 20 °C. Each concentration of ODN was 3.0 μ M. (A) ODN A and (B) ODN B CD spectra.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Fig. S4 Fluorescence emission spectra of ^{Py}A-substituted oligonucleotides (ODN A and B) in the presence of GO at different concentrations in 10 mM Tris-HCl buffer (pH 7.0) containing 100 mM NaCl and 10 mM MgCl₂ at 20°C. (A) ODN A and (B) ODN B fluorescence emission spectra in the different concentration of GO solution.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Fig. S5 Fluorescence emission spectra of ^{Py}A-substituted oligonucleotides (ODN A and B) at a fixed concentration of GO related to pH shifts. Spectra were recorded by continuously changed pH, from pH 7.0, 4.0 to 9.0 at 20 °C in 10 mM Tris–HCl (pH 7.0), 10 mM MgCl₂, 100 mM NaCl. Each concentration of ODN was 3.0 μ M. (A) ODN A and (B) ODN B fluorescence emission spectra in GO solution.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Fig. S6 Cycling of the molecular switch as observed by fluorescence spectroscopy. Spectra were recorded by continuously changed pH, from pH 4.0 to 9.0 at 20 °C in 10 mM Tris–HCl (pH 7.0), 10 mM MgCl₂ and 100 mM NaCl. Each concentration of ODN was 1.5 μ M. (A) ODN A, (B) ODN B, (C) ODN C, and ODN D, respectively.